2020年中考数学三轮冲刺 难点题型突破 6 二次函数的最值问题
中考数学频考点突破--二次函数的最值 (1)
中考数学频考点突破--二次函数的最值1.如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A(−1,0),B(52,0),直线y =x +12与抛物线交于C 、D 两点,与坐标轴交于E 、F 两点. 点P 是抛物线在第四象限内图象上的一个动点.过点P 作PG⊥CD ,垂足为G ,PQ⊥y 轴,交x 轴于点Q.(1)求抛物线的解析式;(2)当√2PG +PQ 取得最大值时,求点P 的坐标和√2PG +PQ 的最大值;(3)将抛物线向右平移134个单位得到新抛物线,M 为新抛物线对称轴上的一点,点N 是平面内一点.当(2)中√2PG +PQ 最大时,直接写出所有使得以点A ,P ,M ,N 为顶点的四边形是菱形的点N 的坐标.2.已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于 时,⊥PAD=60°;当PA 的长度等于 时,⊥PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A即为原点O),把⊥PAD、⊥PAB、⊥PBC的面积分别记为S1、S2、S3.设P点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.3.在Rt⊥ABC中,⊥C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有⊥PBQ与⊥ABC相似;(2)若Rt⊥AQP⊥Rt⊥ACP⊥Rt⊥BQP,求tanB的值;(3)已知AC=3,BC=4,当BP为何值时,⊥AQP面积最大,并求出最大值. 4.如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣4,0),B(6,0)两点,与y轴交于点C.若G是该抛物线上A,C之间的一个动点,过点G作直线GD⊥x轴,交抛物线于点D,过点D,G分别作x轴的垂线,垂足分别为E,F,得到矩形DEFG.(1)求该抛物线的表达式;(2)当点G与点C重合时,求矩形DEFG的面积;(3)若直线BC分别交DG,DE于点M,N,求⊥DMN面积的最大值.5.如图,在Rt⊥ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 √2cm(2)当t为何值时,⊥PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?6.已知二次函数的图象y=ax2−(2a+3)x−(3a2−9)与x轴交于点A(3,0),B.(1)求二次函数的表达式;(2)当x=x1,x2(x1,x2是实数,x1≠x2)时,该函数对应的函数值分别为y 1,y2.若x1+x2=5,试说明y1+y2+12>0.7.如图,矩形ABCD中,AB=5,BC=6,△BCG为等边三角形.点E,F分别为AD,BC边上的动点,且EF∥AB,P为EF上一动点,连接BP,将线段BP 绕点B顺时针旋转60°至BM,连接PA,PC,PM,GM.(1)求证:GM=PC;(2)当PB,PC,PE三条线段的和最小时,求PF的长;(3)若点E以每秒2个单位的速度由A点向D点运动,点P以每秒1个单位的速度由E点向F点运动.E,P两点同时出发,点E到达点D时停止,点P到达点F时停止,设点P的运动时间为t秒.①求t为何值时,△AEP与△CFP相似;②求△BMP的面积S的最小值.8.A、B两地果园分别有某种水果12吨和8吨,C、D两地分别需要这种水果5吨和15吨;已知从A、B到C、D的运价如表:到C地到D地A果园每吨150元每吨120元B果园每吨100元每吨90元(1)填空:①从B果园运到C地的水果为吨,②从A果园将水果运往D地的运输费用为元.(2)用含x的式子表示出总运输费(要求:列式、化简).(3)直接写出总运输费用的最小值.(4)若这批水果在C地和D地进行再加工,经测算,全部加工完毕后总成本为w 元,且w=﹣(x﹣3)2+185000,则当x=时,w有最值(填“大”或“小”).这个值是.9.某商店销售一种销售成本为40元/千克的水产品,若50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)写出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3)商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元销售单价应定为多少?10.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.11.如图,已知反比例函数y= mx(x>0)的图象与一次函数y=﹣x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2﹣S1,求S的最大值.12.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件。
2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)
三轮冲刺复习培优同步练习:《二次函数综合》1.如图1,二次函数y=﹣x2+bx+c的图象过A(5,0)和B(0,)两点,射线CE绕点C(0,5)旋转,交抛物线于D,E两点,连接AC.(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接OE,AE,当△CEO是以CO为底的等腰三角形时,求点E的坐标和△ACE的面积;(3)如图2,射线CE旋转时,取DE的中点F,以DF为边作正方形DFMN.当点E和点A 重合时,正方形DFMN的顶点M恰好落在x轴上.①求点M的坐标;②当点E和点A重合时,将正方形DFMN沿射线CE方向以每秒个单位长度平移.设运动时间为t秒.直接写出正方形DFMN落在x轴下方的面积S与时间t(0≤t≤4)的函数表达式.2.如图,抛物线L:y=﹣(x﹣t)2+t+2,直线l:x=2t与抛物线、x轴分别相交于Q、P.(1)t=1时,Q点的坐标为;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数为.3.定义:把函数C1:y=ax2﹣6ax+5a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴为直线x=h.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)填空:h的值为(用含m的代数式表示);(2)若a=1,m=1,当t﹣1≤x≤t时,函数C2的最大值为y1,最小值为y2,且y1﹣y2=3,求t的值;(3)当m=2时,C2的图象与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点D.把线段BD绕原点O顺时针旋转90°,得到它的对应线段B′D′.若线段B′D′与C2的图象有公共点,结合函数图象,求a的取值范围.4.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(4,0),点C坐标为(0,4),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=2∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBGH,随着点P的运动,正方形的大小、位置也随着改变,当顶点G或H恰好落在y轴上时,请直接写出点P的横坐标.6.已知点P 为抛物线y =x 2上一动点,以P 为顶点,且经过原点O 的抛物线,记作“y p ”,设其与x 轴另一交点为A ,点P 的横坐标为m .(1)①当△OPA 为直角三角形时,m = ;②当△OPA 为等边三角形时,求此时“y p ”的解析式;(2)若P 点的横坐标分别为1,2,3,…n (n 为正整数)时,抛物线“y p ”分别记作“”、“”…,“”,设其与x 轴另外一交点分别为A 1,A 2,A 3,…A n ,过P 1,P 2,P 3,…P n 作x 轴的垂线,垂足分别为H 1,H 2,H 3,…H n .1)①P n 的坐标为 ;OA n = ;(用含n 的代数式来表示)②当P n H n ﹣OA n =16时,求n 的值.2)是否存在这样的A n ,使得∠OP 4A n =90°,若存在,求n 的值;若不存在,请说明理由.7.如图,二次函数y =﹣x 2+2(m ﹣2)x +3的图象与x 、y 轴交于A 、B 、C 三点,其中A (3,0),抛物线的顶点为D .(1)求m 的值及顶点D 的坐标;(2)如图1,若动点P 在第一象限内的抛物线上,动点N 在对称轴1上,当PA ⊥NA ,且PA =NA 时,求此时点P 的坐标;(3)如图2,若点Q 是二次函数图象上对称轴右侧一点,设点Q 到直线BC 的距离为d ,到抛物线的对称轴的距离为d 1,当|d ﹣d 1|=2时,请求出点Q 的坐标.8.如图,抛物线y =x 2﹣ax +a ﹣1与x 轴交于A ,B 两点(点B 在正半轴上),与y 轴交于点C ,OA =3OB .点P 在CA 的延长线上,点Q 在第二象限抛物线上,S △PBQ =S △ABQ .(1)求抛物线的解析式.(2)求直线BQ 的解析式.(3)若∠PAQ =∠APB ,求点P 的坐标.9.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.10.如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x 轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1)求抛物线的解析式;(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值;(3)当﹣1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.11.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B、C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值;(2)连接OF,求△OEF的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.13.如图1,已知抛物线y=ax2+bx+c的顶点为P(1,9),与x轴的交点为A(﹣2,0),B.(1)求抛物线的解析式;(2)M为x轴上方抛物线上的一点,MB与抛物线的对称轴交于点C,若∠COB=2∠CBO,求点M的坐标;(3)如图2,将原抛物线沿对称轴平移后得到新抛物线为y=ax2+bx+h,E,F新抛物线在第一象限内互不重合的两点,EG⊥x轴,FH⊥x轴,垂足分别为G,H,若始终存在这样的点E,F,满足△GEO≌△HOF,求h的取值范围.14.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y 轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,抛物线y=﹣+bx+c的对称轴是直线x=与x轴的交点为点A,且经过点B、C两点.(1)求抛物线的解析式;(2)点M为抛物线对称轴上一动点,当|BM﹣CM|的值最小时,请你求出点M的坐标;(3)抛物线上是否存在点N,过点N作NH⊥x轴于点H,使得以点B、N、H为顶点的三角形与△ABC相似?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标(,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE =45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH 时,请你直接写出此时点Q的坐标.19.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为,点B的坐标为.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.20.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),C(0,2),对称轴为直线x=.(1)求该抛物线和直线BC的解析式;(2)点G是直线BC上方抛物线上的动点,设G点的横坐标为m,试用含m的代数式表示△GBC的面积,并求出△GBC面积的最大值;(3)设R点是直线x=1上一动点,M为抛物线上的点,是否存在点M,使以点B、C、R、M为顶点的四边形为平行四边形,若存在,请直接写出符合条件的所有点M坐标,不存在说明理由.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=﹣x2+2x+①;(2)当△CEO是以CO为底的等腰三角形时,则OC的中点(0,)的纵坐标和点E的纵坐标相同,而点B(0,),即点E、B关于抛物线对称轴对称,∵抛物线的对称轴为直线x=2,故点E的坐标为(4,);△ACE的面积S=S△COE +S△OAE﹣S△AOC=OC•|x E|+OA•|y E|﹣×AO×CO=5×4+×5×﹣×5×5=;(3)①∵OA=OC=5,∴∠CAO=45°,∵对角线DM与AC的夹角为45°,∴∠DMA=90°,即DM⊥x轴,即点D、M的横坐标相同,由A、C的坐标得:直线AC的表达式为:y=﹣x+5②,联立①②并解得:x=1或5(舍去5),故x=1,故点D(1,4),∴点M的坐标为(1,0);②设正方形MFDN平移后为M′F′D′N′,如图1,2所示;由A 、D 的坐标得,DA ==4,∵点F 是AD 的中点,故DF =2,即正方形MFDN 的边长为2,∴正方形MFDN 的面积为S 1=(2)2=8;(Ⅰ)当0≤t ≤2时,如图1所示,设M ′F ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,∴MM ′=t =M ′H ,∴S =S △M ′MH =MM ′•M ′H =(t )2=t 2;(Ⅱ)当2<t ≤4时,如图2所示,设N ′D ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,则DD ′=t ,∴AD ′=AD ﹣DD ′=4﹣t =HD ′,∴S =S 1﹣S △AD ′H =8﹣×AD ′×HD ′=8﹣×(4﹣t )=﹣t 2+8t ﹣8,综上,S =.2.解:(1)当t =1时,x =2t =2, 当x =2时,y =﹣(2﹣1)2+1+2=2, 故点Q 的坐标为(2,2), 故答案为(2,2);(2)点P 、Q 的坐标分别为:(2t ,0)、(2t ,﹣t 2+t +2), 当P 、Q 两点重合时,﹣t 2+t +2=0,解得:t =﹣1或2;(3)当Q 点达到最高时,点Q (t ,t +2),由(2)知函数的对称轴为x=(2﹣1)=,故点Q(,),故抛物线的表达式为:y=﹣(x﹣)2+;(4)①当t=1时,如图1,抛物线表达式为:y=﹣(x﹣1)2+3,令y=0,则x=1,“可点”的个数如图黑点所示,有6个;②当t=2时,抛物线的表达式为:y=﹣(x﹣2)2+4,令y=0,则x=0或4,“可点”的个数如图黑点所示,有8个;②当1<t<2时,点Q的坐标为(t,2+t),即抛物线在y=x+2上运动,2AB<4,当L过点(3,0)时,“可点”的个数如图黑点所示,有7个.故“可点”的个数为6或7或8个,故答案为:6或7或8.3.解:(1)y=ax2﹣6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m,故h=2m﹣3,故答案为:2m﹣3;(2)a=1,C1:y=x2﹣6x+5=(x﹣3)2﹣4,顶点为(3,﹣4),m=1时,C2的顶点为(﹣1,4),C2:y=﹣(x+1)2+4=﹣x2﹣2x+3,①当t≤﹣1时,y随x的增大而增大,y 1﹣y2=﹣t2﹣2t+3﹣[﹣(t﹣1)2﹣2(t﹣1)+3]=3,解得:t=﹣2;②当t﹣1<﹣1<t时,即﹣1<t<0时,分两种情况:(Ⅰ)当﹣1﹣(t﹣1)≥t﹣(﹣1)时,即﹣1<t≤﹣时,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣t2=3,解得:t=(舍去)(Ⅱ)当﹣1﹣(t﹣1)<t﹣(﹣1)时,即﹣<t<0时,y 1﹣y2=3=4﹣(t2﹣2t+3)=t2+2t+1,解得:t=﹣1(舍去);③当t﹣1≥﹣1时,即t≥0时,y随x的增大而减小,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣[﹣t2﹣2t+3]=3,解得:t=1;综上,t=﹣2或t=1;(3)当m=2时,C:y=ax2﹣6ax+5a=a(x﹣3)2﹣4a,1的表达式为:y=﹣a(x﹣1)2+4a,∴C2当y=0时,x=﹣1或3,当x=0时,y=3a,∴点A、B、D的坐标分别为:(3,0)、(﹣1,0)、(0,3a);∵线段BD绕原点O顺时针旋转90°,∴点B′的坐标为(3,0),点D′的坐标为(3a,0).①当a>0时,分两种情况:(Ⅰ)当点D′在点A的右侧(含点A)时,线段B′D′与C的图象有公共点,如图1,2∴3a≥3,解得a≥1;(Ⅱ)当点D′在点A的左侧,且点D在点B′的下方(含点B′)时,线段B′D′与C2的图象有公共点,如图2,∴3a≤1,∴0<a≤;的图象有公共点,如②当a<0时,点D′在点B的左侧(含点B)时,线段B′D′与C2图3,∴3a≤﹣1,解得:a≤;综上,a≤﹣或0<a≤或a≥1;4.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BCE的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).5.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+4=﹣(x﹣1)2+;(2)如图1,在线段DE上取点M,使MD=MB,此时∠EMB=2∠BDE,设ME=a,在Rt△BME中,ME2+BE2=BM2,即a2+32=(﹣a)2,解得:a=,∴tan∠EMB==,过点F作FN⊥x轴于点N,设点F(m,﹣m2+m+4),则FN=|﹣m2+m+4|,∵∠FBA=2∠BDE,∴∠FBA=∠EMB,∴tan∠FBA=tan∠EMB=,∵点B(4,0)、点E(1,0),∴BE=3,BN=4﹣m,∴tan∠FBA=,解得:m=4(舍去)或﹣或,故点F(﹣,﹣)或(,);(3)①当点P在对称轴右侧时,(Ⅰ)当点H在y轴上时,如图2,∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,∴∠CHP=∠MPB,∵∠BMP=∠PNH=90°,PH=BP,∴△BMP≌△PNH(AAS),∴MB=PC,设点P(x,y),则x=y=﹣x2+x+4,解得:x=(舍去负值),故点P的横坐标为;(Ⅱ)当点G在y轴上时,如图3,过点P作PR⊥x轴于点R,同理可得:△PRB≌△BOG(AAS),∴PR=OB=4,即y P=4=﹣x2+x+4,解得:x=2;②当点P在对称轴左侧时,同理可得:点P的横坐标为0或2﹣;综上,点P的横坐标为或2或0或2﹣.6.解:(1)①当△OPA为直角三角形时,∵PO=PA,故△OPA为以点P为顶点的等腰直角三角形,∴点P的横坐标和纵坐标相同,故点P(m,m),将点P的坐标代入y=x2得:m=m2,解得:m=0或2(舍去0),故答案为2;②当△OPA为等边三角形时,同理可得点P(m,m),将点P的坐标代入抛物线表达式并解得:m=2,故点P的坐标为(2,6),故“y p”的解析式为:y=a(x﹣2)2+6,点A的坐标为(2m,0),即(4,0),将点A的坐标代入y=a(x﹣2)2+6并解得:a=﹣,故“y p”的解析式为:y=﹣(x﹣2)2+6=﹣x2+2x;(2)1)①由题意得:P n 的横坐标为n ,则其坐标为(n ,n 2),则A n =2n , 故答案为:(n ,n 2);2n ;②由题意得:P n H n ﹣OA n =n 2﹣2n =16,解得:n =8或﹣4(舍去﹣4),∴n =8;2)存在,理由:如下图所示,由1)知,点P 4的坐标为(4,8),A n =2n ,即OH 4=4,P 4H 4=8,H 4A n =2n ﹣4,∵∠OP 4A n =90°,∴∠OP 4H 4+∠H 4P 4A n =90°,∵∠H 4P 4A n +∠P 4A n H 4=90°,∴∠OP 4H 4=∠P 4A n H 4,∴Rt △OP 4H 4∽Rt △P 4A n H 4,∴P 4H 42=OH 4•H 4A n ,即82=4×(2n ﹣4),解得:n =10.7.解:(1)将点A 的坐标代入函数表达式得:0=﹣32+2(m ﹣2)×3+3, 解得:m =3,故抛物线的表达式为:y =﹣x 2+2x +3,故点D 的坐标为:(1,4);(2)过点A 作y 轴的平行线交过点N 与x 轴的平行线于点M ,交过点P 与x 轴的平行线于点H ,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NA,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).8.解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ =S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BPA=∠QBP,而∠PAQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠PAQ=∠APB,∴DP=DA,∴PA=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).9.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4①.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)①当点P在BA下方时,如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为:y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8);②当点P(P′)在BA上方时,此时∠P′BA+∠CBO=45°,而∠PBA+∠CBO=45°,故∠P′BA=∠PBA,即BA是∠PBP′的角平分线,∵OA=OB=4,故△ABO为等腰三角形,以BA为对角线作正方形BOAM,设直线BP交边(x轴)OA于点H,直线BP′交AM于点H′,在点H、H′关于AB对称,∴AH=AH′,由①知:直线PB解析式为:y=﹣2x+4,令y=0,则x=3,故点H(2,0),即AH=4﹣2=2=AH′,∴点H′(4,2),由点H′、点B的坐标可得,直线BH′的表达式为:y=﹣x+4②,联立①②并解得:x=3,故点P′(3,);综上,点P的坐标为:(3,)或(6,﹣8).10.解(1)∵在Rt△AOC中,∠AOC=90°,∴OA==3,∴A(3,0),将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中得,解得,,∴抛物线解析式为y=﹣x2+x+4;(2)由A(3,0),C(0,4)可得直线AC解析式为y=﹣x+4,∴M坐标为(m,﹣m+4),∵MG∥BC,∴∠CBO=∠MGE,且∠COB=∠MEG=90°,∴△BCO∽△GME,∴=,即=,∴GE=﹣m+1,∴OG=OE﹣GE=m﹣1,∴S△COM =S梯形COGM﹣S△COG﹣S△GEM=m(﹣m+4+4)﹣4×(m﹣1)×﹣(﹣m+1)(﹣m+4),=﹣m2+m=﹣(m﹣)2+2,∴当m=时,S最大,即S最大=2;(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,∴△PCM的直角顶点可能是P或C,第一种情况:当∠CMP=90°时,如图③,则CP∥x轴,此时点P与点D重合,∴点P(2,4),此时m=2;第二种情况:当∠PCM=90°时,如图④,延长PC 交x 轴于点F ,由△FCA ∽△COA ,得 =, ∴AF =, ∴OF =﹣3=, ∴F (﹣,0),∴直线CF 的解析式为y =x +4,联立直线CF 和抛物线解析式可得,解得,,∴P 坐标为(,),此时m =;综上可知存在满足条件的实数m ,其值为2或. 11.解:(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a .∵点A 位于点B 的左侧,与y 轴的负半轴交于点C ,∴a <0,∴点B 坐标为(1,0).(2)①由(1)可得,点A 的坐标为(a ,0),点C 的坐标为(0,a ),a <0, ∴AB =1﹣a ,OC =﹣a ,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.12.解:(1)∵△ABC为等腰直角三角形,∴AO=BC,∵△ABC面积为4,∴BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴,∴,即a、c的值分别为﹣和2;(2)如图1,连接OF,由(1)可知:y=﹣x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线定点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣(x﹣m)2+m+2,将点C(2,0)代入y=﹣(x﹣m)2+m+2,得﹣(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣x2+6x﹣10,当y=0时,﹣x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF==10,EF==4,∴△OEF的周长为OE+OF+EF=10+10+4=20+4;(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ==2,∴Q(6,2),当P在x轴下方时,如图3,∵△PQE≌△POE,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK==8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,2)或Q(6,3).13.解:(1)∵抛物线y=ax2+bx+c的顶点为P(1,9),∴设该抛物线解析式为y=a(x﹣1)2+9(a≠0),把(﹣2,0)代入抛物线解析式得9a+9=0,a=﹣1,∴y=﹣(x﹣1)2+9=﹣x2+2x+8;(2)令y=0得﹣(x﹣1)2+9=0,x=﹣2,或x=4,∴B(4,0),∴OB=4抛物线对称轴直线x=1与x轴交点为T,如图1,作原点O关于直线x=1的对称点D(2,0),连接CD,则∠CDO=∠COD=2∠CBO,∵∠CDO=∠BCD+∠CBO,∴∠BCD=∠CBO,∴CD=DB=2.∴.∴.∴设直线BM的解析式为y=kx+t,则,解得,.∴直线BM解析式为,与抛物线y=﹣x2+2x+8联立得.∴,.∴,故点M坐标为;(3)如图2,设E(m,n)(m>0,n>0,m≠n),∵△GEO≌△HOF,∴OH=EG=n,FH=OG=m,∴F(n,m),设新抛物线解析式为y=﹣x2+2x+h,把点E,F的坐标代入抛物线的解析式得:m=﹣n2+2n+h,n=﹣m2+2m+h,即h=n2﹣2n+m,h=m2﹣2m+n,∴m2﹣2m+n=n2﹣2n+m,m2﹣n2+3(n﹣m)=0,(m﹣n)(m+n﹣3)=0,∵m≠n,∴m+n=3,m=3﹣n,∵m>0,n>0,m≠n,∴0<n<3且把m=3﹣n代入h=n2﹣2n+m,得.∵0<n<3且.∴.故h的取值范围.14.解:(1)把A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2得到,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)设D(m,m2﹣m﹣2),∵C(0,﹣2),B(4,0),∴直线BC的解析式为y=x﹣2,∴E(m,m﹣2),∴DE=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m,=•DE•OB=﹣m2+4m=﹣(m﹣2)2+4,∴S△BCD∵﹣1<0,∴m=2时,△BDC的面积最大,此时DE=﹣×22+2×2=2.(3)如图3中,连接BC.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(4,0),点C的坐标为(0,﹣2),点A的坐标为(﹣1,0),∴直线BC的解析式为y=x﹣2,直线AC的解析式为y=﹣2x﹣2,设点Q的坐标为(2,n),则过点Q且垂直AC的直线的解析式为y=x+n﹣1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(2﹣0)2+(n﹣0)2=(﹣2)2+(﹣n)2,整理,得:n2﹣3n﹣4=0,解得:n1=﹣1,n2=4,∴点Q的坐标为(2,﹣1)或(2,4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q 的坐标为(2,﹣1)或(2,4).15.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,∴.解这个方程,得.∴该抛物线解析式是y=﹣x2+x+4.∵y=﹣x2+x+4=y=﹣(x﹣)2+.∴这条抛物线的顶点坐标是(,);(2)∵A(﹣3,0),C(4,0),∴OA=3,OB=OC=4,则AB=5,AC=7,CD=2;如图1,连接DQ,由于BD垂直平分PQ,则DP=DQ,得:∠PDB=∠QDB,而AD=AB,得:∠ABD=∠ADB,故∠QDB=∠ABD,得QD∥AB;∴△CDQ∽△CAB,则有:==,∴=.∴PD=DQ=,AP=AD﹣PD=5﹣=,故t=;(3)存在,如图2,连接AQ交对称轴于M,此时MQ+MC为最小,过Q作QN⊥x轴于N,∵DQ∥AB,∴∠QDN=∠BAC,sin∠QDN=sin∠BAC==,∴=,∴QN=,设直线BC的解析式为:y=kx+b,把B(0,4)和C(4,0)代入得:,解得,∴直线BC的解析式为:y=﹣x+4,当y=时,=﹣x+4,x=,∴Q(,),同理可得:AQ的解析式为:y=x+,当x=时,y=×+=,∴M(,).16.解:(1)在直线y=x﹣4,令x=0,则y=﹣4,令y=0,则x=8,∴A(8,0)、B(0,﹣4),将A(8,0)、B(0,﹣4)代入y=x2+bx+c有,解得:;故抛物线的表达式为:y=x2﹣x﹣4;(2)①如图1,过C作CE∥y轴交直线AB于点E,过M作MF∥y轴交直线AB于点F.则CE∥MF,∴,设点M(x,x2﹣x﹣4),∵MF∥y轴交直线AB于点F,直线AB:y=x﹣4,故点F(x,x﹣4),则MF=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,可求得C(﹣2,0),C作CE∥y轴交直线AB于点E,∴E(﹣2,﹣5),CE=5,∴,∴当x=4时,的最小值为;②存在.理由如下:∵C(﹣2,0);B(0,﹣4);A(8,0).∴OC=2,OB=4,OA=8,∵∠CBO+∠ABO=90°,∠CAB+∠ABO=90°,∴∠CBO=∠CAB,又∠ABC=∠BCO=90°,∴△BOC∽△ABC.有∠ABC=∠AOB=90°,又MD⊥AB于D,∴∠BDM=∠ABC=90°,∠BAC<45°.因此在△BMD只能是∠BMD=2∠BAC或∠MBD=2∠BAC.在图2中,取AC中点H,连接BH,可得∠BHO=2∠BAC,OH=OA﹣AH=3,tan∠BHO=,过D作DT⊥y轴于T,过M作MG⊥TD交其延长线于G.∵∠GDM+∠TDB=90°,∠TDB+∠TBD=90°,∴∠GDM=∠TBD,又∵∠DTB=∠MGD=90°,∴△TBD∽△GDM,,又DM⊥AB,tan∠DMB=,tan∠DBM=.当∠BMD=2∠BAC时,则=,当∠MBD=2∠BAC时,则,设点D(a,a﹣4),点M(m2﹣m﹣4)(8>a>0,8>m>0),则点T(0,a﹣4),点G(m,a﹣4),∴DT=a,DG=m﹣a,∴BT=a﹣4﹣(﹣4)=a,当∠BMD=2∠BAC时,,又,∴,解得:m=0或(舍去0),故点M的坐标为(,﹣),如图2,当∠MBD=2∠BAC时,,又,∴,解得:m=0或4(舍去0),故点M(4,﹣6);综合得存在满足条件的点M的坐标为(,﹣)或(4,﹣6).17.解:(1)针对于y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),∵点C在抛物线y=﹣+bx+c上,∴c=2,∴抛物线的解析式为y=﹣+bx+2,∵点B(4,0)在抛物线上,∴﹣8+4b+2=0,∴b=,∴抛物线的解析式为y=﹣+x+2;(2)∵|BM﹣CM|最小,∴|BM﹣CM|=0,∴BM=CM,∴BM2=CM2,设M(,m),∵B(4,0),C(0,2),∴BM2=(4﹣)2+m2,CM2=()2+(m﹣2)2,∴(4﹣)2+m2=()2+(m﹣2)2,∴m=0,∴M(,0);(3)由(1)知,抛物线的解析式为y=﹣+x+2,令y=0,则0=﹣+x+2,∴x=4或x=﹣1,∴A(﹣1,0),∵B(4,0),C(0,2),∴BC2=20,AC2=5,AB2=25,∴CB2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵NH⊥x,∴∠BHN=90°=∠ACB,设N(n,﹣n2+n+2),∴HN=|﹣n2+n+2|,BH=|n﹣4|,∵以点B、N、H为顶点的三角形与△ABC相似,∴①△BHN∽△ACB,∴,∴,∴n=﹣5或n=3或n=4(舍),∴N(﹣5,﹣18)或(3,2),②△BHN∽△BCA,∴,∴,∴n=0或n=4(舍)或n=﹣2,∴N(0,2)或(﹣2,﹣3),即满足条件的点N的坐标为(﹣5,﹣18)或(﹣2,﹣3)或(0,2)或(3,2).18.解:(1)∵抛物线经过A(1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x﹣1)(x﹣3),把C(0,3)代入得到a=1,∴抛物线的解析式为y=x2﹣4x+3,设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x+3,由,解得或,∴E(5,8).故答案为:y=x2﹣4x+3,y=x+3,5,8.(2)如图1中,过点E作EH⊥x轴于H.∵C(0,3),D(﹣3,0),E(5,8),∴OC=OD=3,EH=8,∴∠PDE=45°,CD=3,DE=8,EC=5,当∠CPE=45°时,∵∠PDE=∠EPC,∠CEP=∠PED,∴△ECP∽△EPD,∴=,∴PE2=EC•ED=80,在Rt△EHP中,PH===4,∴把点H向左或向右平移4个单位得到点P,∴P1(1,0),P2(9,0).(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.设Q(t,t2﹣4t+3),由题意点Q只能在点B的右侧的抛物线上,则QH=t2﹣4t+3,BH =t﹣3,AH=t﹣1,∴==t﹣3=,∵∠QHB=∠AHM=90°,∴△QHB∽△AHM,∴∠BQH=∠HAM,∵∠BQH+∠QBH=90°,∠QBH=∠ABN,∴∠HAM+∠ABN=90°,∴∠ANB=90°,∴QN⊥AM,∴当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,在Rt△BHM中,BH===,∴t=3+,∴Q(3+,3+2).19.解:(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),故点A、B的坐标分别为:(﹣1,0)、(3,0),故答案为:(﹣1,0)、(3,0);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,设:D(1,n),点C(0,﹣3m),∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,又∵∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴==,其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,将以上数值代入比例式并解得:m=±,∵m<0,故m=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),∴C(0,﹣3m),CO=﹣3m.∵A(﹣1,0),B(3,0),∴AB=4,∴S2=S△AOC=×1×(﹣3m)=﹣m,设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,BC==3,由面积法得:OM==﹣,∴tan∠COB==﹣m,则cos∠COB=,MB=OB•cos∠COB=,∴S1=S△BOD=×DO×MB=OM×MB=﹣,又S1=S2,∴m2+1=(m<0),故m=﹣.20.解:(1)∵A(﹣1,0),对称轴为直线x=.∴B(4,0),设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;设直线BC的表达式为:y=sx+t,则,解得:,故直线BC的表达式为:y=﹣x+2;(2)设G点坐标(m,﹣m2+m+2),过G作GH∥y轴,交直线BC于H点,则H坐标为(m,﹣m+2),∴△GBC面积S=S△GHC +S△GHB=GH×OB=[﹣m2+m+2﹣(﹣m+2)]×4=﹣m2+4m,∵﹣1<0,故S有最大值,当m=2时,S的最大值为4;(3)设点M的坐标为(m,n),n=﹣m2+m+2,点R(1,s),而点B、C的坐标分别为:(4,0)、(0,2);①当BC为平行四边形的边时,点C向右平移4个单位,向下平移2个单位得到点B,同样点M(R)向右平移4个单位,向下平移2个单位得到点R(M),即m±4=1,解得:m=﹣3或5,故点M的坐标为:(5,﹣3)或(﹣3,2);②当BC为平行四边形的对角线时,由中点公式得:m+1=4,解得:m=3,故点M(3,2),综上,点M的坐标为(5,﹣3)或(﹣3,﹣7)或(3,2).。
2020年中考数学二轮复习压轴专题:二次函数(解析版)
2020 年中考数学二轮复习压轴专题:《二次函数》1.如图,平面直角坐标系中,点 A、点B 在 x 轴上(点A在点B 的左边),点 C在第一象限,知足∠ ACB为直角,且恰使△OCA∽△ OBC,抛物线y=ax2﹣8ax+12a( a<0)经过A、 B、C三点.(1)求线段OB、OC的长.(2)求点C的坐标及该抛物线的函数关系式;( 3)在x 轴上能否存在点,使△为等腰三角形?若存在,求出全部切合条件的P P BCP点的坐标:若不存在,请说明原因.解:( 1)y=ax2﹣ 8ax+12a=a(x﹣ 6)(x﹣ 2),故 OA=2, OB=6,△ OCA∽△ OBC,则2,即: OC= OA?OB,解得: CO=2;( 2)过点C作CD⊥x轴于点D,△ OCA∽△ OBC,则,设 AC=2x,则BC=2x,而AB=4,故 16=( 2x)2+( 2x)2,解得:x=1,故 AC=2, BC=2,S△ABC=AB× CD=AC× BC,解得: CD=,故 OD=3,故点 C(3,);将点 C的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x﹣4;( 3)设点P( m,0),而点B、 C的坐标分别为:(6,0)、(3,);2222则 BC=12,PB =( m﹣6), PC=( m﹣3)2+3,当BC=PB时,12=(m﹣6)2,解得:m=6;当 BC=PC时,同理可得: m=6(舍去)或0;当 PB=PC时,同理可得: m=4,综上点 P 的坐标为:(6, 0)或( 0, 0)或( 4, 0).2.直线y=﹣x+2与 x 轴交于点A,与 y 轴交于点 B,抛物线y=﹣ x2+bx+c 经过 A、 B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△ PBA的面积最大时,求点 P 的坐标;②在①的条件下,点 P 对于抛物线对称轴的对称点为Q,在直线 AB上能否存在点 M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明原因.解:( 1)直线y=﹣x+2与 x 轴交于点 A,与 y 轴交于点B,则点 A、 B 的坐标分别为:( 4, 0)、( 0, 2),将点、B 的坐标代入抛物线表达式得:,解得:,A故抛物线的表达式为:y=﹣ x2+x+2;2( 2)①过点P作y轴的平行线交BC于点 N,设 P(m,﹣ m+ m+2),点 N( m,﹣m+2),则:△ PBA的面积 S=2m+2+2PN× OA=×4×(﹣ m+m﹣2)=﹣ m+4m,当 m=2时, S 最大,此时,点 P(2,5);②点 P(2,5),则点 Q(, 5),设点M(a,﹣a+2);(Ⅰ)若:∠QMB QAM QM AM 1=2∠1,则1=1,则( a﹣)2+(a﹣3)2=( a﹣4)2+(﹣a+2)2,解得: a=,M,);故点1((Ⅱ)若∠QMB QAM2= 2∠ 1 ,则∠ QM2B=∠ QM1B, QM1= QM2,作 QH⊥AB于 H,BQ的延伸线交x 轴于点 N,则 tan ∠BAO==,则tan∠QNA=2,故直线QH表达式中的k 为2,设直线QH的表达式为:y=2x+b,将点Q的坐标代入上式并解得:b=2,故直线QH的表达式为:y=2x+2,故H(0,2)与 B 重合,M、M对于21B 对称,∴ M(﹣2,);综上,点M的坐标为:(,)或(﹣,).3.如图已知直线y=x+与抛物线y= ax2+bx+c 订交于 A(﹣1,0), B(4, m)两点,抛物线 y= ax2+bx+c 交 y 轴于点 C(0,﹣),交x轴正半轴于D点,抛物线的极点为M.(1)求抛物线的分析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点 P的坐标;( 3)若点Q为x轴上一动点,点N 在抛物线上且位于其对称轴右边,当△QMN与△ MAD 相像时,求N点的坐标.解:( 1)将点B( 4,m)代入y=x+,∴ m=,将点 A(﹣1,0), B(4,),C(0,﹣)代入y=ax2+bx+c,解得 a=,b=﹣1,c=﹣,∴函数分析式为 y= x2﹣ x﹣;( 2)设P(n,n2﹣n﹣),则经过点 P 且与直线 y= x+垂直的直线分析式为y=﹣2x+n2+n﹣,直线 y=x+与其垂线的交点G(n2+ n﹣,n 2+ n+),∴ GP=(﹣ n2+3n+4),当 n=时, GP最大,此时△ PAB的面积最大,∴P(,),∵AB=,PG=,∴△ PAB的面积=××=;(3)∵M( 1,﹣ 2),A(﹣ 1, 0),D( 3,0),∴ AM=2, AB=4, MD=2,∴△ MAD是等腰直角三角形,∵△ QMN与△ MAD相像,∴△ QMN是等腰直角三角形,设 N(t ,t 2﹣ t ﹣)①如图 1,当MQ⊥QN时,N( 3, 0);②如图 2,当QN⊥MN时,过点N作 NR⊥ x 轴,过点 M作 MS⊥ RN交于点 S,∵QN=MN,∠ QNM=90°,∴△ MNS≌△ NMS( AAS)∴﹣ 1=﹣t 2+ + ,t t ∴ t =±,∴ t >1,∴ t =,∴N(,1﹣);③如图 3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点N作NR∥x轴,与过 M点的垂线分别交于点S、 R;∵QN=MQ,∠MQN=90°,∴△ MQR≌△ QNS( AAS),∴ SQ=QR=2,∴ t +2=1+t 2﹣ t ﹣,∴t =5,∴N(5,6);④如图 4,当MN⊥NQ时,过点M作 MR⊥ x 轴,过点 Q作 QS⊥ x 轴,过点N 作x轴的平行线,与两垂线交于点、;R S∵QN=MN,∠MNQ=90°,∴△ MNR≌△ NQS( AAS),∴ SQ=RN,∴ t 2﹣ t ﹣= t ﹣1,∴ t =2±,∵ t >1,∴ t =2+,∴N(2+, 1+);综上所述: N(3,0)或 N(2+, 1+)或 N(5,6)或 N(,1﹣).4.如图,在平面直角坐标系中,已知矩形ABCD的三个极点B(4,0)、C(8,0)、D(8,8).抛物线的分析式为y= ax2+bx.( 1)如图 1,若抛物线经过A,D两点,直接写出 A 点的坐标(4,8);抛物线的对称轴为直线6;( 2)如图 2:①若抛物线经过A、C两点,求抛物线的表达式.②若点 P 为线段 AB上一动点,过点P 作 PE⊥ AB交 AC于点 E,过点 E 作 EF⊥AD于点 F交抛物线于点G.当线段 EG最长时,求点E的坐标;( 3)若a =﹣ 1,且抛物线与矩形没有公共点,直接写出b的取值范围.ABCD解:( 1)点A的坐标为:( 4, 8);函数的对称轴为:x=(4+8)=6;故答案为:( 4,8); 6;( 2)①将点A、C的坐标代入抛物线表达式并解得:a=﹣,b=4,故抛物线的表达式为:y=﹣x2+4x;②由点 A、 C的坐标得,直线AC的表达式为: y=﹣2x+16;设点 E( x,﹣2x+16),则点 G( x,﹣x2+4x),EG=﹣x2+4x﹣(﹣2x+16)=﹣x2+6x﹣16,当 x=6时, EG由最大值为:2,此时点 E(2,4);( 3)若a=﹣ 1,则抛物线的表达式为:y=﹣ x2+bx,当抛物线过点B和点 D时,抛物线与矩形有一个交点,将点 B的坐标代入抛物线表达式得:0=﹣ 16+4b,解得:b= 4,将点 D的坐标代入抛物线表达式并解得:b=9,故 b 的取值范围为:b<4或 b>9.5.如图,直线y =﹣1 与抛物线y=﹣x2+6 ﹣5 订交于、D两点.抛物线的极点为,连x x A C结 AC.( 1)求A,D两点的坐标;( 2)点P为该抛物线上一动点(与点A、 D不重合),连结 PA、PD.①当点 P 的横坐标为 2 时,求△PAD的面积;②当∠ PDA=∠ CAD时,直接写出点P的坐标.解:( 1)联立方程组,解得,,,∴(1,0),(4,3),A D( 2)①过P 作⊥轴,与订交于点,PE x AD E∵点 P的横坐标为2,∴P(2,3), E(2,1),∴PE=3﹣1=2,∴=3;②过点 D作 DP∥AC,与抛物线交于点P,则∠ PDA=∠ CAD,∵y=﹣ x2+6x﹣5=﹣( x﹣3)2+4,∴ C(3,4),设 AC的分析式为: y= kx+b( k≠0),∵A(1,0),∴,∴,∴AC的分析式为: y =2x﹣2,设 DE的分析式为: y=2x+n,把D(4,3)代入,得3=8+n,∴n=﹣5,∴DE的分析式为: y=2x﹣5,联立方程组,解得,,,∴此时 P(0,﹣5),当 P 点在直线 AD上方时,延伸 DP,与 y 轴交于点 F,过 F 作 FG∥AC ,FG与 AD交于点 G,则∠ FGD=∠ CAD=∠ PDA,∴FG=FD,设 F(0, m),∵ AC的分析式为: y=2x﹣2,∴FG的分析式为: y=2x+m,联立方程组,解得,,∴ G(﹣ m﹣1,﹣ m﹣2),∴FG=,FD=,∵ FG=FD,∴=,∴ m=﹣5或1,∵ F 在 AD上方,∴ m>﹣1,∴ m=1,∴ F(0,1),设 DF的分析式为: y= qx+1( q≠0),把 D(4,3)代入,得4q+1=3,∴ q=,∴DF的分析式为: y= x+1,联立方程组∴,,∴此时P 点的坐标为,综上, P 点的坐标为(0,﹣ 5)或.6.综合与研究如图,抛物线y= ax2+bx+c( a≠0)经过点 A、 B、C,已知点 C(0,4),△ AOC∽△ COB,且,点 P 为抛物线上一点(异于A, B)(1)求抛物线和直线AC的表达式(2)若点P是直线AC上方抛物线上的点,过点P作PF⊥AB,与AC交于点E,垂足为F.当PE= EF时,求点 P 的坐标( 3)若点为x 轴上一动点,能否存在点,使得由,,,四点构成的四边形为平M P B C P M行四边形?若存在,直接写出点P 的坐标;若不存在,请说明原因解:( 1),则OA=4OC=8,故点A(﹣8,0);△ AOC∽△ COB,则△ ABC为直角三角形,2则 CO= OA?OB,解得: OB=2,故点 B(2,0);则抛物线的表达式为:y=a( x﹣2)( x+8),将点 C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+4;精选文档666AC的表达式为:y=x+4;由点A、 C的坐标可得直线( 2)设点P( x,﹣x2﹣x+4),则点E( x,x +4),PE= EF,即﹣x2﹣x+4﹣x﹣4=x+4;解得: x=﹣8(舍去)或﹣2,故点 P(﹣2,6);2( 3)设点P(m,n),n=﹣m﹣m+4,点 M(s,0),而点 B、C的坐标分别为:(2,0)、( 0, 4);①当 BC是边时,点 B 向左平移2个单位向上平移 4 个单位获得C,相同点 P( M)向左平移 2 个单位向上平移 4 个单位获得M( P),即 m﹣2= s, n+4=0或 m+2= s, n﹣4=0,解得: m=﹣6或﹣ 3,故点P的坐标为:(﹣6,4)或(﹣ 3,﹣ 4)或(﹣﹣3,﹣ 4);②当BC是对角线时,由中点公式得:2=m+s,n= 4,故点 P(﹣6,4);综上,点 P 的坐标为:(﹣6,4)或(﹣3,﹣4)或(﹣﹣3,﹣4).7.如图 1,抛物线y=x2+mx+4m与 x 轴交于点 A( x1,0)和点 B( x2,0),与 y 轴交于点C,且 x1, x2知足 x12+x22=20,若对称轴在y 轴的右边.(1)求抛物线的分析式.(2)如图 2,若点P为线段AB上的一动点(不与A、B重合),分别以AP、BP为斜边,在直线 AB的同侧作等腰直角三角形△ APM和△ BPN,试确立△ MPN最大时 P 点的坐标.( 3)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤ x1≤ a+2,x2≥时,均有y1≤ y2,求 a 的取值范围.解:( 1)x1+x2=﹣ 2m,x1x2=8m,则 x12+x22=( x1+x2)2﹣2x1x2=20,即(﹣ 2m)2﹣ 16m= 20,解得: m=5(舍去)或﹣1;故抛物线的表达式为:y=x2﹣ x﹣4;(2)令y=0,则x=﹣ 2 或 4,故点A、B的坐标分别为:(﹣ 2,0)、( 4,0),则AB=6;设: AP= a,则 PN=6﹣ a,∠ MPN=180°﹣∠ MPA﹣∠ NPB=90°;S△=×PN× PMMPN=a××(6﹣a)=a(6﹣ a)=﹣( a﹣3)2+;∴当a=3时, S最大,此时△MPNOP=1,故点P(1,0);( 3)函数的对称轴为x=1,如图,x=﹣2.5和 x=对于函数对称轴对称,纵坐标均为,由图象看, a≥﹣且a+2≤,解得:﹣≤ a≤.8.如图,在平面直角坐标系中,矩形ABCD的极点B, C, D 的坐标分别(1,0),(3,0),( 3, 4),以A为极点的抛物线y= ax2+bx+c 过点 C.动点 P 从点 A出发,以每秒个单位的速度沿线段AD向点D 匀速运动,过点P 作PE⊥ x 轴,交对角线AC于点N.设点P运动的时间为t (秒).( 1)求抛物线的分析式;( 2)若PN分△ ACD的面积为1: 2 的两部分,求t的值;( 3)若动点P 从A 出发的同时,点Q 从 C出发,以每秒1 个单位的速度沿线段CD向点D匀速运动,点H为线段PE上一点.若以C,Q,N,H为极点的四边形为菱形,求 t的值.解:( 1)∵四边形ABCD为矩形,且B(1,0), C(3,0), D(3,4),∴ A(1,4),设抛物线的分析式为y=a( x﹣1)2+4,将 C(3,0)代入 y= a(x﹣1)2+4,得 0=4a+4,解得 a=﹣1,∴抛物线的分析式为 y=﹣( x﹣1)2+4=﹣ x2+2x+3;(2)∵PE⊥x轴,DC⊥x轴,∴ PE∥DC,∴△ APN∽△ ADC,∵ PN分△ ACD的面积为1:2的两部分,∴=或,当=时,==,∵AD=2,∴ AP=,∴ t 的值为× 2=;当=时,==,∵ AD=2,∴ AP=,∴ t 的值为× 2=,综上所述,t 的值为或;( 3)如图 2﹣ 1,当CN为菱形的对角线时,点 P,N的横坐标均为,设直线的分析式为y =+ ,AC kx b将 A(1,4), C(3,0)代入 y= kx+b,得,解得,∴直线 AC的表达式为y=﹣2x+6,将点 N的横坐标代入y=﹣2x+6,得,即 EN=4﹣ t ,由菱形 CQNH可得, CQ= NH= t = CH,可得 EH=(4﹣ t )﹣ t =4﹣2t ,∵∴,,在 Rt △CHE中,222∵ CE+EH= CH,∴,解得, t 1=,t2=4(舍);如图 2﹣ 2,当CN为菱形的边时,由菱形 CQHN可得, CQ= CN= t ,在 Rt △CNE中,222∵ NE+CE= CN,∴( 4﹣t)2+( 2﹣t )2= t 2,解得, t 1=20﹣8, t 2=20+8(舍);综上所述,t的值为或.9.如图1,过原点的抛物线与x 轴交于另一点A,抛物线极点 C 的坐标为,其对称轴交 x 轴于点 B.( 1)求抛物线的分析式;( 2)如图2,点D为抛物线上位于第一象限内且在对称轴右边的一个动点,求使△ACD 面积最大时点D的坐标;( 3)在对称轴上能否存在点P,使得点 A对于直线OP的对称点 A'知足以点 O、A、C、A'为极点的四边形为菱形.若存在,恳求出点P的坐标;若不存在,请说明原因.解:( 1)设抛物线分析式为y= a( x﹣ h)2+k,( a≠0)∵极点,∴,又∵图象过原点,∴,解出:,∴,即;( 2)令y= 0,即,解得: x1=0, x2=4,∴ A(4,0),设直线 AC的分析式为y=kx+b,将点 A(4,0),代入,得,精选文档666解得,∴直线AC的分析式为y=﹣x+4,过点D作DF∥ y 轴交AC于点F,设,则,∴,∴=,∴当m=3时, S△ACD有最大值,当 m=3时,,∴;( 3)∵∠CBO=∠CBA= 90°,OB=AB= 2,∴,,∴OA=OC= AC=4,∴△ AOC为等边三角形,①如图 3﹣ 1,当点P在C时,OA=AC=CA'=OA' ,∴四边形 ACA'O是菱形,∴;②作点 C对于 x 轴的对称点 C',当点 A'与点 C'重合时, OC= AC=AA'= OA',∴四边形 OCAA'是菱形,∴点 P是∠ AOA'的角均分线与对称轴的交点,记为P2,∴,∵∠2= 90°,=2,OBP OB22∴ OP=2BP,∵∠2= 90°,=2,OBP OB∴OP2=2BP2,设 BP= x,2∴ OP=2x,2又∵,∴( 2x)2=22 +x2,解得或,∴;综上所述,点P的坐标为或.10.已知二次函数与x轴交于A、B(A在B的左边)与y 轴交于点 C,连接 AC、BC.( 1)如图 1,点P是直线BC上方抛物线上一点,当△ PBC面积最大时,点M、N分别为x、y 轴上的动点,连结PM、PN、 MN,求△ PMN的周长最小值;( 2)如图 2,点C对于x轴的对称点为点E,将抛物线沿射线AE的方向平移获得新的拋物线 y',使得 y'交 x 轴于点 H、B( H在 B 的左边).将△ CHB绕点 H 顺时针旋转90°至△C' HB'.抛物线 y'的对称轴上有一动点 S,坐标系内能否存在一点 K,使得以 O、C'、K、S 为极点的四边形是菱形,若存在,请直接写出点K 的坐标;若不存在,请说明原因.解:( 1)如图 1,A(﹣ 2, 0),B( 8, 0),C( 0, 4),∴直线的分析式为,BC过点 P作 y 轴平行线,交线段BC于点 Q,设,∴=,∵ 0<m< 8,∴ P(4,6).作 P 点对于 y 轴的对称点P1,P 点对于 x 轴的对称点 P2,连结 P1P 2交 x 轴、y 轴分别为 M,,N此时△的周长最小,其周长等于线段P1P2的长;PMN∵ P1(﹣4,6), P2(4,﹣6),∴.( 2)如图 2 中,∵ ( 0,﹣ 4),平移后的抛物线经过,,E E B∴抛物线的分析式为y =﹣x2+bx﹣ 4,把( 8, 0)代入获得b=4,B∴平移后的抛物线的分析式为y=﹣x+4x﹣4=﹣(x﹣2)(x﹣8),令 y=0,获得 x=2或8,∴ H(2,0),∵△ CHB绕点 H顺时针旋转90°至△ C′ HB′,∴C′(6,2),当 OC′= C′ S时,可得菱形 OC′S1 K1,菱形 OC′ S2K2,∵ ′=′==2,OC CS∴可得 S1(5,2﹣), S2(5,2+),∵点 C′向左平移一个单位,向下平移获得 S1,∴点 O向左平移一个单位,向下平移个单位获得K1,∴K1(﹣1,﹣),同法可得K2(﹣1,),当′=时,可得菱形′,菱形′,OC OS OC K3S3OC K4S4同法可得 K3(11,2﹣),K4(11,2+),当 OC′是菱形的对角线时,设2222,S5(5, m),则有 5 +m=1 +(2﹣ m)解得 m=﹣5,∴ S5(5,﹣5),∵点O向右平移5 个单位,向下平移 5 个单位获得S5,∴ C′向上平移 5 个单位,向左平移 5 个单位获得K5,∴ K5(1,7),综上所述,知足条件的点K的坐标为(﹣1,﹣)或(﹣ 1,)或( 11,2﹣)或( 11, 2+)或( 1,7).11.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2( a≠0)与 x 轴交于 A(﹣1,0),B(3,0)两点,与y 轴交于点 C.(1)求该抛物线的分析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为 m(0< m<3),连结 CD、BD、 BC、 AC,当△ BCD的面积等于△ AOC面积的2倍时,求 m的值;( 3)若点N为抛物线对称轴上一点,请在图②中研究抛物线上能否存在点M,使得以 B,C,M,N为极点的四边形是平行四边形?若存在,请直接写出全部知足条件的点M的坐标;若不存在,请说明原因.解:( 1)把(﹣ 1,0),( 3,0)代入y =ax2+bx+2 中,得:,解得:,A B∴抛物线分析式为;( 2)过点D作y轴平行线交BC于点 E,把 x=0代入中,得:y=2,∴ C点坐标是(0,2),又 B(3,0)∴直线的分析式为,BC∵∴∴=,由S =2S 得:△BCD△AOC∴,2整理得: m ﹣ 3m +2= 0解得: m = 1, m = 212∵ 0< m < 3∴ m 的值为 1 或 2;( 3)存在,原因:设:点的坐标为:( , ), =﹣2+x +2,点 ( 1, ),点 ( 3, 0)、 ( 0, 2),M m nnxNsBC①当是平行四边形的边时,BC当点 C 向右平移 3 个单位,向下平移 2 个单位获得 ,B相同点 M ( N )向右平移 3 个单位,向下平移 2 个单位 N ( M ),故: m +3= 1, n ﹣ 2= s 或 m ﹣ 3= 1, n +2= s ,解得: m =﹣ 2 或 4,故点M 坐标为:(﹣ 2,﹣)或(4,﹣);②当BC 为对角线时,由中点公式得:m +1= 3,n +3= 2,解得: m = 2,故点M ( 2,2);综上, M 的坐标为:( 2,2)或(﹣2,)或( 4,).12.已知抛物线 y =ax 2﹣ 2ax +3 与 x 轴交于点 A 、 B ( A 左 B 右),且 AB =4,与 y 轴交于 C 点.( 1)求抛物线的分析式;( 2)如图,证明:对于随意给定的一点 P (0, b )( b > 3),存在过点 P 的一条直线交抛物线于 M 、 N 两点,使得 PM = MN 建立;( 3)将该抛物线在 0≤ x ≤ 4 间的部分记为图象 G ,将图象 G 在直线 y = t 上方的部分沿 y= t 翻折,其他部分保持不变,获得一个新的函数的图象,记这个函数的最大值为,最m小值为 n ,若 m ﹣ n ≤ 6,求 t 的取值范围.解:( 1)抛物线y=ax2﹣ 2ax+3 的对称轴为x=1,又AB=4,由对称性得A(﹣ 1,0)、B ( 3, 0).把 A(﹣1,0)代入 y= ax2﹣2ax+3,得 a+2a+3=0,∴ a=﹣1.∴抛物线的分析式为 y=﹣ x2+2x+3.(2)如图,过M作GH⊥x轴,PG∥x轴,NH∥x轴,由 PM=MN,则△ PMG≌△ NMH( AAS),∴PG=NH, MG=MH.22设 M(m,﹣ m+2m+3),则 N(2m,﹣4m+4m+3),∵ P(0, b), GM= MH,∴y G+y H=2y M,222即 b+(﹣4m+4m+3)=2(﹣ m+2m+3),∴2m= b﹣3,∵ b>3,∴对于 m的方程总有两个不相等的实数根,此即说了然点M、 N存在,并使得PM=MN.证毕;( 3)图象翻折前后如右图所示,其极点分别为D(1,4)、 D′(1,2t ﹣4).①当 D′在点 H(4,﹣5)上方时,2t﹣ 4≥﹣ 5,∴t≥﹣,此时, m= t , n=﹣5,∵ m﹣ n≤6,∴ t +5≤6,∴ t ≤1,∴﹣≤ t ≤1;②当点 D′在点 H(4,﹣5)下方时,同理可得: t <﹣,m=t,n=2t﹣4,由 m﹣n≤6,得 t ﹣(2t ﹣4)≤6,∴ t ≥﹣2,∴﹣2≤t<﹣.综上所述,t的取值范围为:﹣2≤t≤ 1.y 轴交于13.如图,抛物线y= ax2+bx﹣2的对称轴是直线x=1,与x 轴交于A,B两点,与点 C,点A 的坐标为(﹣2,0),点P 为抛物线上的一个动点,过点P 作PD⊥ x 轴于点D,E.交直线BC于点(1)求抛物线分析式;(2)若点P在第一象限内,当OD= 4PE时:①求点 D、 P、 E的坐标;②求四边形 POBE的面积.(3)在( 2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,能否存在这样的点 M和点 N,使得以点 B, D, M,N为极点的四边形是菱形?若存在,直接写出点 N的坐标;若不存在,请说明原因.解:( 1)∵抛物线y= ax2+bx﹣2的对称轴是直线x=1, A(﹣2,0)在抛物线上,∴x =﹣= 1,解得:a=,b=﹣,抛物线分析式为y=x2﹣x﹣2;( 2)令y=x2﹣x﹣2=0,( x﹣4)( x+2)=0,解得: x1=﹣2, x2=4,当 x=0时, y=﹣2,由 B(4,0), C(0,﹣2),得,直线BC的表达式为: y=x﹣2设 D(m,0),∵ DP∥ y 轴,∴ E( m,m﹣2), P( m,m2﹣ m﹣2),∵ OD=4PE,2m﹣2﹣ m+2),∴ m=4( m﹣∴ m=5, m=0(舍去),∴ D(5,0), P(5,),E(5,),∴四边形 POBE的面积= S△OPD﹣ S△EBD=× 5×﹣× 1×=;( 3)存在,设M( n,n ﹣2),①以 BD为对角线,如图1,∵四边形 BNDM是菱形,∴MN垂直均分 BD,∴n=4+,∴M(,),∵M,N对于 x 轴对称,∴N(,﹣);②以BD为边,如图2,∵四边形 BDMN是菱形,∴MN∥BD, MN=BD= MD=1,过 M作 MH⊥ x 轴于 H,222∴ MH+DH= DM,即(n﹣2)2+( n﹣5)2=12,∴n1=4(不合题意), n2=5.6,∴N(4.6,),同理(n ﹣ 2)2+(4﹣)2= 1,n∴ n1=4+(不合题意,舍去),n2=4﹣,∴N(5﹣,﹣),③以 BD为边,如图3,过 M作 MH⊥ x 轴于 H,∴2+2=2,MH BH BM即(n﹣2)2+( n﹣4)2=12,∴ n1=4+, n2=4﹣(不合题意,舍去),∴N(5+,),综上所述,点 N坐标为:()或(,)或( 5﹣,)或(5+,).14.如图,矩形中,为原点,点A 在y轴上,点C在x轴上,点B的坐标为( 4,3),OABC O抛物线y =﹣x2+ +与y轴交于点,与直线AB交于点,与x轴交于,两点.bx c A D C E( 1)求抛物线的表达式;( 2)点P 从点C出发,在线段上以每秒 1 个单位长度的速度向点B运动,与此同时,CB点Q 从点A出发,在线段上以每秒个单位长度的速度向点C运动,当此中一点抵达AC终点时,另一点也停止运动.连结、、,设运动时间为t (秒).DP DQ PQ①当 t 为什么值时,△ DPQ的面积最小?②能否存在某一时辰t ,使△ DPQ为直角三角形?若存在,直接写出t 的值;若不存在,请说明原因.解:( 1)点A( 0, 3),点C( 4, 0),将点 A、 C的坐标代入抛物线表达式,解得:b=,c=3,故抛物线的表达式为:y=﹣x2+x+3;( 2)y=﹣x2+x+3=﹣(x﹣4)(x+2),故点E(﹣2,0);抛物线的对称轴为:x=1,则点 D(2,3),由题意得:点Q(t ,3﹣ t ),点 P(4, t ),①△ DPQ的面积= S△ABC﹣( S△ADQ+S△PQC+S△BPD)=3×4﹣ [2 ×t +2( 3﹣t)+( 5﹣)× t ×]= t 2﹣2t .∵> 0,故△的面积有最小值,此时,t =;DPQ②点( 2, 3),点(t , 3﹣),点(4,),D Q t P t (Ⅰ)当是斜边时,如图1,PQ过点作⊥于点,则=,=2﹣t ,= 4﹣ 2=2,=3﹣,Q QM ABMMQ t MD BD PBt则 tan ∠MQD= tan ∠BDP,即,解得:t=(舍去);(Ⅱ)当 PD为斜边时,过点 Q作 y 轴的平行线交AB于点 N,交过点 P 于 x 轴的平行线于点M,则 ND=2﹣t , QN= t ,MP=4﹣t , QM=3﹣ t ﹣ t =3﹣2t ,同理可得:,解得: t =或;(Ⅲ)当 QD为斜边时,同理可得:故t =;综上, t =或或或.15.如图,已知抛物线y= ax2+bx+3经过点 A(﹣1,0)、B(3,0),且与 y 轴交于点 C,抛物线的极点为D,连结 BD,点 P 是线段 BD上的一个动点(不与B、 D)重合.( 1)求抛物线的分析式,并写出极点D的坐标;( 2)过点P 作⊥轴于点,求△面积的最大值及获得最大值时P点的坐标;PE y E PBE(3)在( 2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断能否存在这样的点 M,使得以点 B, P, M, N为极点的四边形是平行四边若存在,请直接写出点 M 的坐标:若不存在,请说明原因.解:( 1)∵二次函数y= ax2+bx+3经过点 A(﹣1,0)、B(3,0)∴因此二次函数的分析式为:y=﹣ x2+2x+3∵ y=﹣ x2+2x+3=﹣( x﹣1)2+4∴ D的坐标为(1,4);( 2)设BD的分析式为y= kx+b∵过点 B(3,0), D(1,4)∴解得BD的分析式为y=﹣2x+6设 P(m,﹣2m+6),∵ PE⊥y 轴于点 E,∴ PE=m,△ BPE的 PE边上的高 h=﹣2m+6,∴ S =×PE× h= m(﹣2m+6)△BPE2=﹣ m+3m=,∵ a=﹣1<0,∴当 m=时△ BPE的面积获得最大值为,当 m=时, y=﹣2×+6=3,∴ P 的坐标是(,3);2( 3)设点M(s, 0),点N(m,n),n=﹣m+2m+3,①当 BP是边时,点 P 向右平移个单位向下平移 3 个单位获得B,同理点 M( N)向右平移个单位向下平移 3 个单位获得N( M),即 s=m,0± 3=n,解得: s=﹣或或;②当 PB为对角线时,m+s=3+,n=3,解得: s=或,故: M点的坐标为:;;;;;.。
最全二次函数区间的最值问题(中考数学必考题型)
二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
2020年中考数学压轴题之二次函数专题突破(含详解)
2020年中考数学压轴题之二次函数专题突破1. 如图,抛物线y=-x 2+bx+c 与x 轴交于A 、B 两点,交y 轴正半轴于C 点,D 为抛物线的顶点,A (-1,0),B (3,0).(1)求出二次函数的表达式.(2)点P 在x 轴上,且∠PCB=∠CBD,求点P 的坐标.(3)在x 轴上方抛物线上是否存在一点Q ,使得以Q ,C ,B ,O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.【答案】(1)y=-x 2+2x+3;(2)P (6,0)或P 3,02⎛⎫ ⎪⎝⎭;(3)存在,点Q 1122⎛⎫+ ⎪ ⎪⎝⎭或17,24⎛⎫- ⎪⎝⎭. 【分析】(1)将点A 、B 坐标代入解析式求出b 、c 的值即可得;(2)∠PCB=∠CBD 有两种情况,①P 在B 的右侧时,延长BD 交y 轴于点H ,由∠OCB=∠OBC=45°,可证明∠HCB=∠CBP,从而△PCB≌△HBC,由直线BD 即可求得:OH=OP=6,从而得到P 点坐标;②P 在B 的左侧时,此时PC∥BD,根据一次函数解析式即可求出P ;(3)分以下两种情况分别求解,①点Q 在y 轴右侧时,由OB=OC ,可得出OQ 是∠BOC 的平分线,联立二次函数解析式与直线OQ 的解析式即可求解;②点Q 在y 轴左侧时,可得这条对角线只能是BQ ,过点C 作x 轴的平行线EF ,过点Q ,B 分别作EF 的垂线,垂足分别为F ,E ,延长FQ 交x 轴于点G ,设点Q 的坐标为(m ,n),根据S △BOQ =S △CBQ =S 梯形FQBE -S △FCQ -S △BEC 可得出关于m ,n 的关系式,再与二次函数的解析式联立即可求解.2.已知,如图,二次函数2y ax bx c =++图像交x 轴于(1,0)A -,交y 交轴于点(0,3)C ,D 是抛物线的顶点,对称轴DF 经过x 轴上的点(1,0)F .(1)求二次函数关系式;(2)对称轴DF 与BC 交于点M ,点P 为对称轴DF 上一动点.①求AP PD +的最小值及取得最小值时点P 的坐标; ②在①的条件下,把APF V 沿着x 轴向右平移t 个单位长度(04)t ≤≤时,设APF V 与MBF V 重叠部分面积记为S ,求S 与t 之间的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2P 坐标为(1,1);②2221(2)1(01)4751(12)12331(4)(24)6t t S t t t t t ⎧--+≤≤⎪⎪⎪=-+-<<⎨⎪⎪-≤≤⎪⎩,当107t =时,S 最大值67=. 【分析】(1)函数对称轴为x=1,则点B (3,0),用交点式表达式得:y=a (x+1)(x-3)=a (x 2-2x-3),即可求解;(2)①连接BD ,过点A 作AH⊥BD 于点H ,交DF 于点P ,PD=AP+PD ,此时PD=AH 最小,即可求解;②根据题意,可分为0≤t≤1、1<t <2、2≤t≤4三种情况,分别求解,即可得到答案.3.平面直角坐标系中,0是坐标原点,抛物线21233y x x c =-+交x 轴于,A B 两点(如图),顶点是C ,对称轴交x 轴于点,2,D OB OA =(1)如图(1)求抛物线的解析式;(2)如图(2)E 是第三象限抛物线上一点,连接ED 并延长交抛物线于点F ,连接,,EC FC 求证:90ECF ∠=︒;(3)如图(3)在(2)问条件下,,M N 分别是线段,OA CD 延长线上一点,连接,MN CM ,过点C 作CQ MN ⊥于,Q CQ 交DM 于点P ,延长FE 交MC 于R ,若2,NMD DMC ∠=∠DN BO +,:7:3,MP MR RC ==求点F 坐标.【答案】(1)2128333y x x =--;(2)证明见解析;(3)75,3F ⎛⎫ ⎪⎝⎭. 【分析】(1)设DA=DB=m ,根据抛物线对称性和OB=2OA ,建立方程求解即可;(2)配方法可求得抛物线顶点坐标,过点E 作EH⊥CD 于G ,过F 作FG⊥CD 于G ,可证明△DEH∽△DFG,tan∠GFC=tan∠ECH,即可证明∠ECF=90°;(3)以DM 为边在x 轴上方作正方形DMKT ,延长CQ 交KT 于S ,过S 作SG⊥DM 于G ,连接MT ,作∠SCT 平分线交MT 于I ,过点I 作IJ⊥CT 于J ,设DM=t ,则DT=TK=t ,易证:△MDC≌△CJI,△MDN≌△SGP,可得:SZ=SL=t-7,CZ=CJ=t ,CS=2t-7,利用勾股定理建立方程即可求得点M 坐标,再利用相似三角形性质可求得点R 坐标,运用待定系数法即可求得直线DR 解析式,解方程组可求得点F 的坐标.4.如图,抛物线y =ax 2+bx ﹣2经过点A (﹣2,与x 轴相交于B ,C 两点,且B 点坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D 的坐标;(3)抛物线与y 轴交于点Q ,连接BQ ,DQ ,在抛物线上有一个动点P ,且S △PBD =S △BDQ ,求满足条件的点P 的横坐标.【答案】(1)2y x =-(2)1D ⎛ ⎝⎭;(3)83 【分析】(1)利用待定系数法可求解析式;(2)设对称轴于BC 的交点为E ,先求出点C ,点E 坐标,可求BC=4,BE=CE=2,由折叠的性质可得BC'的长,由勾股定理可求C'E ,DE 的长,即可求解;(3)分两种情况讨论,利用等底等高的两个三角形的面积相等,可求解.5.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若8CG AG =,求点P 的坐标.【答案】(1)21322y x x =--;(2)1m t =-;(3)933,28P ⎛⎫ ⎪⎝⎭【分析】 (1)将抛物线解析式化为顶点式可得y=a (x-1)2-4a ,则C 点为(1,-4a ),再由-4a=-2即可求a 的值,进而确定函数解析式;(2)由已知分别求出点P 和点A 的坐标,可得AP 的直线解析式,求出D 点坐标则可求CD ;(3)设CD 与x 轴的交点为H ,连接BE ,由三角形中位线的性质可求BE=2(t-3)=2t-6;过点F 作FN⊥BE 于点N ,过点P 作PM⊥BE 交BE 的延长线于点M ,可证明Rt△PME≌Rt△ENF (HL ),从而推导出∠EPF=∠EFP=45°;过点C 作CK⊥CG 交PA 的延长线于点K ,连接AC 、BC ,能够进一步证明△ACK≌△BCG (SAS ),得到∠KGB=90°;令AG=8m ,则CG=BG=6m ,过点G 作GL⊥x 轴于点L ,在Rt△ABG 中,AG=10m=4,求出m 值,利用等积法可求G 点的坐标,再将G 点坐标代入3322t t y x --=+,求出t ,即可求出点P 坐标. 6.已知函数12y kx k =+与函数2223,y x x =-+定义新函数21y y y =-(1)若2,k =则新函数y = ;(2)若新函数y 的解析式为22,y x bx =+-则k = ,b = ; (3)设新函数y 顶点为(),m n .①当k 为何值时,n 有最大值,并求出最大值;②求n 与m 的函数解析式;(4)请你探究:函数1y 与新函数y 分别经过定点,A B ,函数2223y x x =-+的顶点为C ,新函数y 上存在一点D ,使得以点,,,A B C D 为顶点的四边形为平行四边形时,直接写出k 的值.【答案】(1)261-+x x ;(2)5,12-;(3)①当32k =-时,174n =最大值;②24=--+n m m ;(4)1712=k 或1712k =-或3512k =- 【分析】(1)将k=2代入函数,然后用21y y -得到新函数;(2)先求出新函数,然后比较2个函数,利用对应位置的系数相同可求得;(3)①先用k 表示新函数的定点,得出m 、n 和k 的关系式,再利用配方法求得n 最大时k 的值;②已求得m 、n 关于k 的关系式,将1k m =-代入n 中,化简可得m 、n 的关系式;(4)先求出定点A 、B 、C ,如下图,存在3处D 可构成平行四边形,利用平行四边形的特点求出点D 的坐标,进而得出k 的值.。
2020年【状元必读专家点拨】九年级数学:6二次函数的最值
一、考点突破二次函数中的“最值”性质是二次函数的重要性质,其自然就成了各地中考命题的热点和难点之一。
主要题型有:选择题、填空题,难度中等;在解答题中,多与几何、生活实际问题相结合,难度较大。
在各类试题中,主要考查以下几方面:(1)利用配方法和数形结合的思想方法,求二次函数的最大值或最小值;(2)在平面几何图形(三角形、四边形)中寻求两个变量,建立二次函数关系,然后使用二次函数的“最值”性质解决结合图形的最值问题。
二、重难点提示重点:利用配方法和数形结合的思想方法,求二次函数的最大值或最小值。
难点:当二次函数的自变量取值范围不是全体实数时,求二次函数的最值。
能力提升类例1 二次函数2(0)y x x p p的图象与x轴相交,其中一个交点的横坐标是p。
求该二次函数的最小值是多少。
一点通:由于二次函数2(0)y x x p p与x轴相交,其中一个交点的横坐标是p,所以把(p,0)代入解析式即可求出p,然后利用二次函数的顶点公式即可求出顶点坐标。
解:∵二次函数2(0)y x x p p与x轴相交,其中一个交点的横坐标是p,∴把(p ,0)代入解析式得0=2p p p ,∴p =-2或p =0,而已知p "`0,∴p =-2,∴二次函数的解析式为22y x x ∴122b x a ,24944ac b y a,∴该二次函数的顶点的坐标是(12 ,94)。
∴该二次函数的最小值是94。
点评:此题主要考查了利用二次函数与坐标轴交点来确定解析式,再求二次函数的顶点坐标,由此求出二次函数的最小值。
例2 已知二次函数242x x y ,求当x 在03x 范围上的最大值和最小值。
一点通:可由已知求得二次函数242 x x y 2)2(2x 的对称轴为2 x ,在直角坐标系中画出其在03x 范围上的函数图象,由此可以求出其最大值和最小值。
解:二次函数2)2(2422x x x y ,所以对称轴方程是x 2,顶点坐标为(2,2),因为二次项系数为 1,所以图象开口向下,显然其顶点横坐标在03x 范围上,如图所示。
2020年中考数学 压轴专题 二次函数中的最值问题(含答案)
2020中考数学 压轴专题 二次函数中的最值问题(含答案)1. 如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C . (Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值;(Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第1题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5, ∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM ∽△COB ,∴OA OC OM OB =,满足点P在线段BC上的x最小取值,使P、C、M重合,根据根与系数的关系,对于x2+bx+c=0,由c=2b-4,解得c=-1,2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点, (Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am,∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点.(Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1).(Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,5.b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x轴下方与x轴距离最大的点是(1,y0),∴|H|>|h|,6.在平面直角坐标系中,直线l:y=x+3与x轴交于点A,抛物线C:y=x2+mx+n的图象经过点A.(Ⅰ)当m=4时,求n的值;(Ⅱ)设m=-2,当-3≤x≤0时,求二次函数y=x2+mx+n的最小值;(Ⅲ)当-3≤x≤0时,若二次函数y=x2+mx+n时的最小值为-4,求m、n的值.解:(Ⅰ)当y=x+3=0时,x=-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n ,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4, 解得:23m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去), ∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==, 综上所述:m =2,n =-3.7. 在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c=-3时,点(x1,y1)在抛物线y=x2-2x+c上,求y1的最小值;(Ⅲ)当-1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围. 解:(Ⅰ)当c=-3时,抛物线为y=x2-2x-3,∴抛物线开口向上,有最小值,∴y1的最小值为-4;(Ⅱ)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图①,∴B(2m,0),∵二次函数y=x2-2x+c的对称轴为x=1,∵点A在抛物线y=x2-2x+c上,②当点A在原点的左侧,点B在原点的右侧时,如解图②,∴B(2n,0),由抛物线的对称性得n+1=2n-1,解得n=2,∴A(-2,0),∵点A 在抛物线y =x2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8;(Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点,∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8. 已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m的取值范围是m≠0且m≠1;(Ⅱ)∵点A、B是抛物线y=(m-1)x2+(m-2)x-1与x轴的交点,∴令y=0,即 (m-1)x2+(m-2)x-1=0.∵m<0,∵点A在点B左侧,∵OA:OB=3:1,∴m=-2.∴抛物线的解析式为y=-3x2−4x−1.(Ⅲ)∵点C是抛物线y=-3x2−4x−1与y轴的交点,∴点C的坐标为(0,-1).依题意翻折后的图象如解图所示.令y=-5,即-3x2−4x−1=-5.∴新图象经过点D(-2,-5).当直线y=-x+b经过D点时,可得b=-7.当直线y=-x+b经过C点时,可得b=-1.当直线y=-x+b(b>−1)与函数y=-3x2−4x−1的图象仅有一个公共点P(x0,y0)时,得-x0+b=-3x02−4x0−1.整理得 3x02+3x0+b+1=0.由32-12(b+1)=-12b-3=0,得b=−1 4 .结合图象可知,符合题意的b的取值范围为-7≤b<-1或b>−1 4 .第8题解图9.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N,∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第9题解图。
类型9 二次函数图像与x轴交点类问题(精选20题) 2020年中考数学 三轮冲刺 难点题型突破
二次函数图像与x轴交点类问题1.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12B.﹣或2C.﹣12或2D.﹣或﹣12 2.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0B.﹣C.2D.﹣23.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得到C2,C2与x轴交于B、D两点.若直线y=kx﹣k与C1、C2共有3个不同的交点,则k的最大值是()A.B.2﹣6C.6+4D.6﹣44.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M ﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3.则a﹣b+c的最小值是()A.﹣15B.﹣12C.﹣4D.﹣25.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l(x轴除外)与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),t=x1+x2+x3,则t的取值范围是()A.0≤t<2或10<t≤12B.0≤t≤2或10≤t≤12C.0≤t<2或6<t≤8D.0≤t≤2或6≤t≤86.如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣7.如图,抛物线S1与x轴交于点A(﹣3,0),B(1,0),将它向右平移2个单位得新抛物线S2,点M,N是抛物线S2上两点,且MN∥x轴,交抛物线S1于点C,已知MN=3MC,则点C的横坐标为()A.B.C.D.18.二次函数y1的图象与x轴交于A,O两点,顶点为点B(﹣1,﹣1),将函数y1的图象向上、向右平移得到y2的图象,点B的对应点B′在x轴上,点A的对应点A′在y轴上,y1与y2的图象交于点C,下列四个结论中错误的是()A.△OCB′不是直角三角形B.当y2>y1>0时,x<2C.P(m,n)为y1图象上一点,则P点在y2图象上的对应点P′(m+2,n+1)D.二次函数y2的图象的对称轴为直线x=l9.如图,已知抛物线C1:y=ax2+bx+c(a>0)与x轴交于点A、B(点A在点B的左侧),M为顶点.将抛物线C1绕点A旋转180°,得抛物线C2,点B,M旋转后的对称点为D,E.若四边形DMBE为矩形,则b2﹣4ac的值是()A.6B.9C.12D.1810.如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是()A.(m2﹣4)B.m2﹣2C.(4﹣m2)D.2﹣m211.平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.12.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于点A,B(点A在点B 的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,﹣1),抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l 与图形M有公共点,求k的取值范围.13.已知函数y=x2+(b﹣1)x+c(b,c为常数),这个函数的图象与x轴交于两个不同的点A(x1,0)和B(x2,0).若x1,x2满足x2﹣x1>1;(1)求证:b2>2(b+2c);(2)若t<x1,试比较t2+bt+c与x1的大小,并加以证明.14.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A 在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.15.如图,已知二次函数的顶点为(2,﹣1),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.16.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.17.如图,二次函数y=+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD、DE,求△BDE的面积.18.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点,若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标.19.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上是否有一点D(x,y)使S△ABD=S△ABC,求点D的坐标.20.如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).(1)求抛物线的解析式及顶点D的坐标.(2)求△ACD的面积.试题解析1.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12B.﹣或2C.﹣12或2D.﹣或﹣12解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.2.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0B.﹣C.2D.﹣2解:当y=0时,x2﹣3x=0,解得:x1=0,x2=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A2的坐标为(6,0).∵2020=336×6+4,∴当x=4时,y=m.由图象可知:当x=2时的y值与当x=4时的y值互为相反数,∴m=﹣(2×2﹣3×2)=2.故选:C.3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得到C2,C2与x轴交于B、D两点.若直线y=kx﹣k与C1、C2共有3个不同的交点,则k的最大值是()A.B.2﹣6C.6+4D.6﹣4解:抛物线y=﹣x2+4x﹣3与x轴交于点A、B,则点A、B的坐标为:(1,0)、(3,0),由抛物线从C1:y=﹣x2+4x﹣3平移得到抛物线C2,则容易得到其的方程为:y=﹣(x ﹣4)2+1,(3≤x≤5).直线y=kx﹣k过点A(1,0),当直线m与C2只有一个交点和在x轴的位置时,直线y=kx﹣k与C1、C2共有3个不同的交点,而直线为m时,k值最大,联立C2与直线的表达式可得:kx﹣k=y=﹣(x﹣4)2+1△=0,即k2﹣12k+4=0,解得:k=6±4(k<0),取k=6﹣4.故选:D.4.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M ﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3.则a﹣b+c的最小值是()A.﹣15B.﹣12C.﹣4D.﹣2解:由题意得:当顶点在M处,点A横坐标为﹣3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(﹣3,0)代入上式得:0=a(﹣3+1)2+4,解得:a=﹣1,当x=﹣1时,y=a﹣b+c,顶点在N处时,y=a﹣b+c取得最小值,顶点在N处,抛物线的表达式为:y=﹣(x﹣3)2+1,当x=﹣1时,y=a﹣b+c=﹣(﹣1﹣3)2+1=﹣15,故选:A.5.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l(x轴除外)与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),t=x1+x2+x3,则t的取值范围是()A.0≤t<2或10<t≤12B.0≤t≤2或10≤t≤12C.0≤t<2或6<t≤8D.0≤t≤2或6≤t≤8解:y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,则点A0、A1的坐标分别为:(﹣2,0)、(2,0),点的D1(0,4),则下方图象与x轴另外一个交点坐标为:(6,0),而点D2(4,﹣4),将点D1、D2的坐标代入一次函数表达式:y=kx+b并解得:直线D1D2的函数表达式为:y=﹣2x+4,①当直线l在x轴的上方时,当直线l过点D1时,x1+x2=0,x3=0,则t=0,当直线l在轴上时,x3=2,则t=2,故0≤t<2;②当直线l在x轴的下方时,当直线l过点D2时,x1=x2=x3=4,则t=12,当直线l在轴上时,x1=2,x2=6,x3=2,则t=10,故10≤t≤12;故选:A.6.如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣<m<﹣故选:C.7.如图,抛物线S1与x轴交于点A(﹣3,0),B(1,0),将它向右平移2个单位得新抛物线S2,点M,N是抛物线S2上两点,且MN∥x轴,交抛物线S1于点C,已知MN=3MC,则点C的横坐标为()A.B.C.D.1解:∵抛物线S1与x轴交于点A(﹣3,0),B(1,0),∴抛物线S1的对称轴为直线x==﹣1,∵抛物线S1向右平移2个单位得新抛物线S2,点M,N是抛物线S2上两点,且MN∥x 轴,交抛物线S1于点C,MN=3MC,∴CN=2MC,CN=2,∴MN=3,∴点C与在抛物线S1上的对称点的距离为3,∴点C的横坐标为:﹣1+=,故选:B.8.二次函数y1的图象与x轴交于A,O两点,顶点为点B(﹣1,﹣1),将函数y1的图象向上、向右平移得到y2的图象,点B的对应点B′在x轴上,点A的对应点A′在y轴上,y1与y2的图象交于点C,下列四个结论中错误的是()A.△OCB′不是直角三角形B.当y2>y1>0时,x<2C.P(m,n)为y1图象上一点,则P点在y2图象上的对应点P′(m+2,n+1)D.二次函数y2的图象的对称轴为直线x=l解:二次函数y1的图象的对称轴为直线x=﹣1,则A(﹣2,0),设y1的解析式为y=ax(x+2),把B(﹣1,﹣1)代入得a×(﹣1)×(﹣1+2)=﹣1,解得a=1,∴y1的解析式为y=x2+2x,∴函数y1的图象向上平移1个单位、向右平移2个单位得到y2的图象,∴A′(0,1),B′(1,0),∴y2的解析式为y=(x﹣1)2,即y=x2﹣2x+1,解方程x2+2x=x2﹣2x+1,解得x=,当x=时,y=(x﹣1)2=,则C(,),∵OC==,CB′==,OB′=1,∴OC2+CB′2≠OB′2,∴△OCB′不是直角三角形,所以A选项的说法正确;当y2>y1>0时,0<x<或x<﹣2,所以B选项的说法错误;当P(m,n)为y1图象上一点,则P点在y2图象上的对应点P′(m+2,n+1),所以C 选项的说法正确;二次函数y2的图象的对称轴为直线x=l,所以D选项的说法正确.故选:B.9.如图,已知抛物线C1:y=ax2+bx+c(a>0)与x轴交于点A、B(点A在点B的左侧),M为顶点.将抛物线C1绕点A旋转180°,得抛物线C2,点B,M旋转后的对称点为D,E.若四边形DMBE为矩形,则b2﹣4ac的值是()A.6B.9C.12D.18解:如图连接EM.作MH⊥AB于H.∵四边形DMBE是矩形,∴对角线DB与EM互相平分,∵DA=AB,∴EM经过点A.∴AB=AM,根据对称性可知:AM=MB,∴AB=AM=BM,∴△ABM是等边三角形,∵M(﹣,),A(,0),B(),∵△ABM是等边三角形,∴MH=HB,∴||=••,整理得:b2﹣4ac=12,故选:C.10.如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是()A.(m2﹣4)B.m2﹣2C.(4﹣m2)D.2﹣m2解:抛物线的对称轴为:x=1,令y=0代入y=﹣2x2+4x,∴0=﹣2x2+4x,∴x=0或x=2,∴A(2,0)∴OA=2,设P关于x=1的对称点为Q,且设P的横坐标为x1,Q的横坐标为x2,∴,∵抛物线向右平移m(m>2)个单位长度,∴PQ=m,∴x1﹣x2=m,∴解得:x1=,x2=把x1=代入y=﹣2x2+4x∴y=2﹣<0∴在△PCD中,CD边上的高为:﹣2,∵OA=CD=2,∴S△PCD=×2×()=﹣2故选:B.11.平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线l在x轴上方时不等式无解当直线l在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣∴当m=﹣时,S最大=12.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于点A,B(点A在点B 的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,﹣1),抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l 与图形M有公共点,求k的取值范围.解:(1)∵抛物线C1的对称轴与x轴交于点(3,0),∴抛物线C1的对称轴为直线x=3.又∵AB=4,∴A(1,0),B(5,0).∴解得∴抛物线C1的表达式为y=x2﹣6x+5.即y=(x﹣3)2﹣4.∴抛物线C1的顶点为D(3,﹣4).(2)∵平移后得到的新抛物线C2的顶点为(0,﹣1),∴抛物线C2的表达式为y=x2﹣1.∴抛物线C1的对称轴x=3与抛物线C2的交点为E(3,8)①当直线l过点B(5,0)和点D(3,﹣4)时,得解得k BD=2.②当直线l过点B(5,0)和点E(3,8)时,得解得k BE=﹣4,∴结合函数图象可知,k的取值范围是﹣4≤k≤2且k≠0.13.已知函数y=x2+(b﹣1)x+c(b,c为常数),这个函数的图象与x轴交于两个不同的点A(x1,0)和B(x2,0).若x1,x2满足x2﹣x1>1;(1)求证:b2>2(b+2c);(2)若t<x1,试比较t2+bt+c与x1的大小,并加以证明.证明:(1)∵令y=x2+(b﹣1)x+c中y=0,得到x2+(b﹣1)x+c=0,∴x=,又x2﹣x1>1,∴,∴b2﹣2b+1﹣4c>1,∴b2>2(b+2c);(2)由已知x2+(b﹣1)x+c=(x﹣x1)(x﹣x2),∴x2+bx+c=(x﹣x1)(x﹣x2)+x,∴t2+bt+c=(t﹣x1)(t﹣x2)+t,t2+bt+c﹣x1=(t﹣x1)(t﹣x2)+t﹣x1=(t﹣x1)(t﹣x2+1),∵t<x1,∴t﹣x1<0,∵x2﹣x1>1,∴t<x1<x2﹣1,∴t﹣x2+1<0,∴(t﹣x1)(t﹣x2+1)>0,即t2+bt+c>x1.14.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A 在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.15.如图,已知二次函数的顶点为(2,﹣1),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.解:(1)设该二次函数的解析式为y=a(x﹣h)2+k(a≠0).∵顶点为(2,﹣1),∴y=a(x﹣2)2﹣1.又∵图象经过A(0,3)∴a(0﹣2)2﹣1=3,即a=1,∴该抛物线的解析式为y=(x﹣2)2﹣1;(2)当y=0时,(x﹣2)2﹣1=0,解得x1=1,x2=3,∴C(3,0),B(1,0),∴BC=3﹣1=2,∴S△ABC=BC•OA=×2×3=3.16.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.解:(1)将点(﹣1,0),(0,3)代入y=﹣x2+bx+c中,得,解得.∴y=﹣x2+2x+3.(2)令y=0,解方程﹣x2+2x+3=0,得x1=﹣1,x2=3,抛物线开口向下,∴当﹣1<x<3时,y>0.17.如图,二次函数y=+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD、DE,求△BDE的面积.解:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6)∴,解得∴二次函数解析式为:y=x2﹣4x+6,(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,∴函数图象的顶点坐标为(4,﹣2),∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A(2,0),对称轴为x=4,∴点D的坐标为(6,0).(3)∵二次函数的对称轴交x轴于C点.∴C点的坐标为(4,0)∵B(8,6),设BC所在的直线解析式为y=kx+b′,∴,解得,∴BC所在的直线解析式为y=x﹣6,∵E点是y=x﹣6与y=x2﹣4x+6的交点,∴x﹣6=x2﹣4x+6解得x1=3,x2=8(舍去),当x=3时,y=﹣,∴E(3,﹣),∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.18.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点,若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标.解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)∵a=1时,抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5).19.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上是否有一点D(x,y)使S△ABD=S△ABC,求点D的坐标.解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,抛物线的解析式为y=﹣2x2+x+1.令y=0,则﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故该抛物线与x轴的交点是(﹣,0)和(1,0).∵点为A(1,0),∴另一个交点为B是(﹣,0);(3)∵抛物线解析式为y=﹣2x2+x+1,∴C(0,1),∴OC=1.∵S△ABD=S△ABC,∴点D与点C的纵坐标的绝对值相等,∴当y=1时,﹣2x2+x+1=1,即x(﹣2x+1)=0解得x=0或x=.即(0,1)(与点C重合,舍去)和D(,1)符合题意.当y=﹣1时,﹣2x2+x+1=﹣1,即2x2﹣x﹣2=0解得x=.即点(,﹣1)和(,﹣1)符合题意.综上所述,满足条件的点D的坐标是(,1)或(,﹣1)或(,﹣1).20.如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).(1)求抛物线的解析式及顶点D的坐标.(2)求△ACD的面积.解:(1)把(﹣1,0),(0,﹣3)分别代入y=x2+bx+c,得:.解得:b=﹣2,c=﹣3.故该二次函数解析式为:y=x2﹣2x﹣3;由于y=x2﹣2x﹣3=(x﹣1)2﹣4,则其顶点坐标是(1,﹣4);(2)由y=x2﹣2x﹣3知,C(0,﹣3).所以AC=4.∴S△ACD=AC•|y D|==8.∴△ACD的面积是8。
2020年中考数学冲刺难点突破 二次函数问题(解析版)
2020年中考数学冲刺难点突破 二次函数问题专题三 二次函数中的相似三角形综合问题1、如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由; ②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0).【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解【解析】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得{36a −6b +c =016a +4b +c =0c =0,解得:{ a =−18b =−14c =3 ,∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OA=OD OC , ∴36=OD 3,∴OD=32, ∴点D 坐标为(-32,0).由对称性,当点D 坐标为(32,0)时,由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC ,∴AN NC =AD DB =1,则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52,∴OM=DM-OD=32∴点M (32,0)【点评】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合2、如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析.【思路引导】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值; (2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可.【解析】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==,∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A - ∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --, ①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n--=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°,由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-, 联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭,∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆.【方法总结】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.3、在平面直角坐标系中,已知抛物线L :经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为.(1)求抛物线L 的表达式;(2)点P 在抛物线上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D.若△POD 与△AOB 相似,求符合条件的点P 的坐标.()2y ax c a x c =+-+L 'L '【答案】(1) y =-x 2-5x -6;(2)符合条件的点P 的坐标为(1,2)或(6,12)或(,)或(4,2)。
51 二次函数与最值的六种考法-重难点题型-【初中数学】120个题型大招!冲刺满分秘籍!
二次函数与最值的六种考法-重难点题型2动轴或动区间】对于二次函数2(0)y ax bx c a =++>,在m x n ≤≤(m ,n 为参数)条件下,函数的最值需要分别讨论m ,n 与2ba-的大小.二次函数中的定轴定区间求最值】】(2021春•瓯海区月考)已知二次函数y =﹣x 2+2x +4,关于该函数在﹣2≤x 取值范围内,下列说法正确的是()A .有最大值4,有最小值0B .有最大值0,有最小值﹣4C .有最大值4,有最小值﹣4D .有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=32,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x ≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m和M的值,从而求出M﹣m的值.【解答过程】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.【题型2二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或38C.3或−38D.﹣3或−38【解题思路】先求出对称轴为x=﹣1,分m>0,m<0两种情况讨论解答即可求得m的值.【解答过程】解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1,①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下,∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2,∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=−38;故选:C.【变式2-1】(2021•瓯海区模拟)已知二次函数y=ax2﹣4ax﹣1,当x≤1时,y随x的增大而增大,且﹣1≤x≤6时,y的最小值为﹣4,则a的值为()A.1B.34C.−35D.−14【解题思路】根据二次函数y=ax2﹣4ax﹣1,可以得到该函数的对称轴,再根据当x≤1时,y随x的增大而增大,可以得到a的正负情况,然后根据﹣1≤x≤6时,y的最小值为﹣4,即可得到a的值.【解答过程】解:∵二次函数y=ax2﹣4ax﹣1=a(x﹣2)2﹣4a﹣1,∴该函数的对称轴是直线x=2,又∵当x≤1时,y随x的增大而增大,∴a<0,∵当﹣1≤x≤6时,y的最小值为﹣4,∴x=6时,y=a×62﹣4a×6﹣1=﹣4,解得a=−14,故选:D.【变式2-2】(2021•章丘区模拟)已知二次函数y=2ax2+4ax+6a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣2≤x≤1时,y的最小值为15,则a的值为()A.1或﹣2B.−2或2C.﹣2D.1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x≤1时,y的最小值为15,可得x=1时,y=15,即可求出a.【解答过程】解:∵二次函数y=2ax2+4ax+6a2+3(其中x是自变量),∴对称轴是直线x=−42×2=−1,∵当x≥2时,y随x的增大而减小,∴a<0,∵﹣2≤x≤1时,y的最小值为15,∴x=1时,y=2a+4a+6a2+3=15,∴6a2+6a﹣12=0,∴a2+a﹣2=0,∴a=1(不合题意舍去)或a=﹣2.故选:C.【变式2-3】(2021•滨江区三模)已知二次函数y=12(m﹣1)x2+(n﹣6)x+1(m≥0,n ≥0),当1≤x≤2时,y随x的增大而减小,则mn的最大值为()A.4B.6C.8D.494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m,n的取值范围,将mn转化为含一个未知数的整式求最值.【解答过程】解:抛物线y=12(m﹣1)x2+(n﹣6)x+1的对称轴为直线x=6−K1,①当m>1时,抛物线开口向上,∵1≤x≤2时,y随x的增大而减小,∴6−K1≥2,即2m+n≤8.解得n≤8﹣2m,∴mn≤m(8﹣2m),m(8﹣2m)=﹣2(m﹣2)2+8,∴mn≤8.②当0≤m<1时,抛物线开口向下,∵1≤x≤2时,y随x的增大而减小,∴6−K1≤1,即m+n≤7,解得m≤7﹣n,∴mn≤n(7﹣n),n(7﹣n)=﹣(n−72)2+494,∴mn≤494,∵0≤m<1,∴此情况不存在.综上所述,mn最大值为8.故选:C.【题型3二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a 的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x ≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x ≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−14,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.23B.−72C.3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得=−3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=3,∴+=3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴=−32(舍),故选:C.【题型4二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B (﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得−4+=0=4,解得=1=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−382+34x+3经过B,C两点,点E是直线BC上方抛物线上的一动点,过点E作y轴的平行线交直线BC于点M,则EM的最大值为.【解题思路】设出E的坐标,表示出M坐标,进而表示出EM,化成顶点式即可求得EM 的最大值.【解答过程】解:∵点E是直线BC上方抛物线上的一动点,∴点E的坐标是(m,−38m2+34m+3),点M的坐标是(m,−34m+3),∴EM=−38m2+34m+3﹣(−34m+3)=−38m2+32m=−38(m2﹣4m)=−38(m﹣2)2+32,∴当m=2时,EM有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x=﹣1的抛物线y=x2+bx+c,与x轴相交于A,B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)点C是抛物线与y轴的交点,点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC的解析式,再利用QD =﹣x﹣3﹣(x2+2x﹣3)进而求出最值.【解答过程】解:(1)∵点A(﹣3,0)与点B关于直线x=﹣1对称,∴点B的坐标为(1,0).(2)∵a=1,∴y=x2+bx+c.∵抛物线过点(﹣3,0),且对称轴为直线x=﹣1,∴9−3+=0−2=−1∴解得:=2=−3,∴y=x2+2x﹣3,且点C的坐标为(0,﹣3).设直线AC的解析式为y=mx+n,则−3+=0=−3,解得:=−1=−3,∴y=﹣x﹣3如图,设点Q的坐标为(x.y),﹣3≤x≤0.则有QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94∵﹣3≤−32≤0,∴当x=−32时,QD有最大值94.∴线段QD长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+52与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;+S△MHA=12×MH×OA,即可求解;(Ⅱ)△AMC的面积=S△MHC(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−12,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则=520=5+,解得=−12=52,故直线AC的表达式为y=−12x+52,当x=2时,y=32,则MH=92−32=3,+S△MHA=12×MH×OA=12×3×5=152;则△AMC的面积=S△MHC(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD 最短即可,则EF2=OD2=m2+(−12m+52)2=54m2−52m+254,∵54>0,故EF2存在最小值(即EF最小),此时m=1,故点D(1,2),∵点P、D的纵坐标相同,故2=−12x2+2x+52,解得x=2±5,故点P的坐标为(2+5,2)或(2−5,2).【题型5二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y=﹣x2上有A,B两点,其横坐标分别为1,2,在y轴上有一动点C,当BC+AC最小时,则点C的坐标是()A.(0,0)B.(0,﹣1)C.(0,2)D.(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A,B的坐标,作点B关于y 轴的对称点B′,连接AB′交y轴于点C,此时BC+AC最小,由点B的坐标可得出点B′的坐标,由点A,B′的坐标,利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C的坐标.【解答过程】解:当x=1时,y=﹣12=﹣1,∴点A的坐标为(1,﹣1);当x=2时,y=﹣22=﹣4,∴点B的坐标为(2,﹣4).作点B关于y轴的对称点B′,连接AB′交y轴于点C,此时BC+AC最小,如图所示.∵点B的坐标为(2,﹣4),∴点B′的坐标为(﹣2,﹣4).设直线AB′的解析式为y=kx+b(k≠0),将A(1,﹣1),B(﹣2,﹣4)代入y=kx+b得:+=−1−2+=−4,解得:=1=−2,∴直线AB′的解析式为y=x﹣2.当x=0时,y=0﹣2=﹣2,∴点C的坐标为(0,﹣2),∴当BC+AC最小时,点C的坐标是(0,﹣2).故选:D.【变式5-1】(2021•铁岭模拟)如图,已知抛物线y=﹣x2+px+q的对称轴为x=﹣3,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,1).要在坐标轴上找一点P,使得△PMN的周长最小,则点P的坐标为()A.(0,2)B.(43,0)C.(0,2)或(43,0)D.以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M的坐标;欲使△PMN 的周长最小,MN的长度一定,所以只需(PM+PN)取最小值即可.然后,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P(如图1);过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(如图2).【解答过程】解:如图,∵抛物线y=﹣x2+px+q的对称轴为x=﹣3,点N(﹣1,1)是抛物线上的一点,∴−−2=−31=−1−+,解得=−6=−4.∴该抛物线的解析式为y=﹣x2﹣6x﹣4=﹣(x+3)2+5,∴M(﹣3,5).∵△PMN的周长=MN+PM+PN,且MN是定值,所以只需(PM+PN)最小.如图1,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P.则M′(3,5).设直线M′N的解析式为:y=ax+t(a≠0),则5=3+1=−+,解得=1=2,故该直线的解析式为y=x+2.当x=0时,y=2,即P(0,2).同理,如图2,过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(−43,0).如果点P在y轴上,则三角形PMN的周长=42+M;如果点P在x轴上,则三角形PMN的周长=210+M;所以点P在(0,2)时,三角形PMN的周长最小.综上所述,符合条件的点P的坐标是(0,2).故选:A.【变式5-2】(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B 的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为.【解题思路】解方程x2﹣2x﹣3=0得A(﹣1,0),B(3,0),则抛物线的对称轴为直线x=1,再确定C(0,﹣3),D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,利用两点之间线段最短可判断此时BE+DE的值最小,接着利用待定系数法求出直线AD的解析式为y=x+1,则F(0,1),然后根据三角形面积公式计算.【解答过程】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B (3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),当x=4时,y=x2﹣2x﹣3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(﹣1,0),D(4,5)代入得−+=04+=5,解得=1=1,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),=S△ACF+S△ECF=12×4×1+12×4×1=4.∴S△ACE故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y=53x2−203x+5与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C,在其对称轴上有一动点M,连接MA、MC、AC,则当△MAC的周长最小时,点M的坐标是.【解题思路】点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点M,则点M为所求点,即可求解.【解答过程】解:点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点M,则点M为所求点,理由:连接AC,由点的对称性知,MA=MB,△MAC的周长=AC+MA+MC=AC+MB+MC=CA+BC为最小,令y=53x2−203x+5=0,解得x=1或3,令x=0,则y=5,故点A、B、C的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x=12(1+3)=2,设直线BC的表达式为y=kx+b,则0=3+=5,解得=−53=5,故直线BC的表达式为y=−53x+5,当x=2时,y=−53x+5=53,故点M的坐标为(2,53).【题型6二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P做x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C(2,﹣3),再利用待定系数法求出直线AC的解析式为y=﹣x﹣1,设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),利用三角形面积公式得到△ACE的面积=12×(2+1)×PE=32(﹣t2+t+2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)把C(2,m)代入y=x2﹣2x﹣3得m=4﹣4﹣3=﹣3,则C(2,﹣3),设直线AC的解析式为y=mx+n,把A(﹣1,0),C(2,﹣3)代入得−+=02+=−3,解得=−1=−1,∴直线AC的解析式为y=﹣x﹣1;设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),∴PE=﹣t﹣1﹣(t2﹣2t﹣3)=﹣t2+t+2,∴△ACE的面积=12×(2+1)×PE=32(﹣t2+t+2)=−32(t−12)2+278,当t=12时,△ACE的面积有最大值,最大值为278,此时P点坐标为(12,−32).【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大,若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−12,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:0=4+−2=,解得=12=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴S△DCA∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后+S△ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.根据S=S△ABC【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B(0,3),∵抛物线y=﹣x2+bx+c经过点A,B,∴=3−9+3+=0,∴=2=3,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图,过点P做PE⊥x轴于点E,与直线AB交于点D,∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+2m+3),∵点D在直线AB上,∴点D的坐标为(m,﹣m+3),∴PD=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,在y=﹣x2+2x+3中.令y=0.则﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴点C的坐标为(﹣1,0),+S△ABP=12×4×3+12(﹣m2+3m)×3=−32(m−32)2+758,∴S=S△ABC∴当m=32时,S最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P 是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;=−32(m−12)(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=32,∴E(0,−32),∴点P的纵坐标为−32,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,∴x2﹣2x﹣3=−32,∴x=x=∵点P在直线BC下方的抛物线上,∴0<x<3,∴点P(2+102,−32);(3)如图2,过点P作PF⊥x轴于F,则PF∥OC,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴A(﹣1,0),∴设P(m,m2﹣2m﹣3)(0<m<3),∴F(m,0),=S△AOC+S梯形OCPF+S△PFB=12OA•OC+12(OC+PF)•OF+12PF•BF ∴S四边形ABPC=12×1×3+12(3﹣m2+2m+3)•m+12(﹣m2+2m+3)•(3﹣m)=−32(m−32)2+758,∴当m=32时,四边形ABPC的面积最大,最大值为758,此时,P(32,−154),即点P运动到点(32,−154)时,四边形ABPC的面积最大,其最大值为758.。
类型6 二次函数的最值问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)
二次函数的最值问题1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.43.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值88.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值39.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.11.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.试题解析1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.解:连接BD,AC,∵菱形ABCD边长为4,∠BAD=60°;∴△ABD与△BCD为正三角形,∴∠FDB=∠EAB=60°,∵AE+CF=4,DF+CF=4,∴AE=DF,∵AB=BD,∴△BDF≌△BAE,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形,∴当BE⊥AD时,△BEF的面积最小,此时BE=2△BEF面积的最小值=3.故选:B.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故选:A.3.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.5.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S△BDH==BD•AD=x(2﹣x)=﹣(x﹣)2+,∴△BDH面积的最大值是,故选:C.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.8.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值3解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.9.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为5或.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;1811.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,即AD=3﹣=时,矩形CDGE和矩形HEBF的面积和最小,故答案为12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为15cm.解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15cm时,S取最大值.故答案为:15.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,∵AD=3,BC=4,梯形ABCD面积为7,∴解得∵PE∥DQ,∴∠PEF=∠QFE,∠EPF=∠PFD,又∵PF∥AQ,∴∠PFD=∠EQF,∴∠EPF=∠EQF,∵EF=FE,∴△PEF≌△QFE(AAS),∵PE∥DQ,∴△AEP∽△AQD,同理,△DPF∽△DAQ,∴=,=()2,∵S△AQD=3,∴S△DPF=x2,S△APE=(3﹣x)2,∴S△PEF=(S△AQD﹣S△DPF﹣S△APE)÷2,∴y=[3﹣x2﹣(3﹣x)2]×=﹣x2+x,∵y最大值==,即y最大值=.∴△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴,而AN=AM﹣MN=AM﹣DE,∴,解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,(2)分两种情况:①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴y=x2,此时x的范围是0<x≤4.8,②当正方形DEFG的一部分在△ABC的外部时,如图(3),设DG与BC交于点Q,EF与BC交于点P,△ABC的高AM交DE于N,∵DE=x,DE∥BC,∴△ADE∽△ABC,即,而AN=AM﹣MN=AM﹣EP,∴,解得EP=8﹣x.所以y=x(8﹣x),即y=﹣x2+8x,由题意,x>4.8,且x<12,所以4.8<x<12;因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,当4.8<x<12时,因为,所以当时,△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=﹣×62+8×6=24;因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= 2.4或2.6;(3)设△ABC的面积的平方为W,求W的最大值.解:(1)∵AD=5,AB=x,BE垂直平分CD,∴BC=BD=5﹣x,在△ABC中,AC=1,∴(5﹣x)﹣1<x<1+(5﹣x),解得:2<x<3;(2)∵△ABC为直角三角形,若AB是斜边,则AB2=AC2+BC2,即x2=(5﹣x)2+1,∴x=2.6;若BC是斜边,则BC2=AB2+AC2,即(5﹣x)2=x2+1,∴x=2.4.故答案为:2.4或2.6.(3)在△ABC中,作CF⊥AB于F,设CF=h,AF=m,则W=(xh)2=x2h2,①如图,当2.4<x<3时,AC2﹣AF2=BC2﹣BF2,则1﹣m2=(5﹣x)2﹣(x﹣m)2,得:m=,∴h2=1﹣m2=,∴W=x2h2=﹣6x2+30x﹣36,即W=﹣6(x﹣)2+,当x=2.5时(满足2.4<x<3),W取最大值1.5;②当2<x≤2.4时,同理可得:W=﹣6x2+30x﹣36=﹣6(x﹣)2+,当x=2.4时,W取最大值1.44<1.5,综合①②得,W的最大值为1.5.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.解:(1)设OD=t,AD=4﹣t,AE=t,S△ODEBC=S△ABCD﹣S△DAE===(0≤t≤3)(2)∵∴∴当t=2时,S有最小值;此时:D(2,0)、E(4,2),①当P在x轴上时,设P(a,0),此时:DE2=AD2+EA2=22+22=8,EP2=(a﹣4)2+22=a2﹣8a+20,DP2=(a﹣2)2=a2﹣4a+4,∴当DE2=EP2时,8=a2﹣8a+20,∴a2﹣8a+12=0,(a﹣2)(a﹣6)=0,∴P(2,0),P1(6,0),∵P(2,0)与D重合∴舍去,当EP2=DP2时,a2﹣8a+20=a2﹣4a+4,16=4a,a=4,∴P2(4,0),当DE2=DP2时,8=a2﹣4a+4a2﹣4a﹣4=0,∴,②当P在y轴上时,设P(0,b),则DP2=22+b2=b2+4EP2=42+(b﹣2)2=16+b2﹣4b+4=b2﹣4b+20 DE2=8,∴当DP2=EP2时,b2+4=b2﹣4b+204b=16,b=4,∴P5(0,4),当EP2=DE2时,b2﹣4b+20=8b2﹣4b+12=0b2﹣4ac<0,∴无解.当DP2=DE2时,b2+4=8,b2=4,∴b=±2,∴P6(0,﹣2)(DEP三点共线,舍去),∴综上共有6个这样的P点,使得△PDE为等腰三角形.即P1(6,0),P2(4,0),,,P5(0,4),P6(0,2).(3)设AE=t,则BE=3﹣t.BF=BE=3﹣t,AD=4﹣t,∴CF=4﹣BF=t+1,过D作DP⊥BC于P.则:CP=OD=t,∴PF=1,又DP=3,∴,∴,∴在Rt△DAE中,AD2+AE2=DE2,∴(4﹣t)2+t2=10,∴t2﹣8t+16+t2=10,2t2﹣8t+6=0,t2﹣4t+3=0,∴t1=1,t2=3(舍),∴t=1(9分),∴E(4,1),F(2,3),∵E关于x轴的对称点E′(4,﹣1),F关于y轴的对称点F′(﹣2,3),则E′F′与x轴,y轴的交点即为M点,N点.设直线E′F′的解析式为y=kx+b(k≠0),则,∴,∴y=﹣x+.(10分)∴M(,0),N(0,).(12分)。
2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)及答案
2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)及答案一、二次函数1.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标。
【答案】解:(1)2y x 2x 3=--;(2)存在,P (1-132,13-12);(3)Q 点坐标为(0,-72)或(0,32)或(0,-1)或(0,-3). 【解析】 【分析】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解. (2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB 与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC=∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y=-x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(3)分别以A 、B 、Q 为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可. 【详解】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2, ∴y =2x ﹣6, 令y =0,解得:x =3, ∴B 的坐标是(3,0). ∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=1-132(m=1+132>0,舍),∴P(1-13,13-1).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴1DQADOD DB=,即56=135,∴DQ1=52,∴OQ1=72,即Q1(0,-72);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴2OQOBOD OB=,即2363OQ=,∴OQ2=32,即Q2(0,32);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴33OQOBQ E AE=,即33341OQOQ=-∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,-72)或(0,32)或(0,﹣1)或(0,﹣3).2.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.3.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=12AM×EM=12.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC∵FG =22DQ , ∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3), ∵点G 在点F 的上方且FG =4, ∴(n+3)﹣(﹣n 2﹣2n+3)=4. 解得n =﹣4或n =1, ∴F(﹣4,﹣5)或(1,0). 【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.4.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5±,即:点C 坐标为(5+,0)或(5﹣0);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C 的坐标为:(,0)或(5±0)或(9710,0); (3)过点P 作y 轴的平行线交AB 于点H .设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k 125=,故函数的表达式为:y 125=x ﹣3,设点P 坐标为(m ,125m 2485-m ﹣3),则点H 坐标为(m ,125m ﹣3),S △PAB 12=•PH •x B 52=(125-m 2+12m )=-6m 2+30m =25756()22m --+,当m =52时,S △PAB 取得最大值为:752. 答:△PAB 的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.5.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32或3322+或3322-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3. 若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ). 设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+ 当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.6.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m :(1)①直接写出a 的值;②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①求PD DD'的值; ②直接写出L 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1; ②L =2(22)(02)21(221)4(24)m m m π⎧+<⎪⎨+++<<⎪⎩…; (3)h =±3 【解析】【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值.【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中,得:0=a (0﹣2)2﹣2,解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12;∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭ PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭, 2222322m 22,PG m 22m 2422FH PH PF ===-+-=-+ ∵DD ′∥EG EG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG2212242222m m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)L ⎧+<⎪∴=⎨+-+++<<⎪⎩…; (3)如图3,∵OADD ′为菱形∴AD =AO =DD ′=4,∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2.∵EG 关于y 轴对称,∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG设点E 的坐标为(n ,n +3),点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n∵DE =DC =4,∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3)将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1).∴EC =22(0)(31)k k -+++=22816k k ++.∵EC =CD =4,∴2k 2+8k +16=16,解得k 1=0(舍去),k 2=﹣4.∴点E 的坐标为(﹣4,﹣1)将点E 上移1个单位长度得点G .∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】 (1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.9.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根.(1)求k 的取值范围;(2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值.【答案】(1)k ≥﹣14;(2)k=2.【解析】【分析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可.【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1∵△≥0∴4k +1≥0∴k ≥﹣14;(2)∵x 1,x 2是方程两根,∴x 1+x 2=2k +1x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k ==又∵k ≥﹣14 ,即:k=12. 【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a - ,两根之积等于c a”是解题的关键.10.如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a ,b ,c ]称为“抛物线系数”.(1)任意抛物线都有“抛物线三角形”是 (填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,﹣2],则其“抛物线三角形”的面积为 ;(3)若一条抛物线系数为[﹣1,2b ,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;(4)在(3)的前提下,该抛物线的顶点为A ,与x 轴交于O ,B 两点,在抛物线上是否存在一点P ,过P 作PQ ⊥x 轴于点Q ,使得△BPQ ∽△OAB ?如果存在,求出P 点坐标;如果不存在,请说明理由.【答案】(1)假;(2)3)y =-x 2+2x 或y =-x 2-2x ;(4)P (1,1)或P (-1,-3)或P (1,-3)或(-1,1).【解析】分析:(1)当△>0时,抛物线与x 轴有两个交点,由此可得出结论;(2)根据“抛物线三角形”定义得到22y x =-,由此可得出结论;(3)根据“抛物线三角形”定义得到y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0);当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形,由抛物线顶点为(b ,b 2),以及直角三角形斜边上的中线等于斜边的一半得到2122b b =⨯,解方程即可得到结论; (4)分两种情况讨论:①当抛物线为y =-x 2+2x 时,②当抛物线为y =-x 2-2x 时. 详解:(1)当△>0时,抛物线与x 轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题;(2)由题意得:22y x =-,令y =0,得:x=,∴ S=122⨯=12x x ; (3)依题意:y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0);当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y =-x 2+2bx =22()x b b --+,∴顶点为(b ,b 2),由直角三角形斜边上的中线等于斜边的一半得到:2122b b =⨯,∴2b b =,解得:b =0(舍去)或b =±1, ∴y =-x 2+2x 或y =-x 2-2x .(4)①当抛物线为y =-x 2+2x 时.∵△AOB 为等腰直角三角形,且△BPQ ∽△OAB ,∴△BPQ 为等腰直角三角形,设P (a ,-a 2+2a ),∴Q ((a ,0),则|-a 2+2a |=|2-a |,即(2)2a a a -=-. ∵a -2≠0,∴1a =,∴a =±1,∴P (1,1)或(-1, -3).②当抛物线为y =-x 2-2x 时.∵△AOB 为等腰直角三角形,且△BPQ ∽△OAB ,∴△BPQ 为等腰直角三角形,设P (a ,-a 2-2a ),∴Q ((a ,0),则|-a 2-2a |=|2+a |,即(2)2a a a +=+.∵a +2≠0,∴1a =,∴a =±1,∴P (1,-3,)或(-1,1). 综上所述:P (1,1)或P (-1,-3)或P (1,-3,)或(-1,1).点睛:本题是二次函数综合题.考查了二次函数的性质以及“抛物线三角形”的定义.解题的关键是弄懂“抛物线三角形”的定义以及分类讨论.11.(12分)如图,在平面直角坐标系xOy 中,二次函数()的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.【答案】(1);(2)E 的坐标为(,)、(0,﹣4)、(,);(3),(,). 【解析】试题分析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC 的解析式为,则可设E (m ,),然后分三种情况讨论即可求得;(3)利用△PBD的面积即可求得.试题解析:(1)∵二次函数()的图象与x轴交于A(﹣2,0)、C (8,0)两点,∴,解得:,∴该二次函数的解析式为;(2)由二次函数可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数可知B(0,﹣4),设直线BC的解析式为,∴,解得:,∴直线BC的解析式为,设E(m,),当DC=CE时,,即,解得,(舍去),∴E(,);当DC=DE时,,即,解得,(舍去),∴E(0,﹣4);当EC=DE时,,解得=,∴E(,).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(,)、(0,﹣4)、(,);(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为:,∵△PBD的面积===,∴当m=时,△PBD的最大面积为,∴点P的坐标为(,).考点:二次函数综合题.12.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.13.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.14.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为4或412或5-41②点M 的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到2PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,∴△AMB 为等腰直角三角形, ∴, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ , ∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+41或5-41;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.15.已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【答案】(1)983bc⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0).【解析】【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣239168x x ++3=0,通过解该方程求得x 的值即为抛物线与x 轴交点横坐标. 【详解】(1)把A (0,3),B (﹣4,﹣92)分别代入y=﹣316x 2+bx+c ,得339164162c b c =⎧⎪⎨-⨯-+=-⎪⎩,解得983b c ⎧=⎪⎨⎪=⎩;(2)由(1)可得,该抛物线解析式为:y=﹣316x 2+98x+3, △=(98)2﹣4×(﹣316)×3=22564>0, 所以二次函数y=﹣316x 2+bx+c 的图象与x 轴有公共点, ∵﹣316x 2+98x+3=0的解为:x 1=﹣2,x 2=8, ∴公共点的坐标是(﹣2,0)或(8,0).【点睛】本题考查了抛物线与x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。
中考数学专题复习二次函数的应用题与最值问题
二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。
决胜2020年中考最难压轴题大挑战二次函数综合题
决胜2020年中考最难压轴题大挑战二次函数综合题点睛导航1、二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.2、二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.3、二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.挑战突破1.(2020•西湖区校级模拟)已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,则抛物线的解析式为y=﹣x2+5x;(2)当抛物线y=﹣x2+bx+c的顶点M在直线AB上平移时,若△OMN与△AOB相似,则点M的坐标为(2,﹣1)、(4,3).【点睛】(1)抛物线的顶点为:(,0),则抛物线的表达式为:y=﹣(x)2,即可求解;(2)当∠OMN=90°时,则直线OM表达式中的k值为,即,即可求解;当∠ONM=90°时,同理可得:点M(4,3);当∠MON=90°时,证明tan∠GMO=tan∠HON,即:,即可求解.【解析】解:(1)直线y=2x﹣5与x轴和y轴分别交于点A和点B,则点A、B的坐标分别为:(,0)、(0,﹣5),则抛物线的顶点为(,0),则抛物线的表达式为:y=﹣(x)2,则抛物线的表达式为:y=﹣x2+5x,故答案为:y=﹣x2+5x;(2)设点M(m,2m﹣5),点N(x,y),将抛物线表达式与直线表达式联立并整理得:﹣(x﹣m)2+2m﹣5=2x﹣5,x2+(2﹣2m)x+m2﹣2m=0,(x﹣m)(x﹣m+2)=0,则x=m或m﹣2,故点N(m﹣2,2m﹣9),则MN=2,则AB,①当∠OMN=90°时,则直线OM表达式中的k值为,即,解得:m=2,故点M、N的坐标分别为:(2,﹣1)、(0,﹣5),则OM,ON=5,经验证:,满足△OMN与△AOB相似,故点M(2,﹣1);②当∠ONM=90°时,同理可得:点M(4,3);③当∠MON=90°时,过点M、N分别作y轴的垂线交于点G、H,∵∠GMO+∠GOM=90°,∠GOM+∠HON=90°,∴∠GMO=∠HON=α,则tan∠GMO=tan∠HON,即:,解得:m=3,故点M(3,1)(△OMN为等腰直角三角形,故舍去);综上,点M的坐标为:(2,﹣1)、(4,3),故答案为:(2,﹣1)、(4,3).2.(2020•余杭区模拟)如图1,在平面直角坐标系中,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上.现将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上(如图2),设抛物线y=ax2+bx+c(a<0),如果抛物线同时经过点O、B、C:①当n=3时a=;②a关于n的关系式是.【点睛】①当n=3时,OC=1,BC=3,设所求抛物线解析式为y=ax2+bx,过C作CD ⊥OB于点D,则Rt△OCD∽Rt△CBD,得出OD:CD=OC:BC=1:3,设OD=t,则CD=3t,根据勾股定理OD2+CD2=OC2,求出t,得出C的坐标,把B、C坐标代入抛物线解析式即可得到方程组,求出a即可;②根据a=2、4和①总结规律,可以得到答案.【解析】解:①如图当n=3时,OC=1,BC=3,设所求抛物线解析式为y=ax2+bx,过C作CD⊥OB于点D,则Rt△OCD∽Rt△OBC,∴,设OD=t,则CD=3t,∵OD2+CD2=OC2,∴(3t)2+t2=12,∴∴C(),又B(,0),∴把B、C坐标代入抛物线解析式,得解得:a,故答案为:.②当n=2时,OC=1,BC=2,∴OB,∴1×2CD,B(,0)∴CD,∴OD,∴C(,)设所求抛物线解析式为y=ax2+bx,∴,解得:a;同理当n=4时,a;∴可以得出a关于n的关系式是:.故答案为:,.3.(2020•衢州模拟)在直角坐标系中,抛物线y=ax2﹣4ax+2(a>0)交y轴于点A,点B 是点A关于对称轴的对称点,点C是抛物线的顶点,则:(1)抛物线的对称轴为直线x=2;(2)若△ABC的外接圆经过原点O,则a的值为.【点睛】(1)根据对称轴方程x解答;(2)先求得顶点坐标,然后利用待定系数法确定函数关系式,即求得a的值.【解析】解:(1)抛物线y=ax2﹣4ax+2的对称轴为直线x2,即x=2.(2)连接OB交对称轴于点O′.∵抛物线的对称轴x=2,A(0,2),A,B关于对称轴对称,∴B(4,2),∵△ABC的外接圆经过原点O,∴外接圆的圆心是线段OB的中点O′,∴O′(2,1),∴OB2,∴O′C,∴点C坐标为(2,1),∴14a﹣8a+2,∴a.故答案是:2;.4.(2020•和平区模拟)已知抛物线y=ax2﹣4ax+4a﹣1.(Ⅰ)该抛物线的对称轴是x=2;(Ⅱ)该抛物线与x轴交于点A,点B,与y轴交于点C,点A的坐标为(1,0),若此抛物线的对称轴上的点P满足∠APB<∠ACB,则点P的纵坐标n的取值范围是n>2或n<﹣2.【点睛】(Ⅰ)抛物线的对称轴为:x2;(Ⅱ)当点P在圆上时,∠APB=∠ACB,点P在圆外时,∠APB<∠ACB,即可求解.【解析】解:(Ⅰ)抛物线的对称轴为:x2,故答案为:2;(Ⅱ)将点A的坐标代入抛物线表达式并解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则点A、B、C的坐标分别为:(1,0)、(3,0)、(0,3),过点A、B、C作△ABC的外接圆M(2,m),当点P在圆上时,∠APB=∠ACB,点P在圆外时,∠APB<∠ACB,则MA=MC,即4+(m﹣3)2=1+m2,解得:m=2,则圆的半径为:,则点P的坐标为:(2,2),则点P关于x轴的对称点P′(2,﹣2),故答案为:n>2或n<﹣2.5.(2020•张店区模拟)已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标(1,4);(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=.【点睛】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组,解该方程组即可求得a的值.【解析】解:(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为:(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.∵QE=x,∴在Rt△QED中,tanβax﹣2a﹣k.∴tanβ是关于x的一次函数,∵a<0,∴tanβ随着x的增大而减小.又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,∴当x=2时,β=60°;当x=4时,β=30°.∴,解得,故答案为:.6.(2020•柯桥区模拟)如图,在平面直角坐标系xOy中,已知抛物线y3与x 轴交于点A、B(A在B左侧),与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,则点P的坐标是(0,6)或P(0,).【点睛】过点F作FM⊥x轴,垂足为M.设E(0,t),则OE=t,则F(6,4t),将点F的坐标代入抛物线的解析式可求得t的值,最后,依据cot∠F AB的值;然后求得cot∠DAB,则∠F AB=∠DAB.当点P在AF的上方时可证明PF∥AB,从而可求得点P的坐标;当点P在AF的下方时,设FP与x轴交点为G(m,0),则∠PF A=∠F AB,可得到FG=AG,从而可求得m的值,然后再求得PF的解析式,从而可得到点P的坐标.【解析】解:过点F作FM⊥x轴,垂足为M.设E(0,t),则OE=t.∵,∴.∴F(6,4t).将点F(6,4t)代入y x2x﹣3得:623×6﹣3=0,解得t.∴cot∠F AB.∵y3(x+2)(x﹣4).∴A(﹣2,0),B(4,0).易得抛物线的对称轴为x=1,C(0,﹣3).∵点D是点C关于抛物线对称轴的对称点,∴D(2,﹣3).∴cot∠DAB,∴∠F AB=∠DAB.如下图所示:当点P在AF的上方时,∠PF A=∠DAB=∠F AB,∴PF∥AB,∴y P=y F=6.由(1)可知:F(6,4t),t.∴F(6,6).∴点P的坐标为(0,6).当点P在AF的下方时,如下图所示:设FP与x轴交点为G(m,0),则∠PF A=∠F AB,可得到FG=AG,∴(6﹣m)2+62=(m+2)2,解得:m,∴G(,0).设PF的解析式为y=kx+b,将点F和点G的坐标代入得:,解得:k,b.∴P(0,).综上所述,点P的坐标为(0,6)或P(0,).故答案是:(0,6)或P(0,).7.(2020•金堂模拟)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为8.【点睛】当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.【解析】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D 点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.8.(2020•常州模拟)二次函数y x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2013在y轴的正半轴上,点B1,B2,B3,…,B2013在二次函数y x2位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2012B2013A2013都为等边三角形,则△A2012B2013A2013的边长=2013.【点睛】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1a,BB2b,CB3,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y x2中,求a、b、c的值,得出规律.【解析】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1a,BB2b,CB3c,在正△A0B1A1中,B1(a,),代入y x2中,得a2,解得a=1,即A0A1=1,在正△A1B2A2中,B2(b,1),代入y x2中,得1b2,解得b=2,即A1A2=2,在正△A2B3A3中,B3(c,3),代入y x2中,得3c)2,解得c=3,即A2A3=3,…依此类推由此可得△A2012B2013A2013的边长=2013,故答案为:2013.9.(2020•成都模拟)如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为(,).【点睛】根据点A、B的横坐标求出OA、OB的长,再根据△AOC和△COB相似,利用相似三角形对应边成比例列式求出OC的长度,然后写出点C的坐标,然后设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入求出a的值,再整理成顶点式形式,然后写出顶点坐标即可.【解析】解:∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a,∴y(x+1)(x﹣4)(x2﹣3x﹣4)(x)2,∴此抛物线顶点的坐标为(,).故答案为:(,).10.如图,二次函数y的图象交x轴于点A,B(点A在点B的左侧),交y轴于点C.(1)若在抛物线对称轴上存在一点P,使△ACP周长最小,则P点坐标为(2,);(2)现有一长为2的线段DE在直线y上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段P A,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是t≤2.【点睛】(1)先求出点A,点B,点C坐标,当点C,点P,点B三点共线时,△ACP 周长最小,由待定系数法可求BC解析式,即可求点P坐标;(2)分三种情况讨论,由两点距离公式和三角形三边关系可求解.【解析】解:(1)如图1,连接BP,∵y的图象交x轴于点A,B,交y轴于点C.∴点A(1,0),点B(3,0),点C(0,),对称轴为x=2,∵点A,点B关于对称轴直线x=2对称,∴AP=PB,∵AP+CP+AC=PB+CP+AC,且AC是定值,∴当点C,点P,点B三点共线时,△ACP周长最小,设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y x,当x=2时,y∴点P坐标(2,),故答案为:(2,);(2)如图2,∵线段DE上始终存在点P,使得三条线段P A,PB,PC能与某个等腰三角形的三条边对应相等,∴P A=PB,或PB=PC,或PC=P A,∵DE在直线y上移动,∴点P的纵坐标为,设点P(x,),∴(x)2+()2=(x﹣1)2+()2,∴x,∴点P(,),∴P A=PC=1,PC,∵P A+PB∴不合题意舍去;若PB=PC,∴(x)2+()2=(x﹣3)2+()2,∴x∴∴点P(,),∴PB=PC,P A=1,∵P A+PB>PC∴P A,PB,PC能组成三角形;∴(x﹣1)2+()2=(x﹣3)2+()2,∴x=2,∴点P(2,),∴P A=PB,PC,∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为2的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为:2≤t≤2,∴线段DE左端点D的横坐标为t的取值范围为:t≤2,故答案为:t≤2.11.抛物线y=x2﹣2x﹣3与x轴交于点A、B(点A在点B的左边),点P在抛物线上.(1)点C是x轴上一个动点,四边形ACPQ是正方形,则满足条件的点Q的坐标是(﹣1,﹣3)或(﹣1,5)或(2,3)或(4,﹣5);(2)连结AP,以AP为一条对角线作平行四边形AMPN,使点M在以点(1,0),(0,1)为端点的线段上,则当点N的纵坐标取最小值时,N的坐标为(0,﹣5).【点睛】(1)先求出点A,点B坐标,设点C(x,0),由正方形的性质CA=CP=AQ=QP,可得|x+1|=x2﹣2x﹣3,可求点C坐标,即可求点Q坐标;(2)设点M(m,﹣m+1),由平行四边形的性质可得AN=PM,AN∥MP,当AN⊥AB 时,且在x轴下方上,点N的纵坐标有最小值,由二次函数的性质可求解.【解析】解:(1)令y=0,则0=x2﹣2x﹣3,∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),如图1,若AC为边,设点C(x,0),∴CA=|x+1|∵四边形ACPQ是正方形,∴CA=CP=AQ=QP,∠QAC=90°,∴|x+1|=|x2﹣2x﹣3|,∴x+1=x2﹣2x﹣3或﹣x﹣1=x2﹣2x﹣3∴x1=﹣1(不合题意舍去),x2=2,x3=4,∴点C(2,0)或(4,0)∴AC=AQ=3或5,∴点Q(﹣1,﹣3)或(﹣1,5);若AC为对角线,则AC的中点坐标为(,0)∴CA=|x+1|∵正方形的对角线互相垂直平分且相等,∴|()2﹣23|,∴()2﹣23或()2﹣2 3 ∴x1=﹣1(不合题意舍去),x2=5,x3=9,∴AC的中点坐标为(2,0),(4,0),∴点Q坐标为(2,3)或(4,﹣5)故答案为(﹣1,﹣3)或(﹣1,5)或(2,3)或(4,﹣5);(2)∵四边形ANPM是平行四边形,∴对角线互相平分,∴y A+y P=y M+y N,∴y N=0+x2﹣2x﹣3﹣y M,∴当x2﹣2x﹣3取最小值,y M取最大值时,y N有最小值,∵x2﹣2x﹣3=(x﹣1)2﹣4,∴当x=1时,x2﹣2x﹣3最小值=﹣4,点P(1,﹣4)∵0≤y M≤1,∴y M最大值=1∴y N最小值=﹣4﹣1=﹣5.∴故答案为:(0,﹣5).12.在平面直角坐标系xOy中抛物线y=ax2﹣2ax﹣3a﹣1的顶点为点A (1)写出抛物线的对称轴为直线x=1;(2)若抛物线的顶点A在第一象限,直线y=﹣1与此抛物线交于B、C两点,当△ABC 为等腰直角三角形,求出此抛物线的解析式;(3)设直线y=﹣1关于x轴对称的直线为直线m当抛物线与直线m交于两点,两点间距离不小于6时,求a的取值范围.【点睛】(1)由抛物线的解析式,利用二次函数的性质即可找出抛物线的对称轴;(2)利用配方法可找出顶点A的坐标,代入y=﹣1可求出点B,C的横坐标,由等腰直角三角形的性质可得出关于a的一元一次方程,解之即可得出a的值,再将其代入抛物线解析式中即可得出结论;(3)由(2)可得出BC=3,进而可得出a<0不符合题意,当a>0时,由抛物线与直线m两交点的距离不小于6,可得出点(4,1)在抛物线内或抛物线上,再利用二次函数图象上点的坐标特征即可得出关于a的一元一次不等式,解之即可得出结论.【解析】解:(1)抛物线的对称轴为直线x1.故答案为:x=1.(2)∵y=ax2﹣2ax﹣3a﹣1=a(x﹣1)2﹣4a﹣1,∴顶点A的坐标为(1,﹣4a﹣1).当y=﹣1时,有a(x﹣1)2﹣4a﹣1=﹣1,即(x﹣1)2=4,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,﹣1),点C的坐标为(3,﹣1).∵△ABC为等腰直角三角形,∴﹣4a﹣1﹣(﹣1)[3﹣(﹣1)],∴a,∴当△ABC为等腰直角三角形,此抛物线的解析式为y x2+x.(3)由(2)可知BC=3,∴当a<0时,不符合题意.当a>0时,如图2所示.∵抛物线与直线m交于两点,两点间距离不小于6,∴a×42﹣2a×4﹣3a﹣1≤1,解得:a,∴0<a,∴当抛物线与直线m交于两点,两点间距离不小于6时,a的取值范围为0<a.13.已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m的值为±.【点睛】抛物线C1、C2关于y轴对称,那么它们的顶点A、B也关于y轴对称,所以AB ∥x轴;若以A、B、C、P为顶点的四边形为菱形,那么CP也必须与x轴平行,即点C、P的纵坐标相同,代入抛物线C1的解析式中,就能确定点P的坐标,此时能发现AB=CP,即四边形APCB中,AB、CP平行且相等,即该四边形APCB是平行四边形,只要再满足AP=CP(即一组邻边相等),就能判定该四边形是菱形,因此先用m表达出AP、CP的长,再列等式求出m的值.【解析】解:由抛物线C1:y=﹣x2+2mx+1知,点A(m,m2+1)、C(0,1);∵抛物线C1、C2关于y轴对称,∴点A、B关于y轴对称,则AB∥x轴,且B(﹣m,m2+1),AB=|﹣2m|;若以A、B、C、P为顶点的四边形为菱形,则AB∥CP;在抛物线C1:y=﹣x2+2mx+1中,当y=1时,﹣x2+2mx+1=1,解得x1=0、x2=2m,∴点P(2m,m2+1);∴AB=CP=|2m|,又AB∥CP,则四边形APCB是平行四边形;若四边形APCB是菱形,那么必须满足AP=CP,即:(2m)2=(m﹣0)2+(m2+1﹣1)2,即:m2=3,解得m=±.故答案为:±.14.(2020•碑林区校级模拟)如图,抛物线y=﹣x2+2x+3交x轴于A,B两点,交y轴于点C,点D为抛物线的顶点,点C关于抛物线的对称轴的对称点为E,点G,F分别在x 轴和y轴上,则四边形EDFG周长的最小值为.【点睛】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据两点间的距离公式可得答案.【解析】解:如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),连接D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′,∴四边形EDFG的周长的最小值为:.故答案是:.15.(2020•江阴市模拟)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则.【点睛】设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出BC 的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解.【解析】解:设A点坐标为(0,a),(a>0),则x2=a,解得x,∴点B(,a),a,则x,∴点C(,a),∴BC.∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=3a,∴点D的坐标为(,3a).∵DE∥AC,∴点E的纵坐标为3a,∴3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3,∴.故答案是:.16.(2020•广南县校级模拟)如图(1),在平面直角坐标系中,梯形OABC如图放置,点B 的坐标为(3,m),动点P从原点O出发,以1.2cm/s的速度沿OA运动到点A停止,同时动点Q从原点A出发,以1cm/s的速度沿AB→BC→CO运动到点O停止.设点P、Q 出发t秒时,△OPQ的面积为Scm2.已知S与t的函数关系的图象如图(2)(曲线OD 为抛物线的一部分).则下列结论:①OA=AB=5cm;②梯形OABC的面积为18;③当0≤t≤5时,;④线段EF的解析式为S=﹣3t+36(8≤t≤12).其中,正确的结论有②③④.(把你认为正确的结论的序号都填上)【点睛】根据图(2)判断出5秒时点P到达点A,点Q到达点B,然后求出OA、AB即可判断出①错误;过点B作BF⊥OA于F,可得四边形OFBC是矩形,根据矩形的对边相等可得OF=BC=3,然后求出AP=3,利用勾股定理列式求出BF,从而得到点B的坐标,再利用梯形的面积公式列式计算即可判断出②正确;利用∠OAB的正弦表示出点Q到OA的距离,再根据三角形的面积公式列式整理即可得到S与t的关系式,从而判断出③正确;根据AB、BC、OC的长度写出点E、F的坐标,设线段EF的解析式为S=kt+b (k≠0),利用待定系数法求一次函数解析式解答即可判断出④正确.【解析】解:由图(2)可知,5秒时,点P到达点A,点Q到达点B,∵点P的速度是1.2cm/s,点Q的速度是1cm/s,∴OA=1.2×5=6cm,AB=1×5=5cm,∴OA≠AB,故①错误;过点B作BF⊥OA于F,则四边形OFBC是矩形,所以,OF=BC=cm3,所以,AF=OA﹣OF=6﹣3=3cm,由勾股定理得,BF4cm,所以,点B的坐标为(3,4),梯形OABC的面积(BC+OA)•BF(3+6)×4=18,故②正确;0≤t≤5时,点P在OA上,OP=1.2t,点Q在AB上,点Q到OA的距离=AQ•sin∠OAB t,所以,△OPQ的面积•1.2t•t t2,故③正确;∵AB=5,BC=3,OC=4,∴点E的坐标为(8,12),点F的坐标为(12,0),设线段EF的解析式为S=kt+b(k≠0),把点E、F代入得,,解得,所以,线段EF的解析式为S=﹣3t+36(8≤t≤12);综上所述,正确的结论是②③④.故答案为:②③④.17.(2020•成都模拟)在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接P A,PB.有以下说法:①PO2=P A•PB;②当k>0时,(P A+AO)(PB﹣BO)的值随k的增大而增大;③当k时,BP2=BO•BA;④△P AB面积的最小值为.其中正确的是③④.(写出所有正确说法的序号)【点睛】首先得到两个基本结论:(Ⅰ)设A(m,km),B(n,kn),联立两个解析式,由根与系数关系得到:m+n=3k,mn=﹣6;(Ⅱ)直线P A、PB关于y轴对称.利用以上结论,解决本题:(1)说法①错误.如答图1,设点A关于y轴的对称点为A′,若结论①成立,则可以证明△POA′∽△PBO,得到∠AOP=∠PBO.而∠AOP是△PBO的外角,∠AOP>∠PBO,由此产生矛盾,故说法①错误;(2)说法②错误.如答图2,可求得(P A+AO)(PB﹣BO)=16为定值,故错误;(3)说法③正确.联立方程组,求得点A、B坐标,进而求得BP、BO、BA,验证等式BP2=BO•BA成立,故正确;(4)说法④正确.由根与系数关系得到:S△P AB=2,当k=0时,取得最小值为,故正确.【解析】解:设A(m,km),B(n,kn),其中m<0,n>0.联立y x2﹣2与y=kx得:x2﹣2=kx,即x2﹣3kx﹣6=0,∴m+n=3k,mn=﹣6.设直线P A的解析式为y=ax+b,将P(0,﹣4),A(m,km)代入得:,解得a,b=﹣4,∴y=()x﹣4.令y=0,得x,∴直线P A与x轴的交点坐标为(,0).同理可得,直线PB的解析式为y=()x﹣4,直线PB与x轴交点坐标为(,0).∵0,∴直线P A、PB与x轴的交点关于y轴对称,即直线P A、PB关于y轴对称.(1)说法①错误.理由如下:如答图1所示,∵P A、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上.连接OA′,则OA=OA′,∠POA=∠POA′.假设结论:PO2=P A•PB成立,即PO2=P A′•PB,∴,又∵∠BPO=∠BPO,∴△POA′∽△PBO,∴∠POA′=∠PBO,∴∠AOP=∠PBO.而∠AOP是△PBO的外角,∴∠AOP>∠PBO,矛盾,∴说法①错误.(2)说法②错误.理由如下:易知:,∴OB OA.由对称可知,PO为△APB的角平分线,∴,∴PB P A.∴(P A+AO)(PB﹣BO)=(P A+AO)[P A﹣(OA)](P A+AO)(P A ﹣OA)(P A2﹣AO2).如答图2所示,过点A作AD⊥y轴于点D,则OD=﹣km,PD=4+km.∴P A2﹣AO2=(PD2+AD2)﹣(OD2+AD2)=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16,∵m+n=3k,∴k(m+n),∴P A2﹣AO2=8•(m+n)•m+16m2mn+16m2(﹣6)+16m2.∴(P A+AO)(PB﹣BO)(P A2﹣AO2)•m2mn(﹣6)=16.即:(P A+AO)(PB﹣BO)为定值,所以说法②错误.(3)说法③正确.理由如下:当k时,联立方程组:,得A(,2),B(,﹣1),∴BP2=12,BO•BA=2×6=12,∴BP2=BO•BA,故说法③正确.(4)说法④正确.理由如下:S△P AB=S△P AO+S△PBO OP•(﹣m)OP•n OP•(n﹣m)=2(n﹣m)=22,∴当k=0时,△P AB面积有最小值,最小值为.故说法④正确.综上所述,正确的说法是:③④.故答案为:③④.18.(2020绵阳模拟)连接抛物线y=ax2(a≠0)上任意四点所组成的四边形可能是②③(填写所有正确选项的序号).①菱形;②有三条边相等的四边形;③梯形;④平行四边形.【点睛】注意观察选项,①和④基本要求满足平行四边形,②和③一组非平行四边形,平行四边形性质两边平行且相等,画出图形就知道了.【解析】解:抛物线y=ax2(a≠0)上任意四点组成四边形,由抛物线性质知道若两边平行则不会相等,构成梯形,若两边相等则不可能平行,此图可以看出可以作三边相等的四边形,满足不了为平行四边形的条件.19.(2020•义乌市模拟)如图,抛物线y=﹣x2+x+2与x轴交于点A和点B.(1)已知点D(m,m+1)在第一象限的抛物线上,则点D的坐标是D(1,2);(2)在(1)的条件下,连接BD,P为抛物线上一点,且∠DBP=135°,则点P的坐标是(﹣4,﹣18).【点睛】(1)根据函数解析式和点D(m,m+1)在第一象限的抛物线上,可以求得m的值,从而可以得到点D的坐标;(2)根据题意,画出图形,然后作出合适的辅助线,然后根据题目中的条件,可以表示出点P的坐标,再根据点P在抛物线上,即可求得点P的坐标,本题得以解决.【解析】解:(1)∵抛物线y=﹣x2+x+2,点D(m,m+1)在第一象限的抛物线上,∴,得m=1,∴点D的坐标为(1,2),故答案为:(1,2);(2)过点P作PE⊥DB交DB的延长线于点E,作EF⊥x轴于点F,作PG⊥EF交EF的延长线于点G,∵∠DBP=135°,∴∠PBE=45°,∵∠BEP=90°,∴∠BPE=∠PBE=45°,∴BE=PE,∵∠BEP=90°,∠EFB=90°,∴∠PEG+∠BEF=90°,∠EBF+∠BEF=90°,∴∠PEG=∠EBF,又∵∠PGE=∠EFB=90°,PE=EB,∴△PGE≌△EFB(AAS),∴EG=BF,PG=EF,∵y=﹣x2+x+2=﹣(x﹣2)(x+1),∴当y=0时,x=2或x=﹣1,∴点B的坐标为(2,0)∵点D(1,2),点B(2,0),∴tan∠DBA=2,∴tan∠EBF=2,设BF=a,则EF=2a,EG=a,PG=2a,∴点P的坐标为(2﹣a,﹣3a),∴﹣3a=﹣(2﹣a)2+(2﹣a)+2解得,a1=6,a2=0(舍去),∴点P的坐标为(﹣4,﹣18),故答案为:(﹣4,﹣18).20.(2020•岳麓区校级模拟)如图,抛物线y的图象与坐标轴交于点A,B,D,顶点为E,以AB为直径画半圆交y正半轴交于点C,圆心为M,P是半圆上的一动点,连接EP.①点E在⊙M的内部;②CD的长为;③若P与C重合,则∠DPE=15°;④在P的运动过程中,若AP,则PE⑤N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是2π.以上5个结论正确的是②③④;(填写序号)【点睛】①ME=2=AM,∴E应该在⊙M上,即可求解;②CD=23,故CD的长为,即可求解;③过点D作DH⊥ME,由DH=1,MD=R=2,故∠DME=30°,则∠DPE=15°,即可求解;④AK=AE sinα=2,同理EK,则PK,即可求解;⑤点N的运动轨迹为以R为圆心的半圆,则N运动的路径长2πr=π,即可求解;【解析】解:抛物线y的图象与坐标轴交于点A,B,D,则点A、B、D的坐标分别为:(﹣1,0)、(3,0)、(0,),则点M(1,0),顶点E的坐标为:(1,﹣2),AB=4,CO,OD,故点D不在⊙M上;①ME=2=AM,∴E应该在⊙M上,故不符合题;②C是圆M与y轴交点,圆M半径为2,M(1,0)由勾股定理得OC,CD=23,故CD的长为,符合题意;③如图1,连接PM、PE,点E(﹣1,2),故点E在圆上,CO,OM=1,PM=2,故∠OPM=30°,EM∥y轴,则∠MEP=∠EPC,而∠MEP=∠MPE,∴∠DPE DOM=15°,符合题意;④如图2,连接PB、P A、AE,∵点B、E均在圆上,则∠ABP=∠AEP=α,sin∠AEP=sin∠ABP sinα,则cosα,过点A作AK垂直于PE于K,则AK=AE sinα=2,EK=AE cosα═,则PK=AK,故则PE,符合题意;⑤如图3,图中实点G、N、M、F是点N运动中所处的位置,则GF是等腰直角三角形的中位线,GF AB=2,ME交AB于点R,则四边形GEFM 为正方形,当点P在半圆任意位置时,中点为N,连接MN,则MN⊥PE,连接NR,则NR ME=MR=RE=RG=RF GF=1,则点N的运动轨迹为以R为圆心的半圆,则N运动的路径长2πr=π,故不符合题意;故答案为:②③④.21.(2020•义乌市模拟)已知:直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为(0,2),同时这条直线与x轴相交于点A,且相交所成的角为45°.(1)点A的坐标为(﹣2,0)或(2,0);(2)若抛物线y=ax2﹣bx+c与x轴交于点M、N(点M在点N左边),将此抛物线作关于y轴对称,M的对应点为E,两抛物线相交于点F,连接NF,EF得△NEF,P是轴对称后的抛物线上的点,使得△NEP的面积与△NEF的面积相等,则P点坐标为(﹣2,2)或(﹣1,﹣2)或(﹣1,﹣2).【点睛】(1)根据等腰直角三角形的性质即可求得;(2)利用待定系数法即可求得抛物线解析式;利用b2﹣4ac确定抛物线有没有交点,因为轴反射后的像与原像相交于点F,则F点即为A点,则OF=2,由于△NEP的面积与△NEF的面积相等且同底,所以P点的纵坐标为2或﹣2,代入y=﹣x2﹣2x+2即可求得.【解析】解:(1)设直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为B(0,2),∵直线y=ax+b过点(0,2),同时这条直线与x轴相交于点A,且相交所成的角为45°,∴OA=OB,∴当a>0时,A(﹣2,0),当a<0时,A(2,0);故答案是:(﹣2,0)或(2,0);(2)把B(0,2),A(﹣2,0)代入直线y=ax+b得,,解得:,把B(0,2),A(2,0)代入直线y=ax+b得,解得:,∵抛物线y=ax2﹣bx+c过B(0,2),∴c=2,故抛物线的解析式为:y=x2﹣2x+2或y=﹣x2﹣2x+2.存在.如图,抛物线为y=x2﹣2x+2时,b2﹣4ac=4﹣4×1×2<0,抛物线与x轴没有交点,抛物线为y=﹣x2﹣2x+2时,b2﹣4ac=4﹣4×(﹣1)×2>0,抛物线与x轴有两个交点;∵y轴反射后的像与原像相交于点F,则F点即为B点,。
2020中考数学 三轮冲刺 二次函数创新题型(含答案)
2020中考数学 三轮冲刺 二次函数创新题型(含答案)1. 如图①,抛物线y =ax 2+bx +5与x 轴交于A (10,0),与y 轴交于B ,过抛物线上点C (4,8)作CD ⊥x 轴于点D ,连接OC 、AB . (1)求抛物线的解析式;(2)将△OCD 沿x 轴以一个单位每秒的速度向右平移,记时间为t (0≤t ≤6),在△OCD 运动过程中,CD 与AB 交于点E ,OC 与AB 交于点F ,记y 为△CEF 与△ADE 的面积之和.求y 关于t 的函数关系式,并求y 的最小值;(3)如图②,M 为AC 的中点,点N 的坐标为(n ,0),试在线段OC 上找一点P ,使得∠MPN =∠COA ,若这样的点P 有两个,求n 的取值范围.图① 图②第1题图解:(1)由题意得抛物线的解析式为 y =ax 2+bx +5.将点A 、C 的坐标代入得:⎩⎪⎨⎪⎧100a +10b +5=016a +4b +5=8, 解得⎩⎨⎧a =-524b =1912,∴抛物线的解析式为y =-524x 2+1912x +5;(2)如解图①,将x =0代入抛物线解析式中得y =5,则B (0,5),第1题解图①∵tan ∠BAO =OB OA =12,tan ∠OCD =OD DC =12,∴∠BAO =∠OCD ,又∵∠CEF =∠DEA , ∴∠CFE =∠EDA =90°, ∵AD =6-t ,tan ∠EAD =12,∴DE =3-12t ,∴CE =8-(3-12t )=5+12t ,∴CF =CE ·cos ∠ECF =CE ·25=25+55t ,∴y =12AD ·DE +12CF ·EF =12×12AD 2+12×12CF 2=12×12(6-t )2+12×12(25+55t )2,即y=310t 2-2t +14, 当t =-b 2a =103时,y 有最小值,此时y =310×(103)2-2×103+14=323,∴y 的最小值为323;(3)如解图②,在Rt △ODC 中,OC =OD 2+DC 2=45,∵在Rt △CDA 中,AD =6,DC =8,由勾股定理得AC =CD 2+AD 2=10, ∴AC =OA ,第1题解图②∴∠COA =∠OCA . ∵M 是CA 的中点, ∴MC =12AC =5.∵∠MPN =∠COA ,∠COA +∠ONP =∠MPN +∠CPM , ∴∠ONP =∠CPM , ∴△CPM ∽△ONP ,∴OP CM =ON CP, 设OP =x ,则PC =45-x , ∴x 5=n 45-x , 整理得:x 2-45x +5n =0, ∵符合条件的点P 有两个, ∴方程有两个不相等的实数根,∴b 2-4ac =(-45)2-4×5n >0,∴n <4,又∵点N 在原点的右侧,∴n 的取值范围是0<n <4.2. 如图,抛物线y =-x 2+bx +c 与x 轴交于点A (-1,0)、B (5,0),直线y =-34x +3与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方抛物线上一个动点,过P 作PE ⊥x 轴交直线CD 于点E .设点P 的横坐标为m . (1)求抛物线的解析式;(2)当m =92时,在抛物线的对称轴上找一点G ,使PG +GB 最小,求点G 的坐标;(3)若E ′是点E 关于直线PC 的对称点,是否存在点P ,使点E ′落在y 轴上?若存在,求出点P 的坐标;若不存在,说明理由.第2题图解:(1)把点A (-1,0)、B (5,0)的坐标代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-1-b +c =0-25+5b +c =0, 解得⎩⎪⎨⎪⎧b =4c =5,∴抛物线的解析式为y =-x 2+4x +5; (2)∵y =-x 2+4x +5=-(x -2)2+9, ∴抛物线的对称轴为直线x =2, 当x =m =92时,y =-x 2+4x +5=114,∴P (92,114),第2题解图①如解图①,点A 与点B 关于直线x =2对称,连接P A 交直线x =2于点G ,连接BG ,此时PG +GB 最小,设直线P A 的解析式为y =kx +n ,把点P (92,114)、A (-1,0)的坐标代入y =kx +n ,得⎩⎪⎨⎪⎧92k +n =114-k +n =0, 解得⎩⎨⎧k =12n =12,∴直线P A 的解析式为y =12x +12,∵当x =2时,y =12x +12=32,∴点G 的坐标为(2,32).(3)存在.如解图②,连接PE ′,设P 的坐标为(x ,-x 2+4x +5)(-1<x <5),则E 的坐标为(x ,-34x +3),第2题解图②∴PE =|-x 2+4x +5-(-34x +3)|=|-x 2+194x +2|,当x =0时,y =-34x +3=3,则C 的坐标为(0,3),∵CE =x 2+;3-(-34x +3)]2=|54x |,∵点E ′是点E 关于直线PC 的对称点,∴PE =PE ′,∠EPC =∠E ′PC , CE ′=CE , ∵PE ∥CE ′,∴∠E ′CP =∠EPC , ∴∠E ′CP =∠E ′PC , ∴E ′P =E ′C , ∴PE =CE , ∴|-x 2+194x +2|=|54x |, 即-x 2+194x +2=±54x ,当-x 2+194x +2=54x 时,解得x 1=-12,x 2=4,此时P 点坐标为(-12,114)或(4,5);当-x 2+194x +2=-54x 时,解得x 1=3-11,x 2=3+11(舍去),此时P 点坐标为(3-11,211-3),当点E 与点C 重合时,点E 关于PC 的对称点E ′与E 重合,此时点P 在y 轴上,其坐标为(0,5),综上所述,符合条件的点P 为(-12,114)、(4,5)、(3-11,211-3)或(0,5).3. 在平面直角坐标系xOy 中,抛物线y =a (x +1)(x -3)与x 轴交于A 、B 两点,点A在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1,3),求a 的值,并指出此时“G 区域”有________个整数点;(整数点就是横纵坐标均为整数的点)(2)求抛物线y =a (x +1)(x -3)的顶点P 的坐标(用含a 的代数式表示);(3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.第3题图 备用图解:(1)∵抛物线y =a (x +1)(x -3)经过(1,3), ∴3=a (1+1)(1-3),解得a =-34.6;【解法提示】∵当y =-34(x +1)(x -3)=0时,解得x 1=-1,x 2=3,点A 在点B 的左侧,∴A (-1,0),B (3,0),∵当x =0时,y =-34(x +1)(x -3)=94,∴(0,1)、(0,2)两个整数点在“G 区域”; ∵当x =1时,y =-34(x +1)(x -3)=3,∴(1,1)、(1,2)两个整数点在“G 区域”; ∵当x =2时,y =-34(x +1)(x -3)=94,∴(2,1)、(2,2)两个整数点在“G 区域”.综上所述,此时“G 区域”有6个整数点. (2)∵y =a (x +1)(x -3)=a (x -1)2-4a , ∴顶点P 的坐标为(1,-4a );(3)∵当x =0时,y =a (x +1)(x -3)=-3a , ∴抛物线与y 轴交点的坐标为(0,-3a ), 当a <0时,如解图①所示,此时有⎩⎪⎨⎪⎧2<-4a ≤31<-3a ≤2,解得-23≤a <-12;当a >0时,如解图②所示,此时有⎩⎪⎨⎪⎧-3≤-4a <-2-2≤-3a <-1,解得12<a ≤23.综上所述,在(2)的条件下,如果G 区域中仅有4个整数点时,则a 的取值范围为-23≤a <-12或12<a ≤23.图1 图2第3题解图4. 已知抛物线y =ax 2+bx +c 经过A (-1,0)、B (2,0)、C (0,2)三点. (1)求这条抛物线的解析式;(2)如图①,点P 是第一象限内此抛物线上的一个动点,当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时点P 的坐标;(3)如图②,设线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,那么在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.第4题图(1)抛物线的解析式为y =-x 2+x +2;(2)设P (t ,-t 2+t +2),四边形ABPC 的面积是S ,连接PO ,过点P 作PD ⊥CO 于点D ,作PM ⊥OB 于点M ,如解图①,由题意得,第4题解图①∵S △ACO =12AO ·CO =1,S △PCO =12CO ·PD =t ,S △PBO =12PM ·OB =-t 2+t +2,∴S =S △ACO +S △PCO +S △PBO =1+t -t 2+t +2=-t 2+2t +3=-(t -1)2+4, ∵抛物线开口向下,∴t =1时,S 有最大值,最大值为4,故P 运动到点(1,2)时,四边形ABPC 的面积最大; (3)存在.∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94),设直线AM 的表达式为y =kx +m (k ≠0),由题意得⎩⎪⎨⎪⎧94=12k +m 0=-k +m ,解得⎩⎨⎧k =32m =32,即y =32x +32,∵C 与A 关于直线DE 对称,∴如解图②,AM 与DE 的交点即为使△CMG 的周长值最小的点G .第4题解图②∵A (-1,0),C (0,2), ∴OA =1,OC =2,AC =5, ∵D 是AC 的中点, ∴AD =52,D (-12,1), ∵∠CAO =∠EAD ,∠AOC =∠ADE ,∴△ACO ∽△AED , ∴AC AE =AO AD ,即5AE =152,∴AE =52,∴E (32,0), 设DE 的解析式为y =k ′x +n (k ′≠0),则⎩⎨⎧0=32k ′+n 1=-12k ′+n ,解得⎩⎨⎧k ′=-12n =34, ∴DE 的解析式为y =-12x +34,联立⎩⎨⎧y =32x +32y =-12x +34,解得⎩⎨⎧x =-38y =1516,故点G 的坐标为(-38,1516).5. 如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D . (1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)在抛物线对称轴上是否存在点M ,使|MA -MC |最大?若存在,请求出点M 的坐标,若不存在,请说明理由.第5题图 备用图解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴⎩⎪⎨⎪⎧9+3b +c =01+b +c =0,解得⎩⎪⎨⎪⎧b =-4c =3, ∴抛物线的解析式为y =x 2-4x +3; (2)令x =0,则y =3,∴C (0,3), 则直线AC 的解析式为y =-x +3, 设点P (x ,x 2-4x +3), ∵PD ∥y 轴,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3) =-x 2+3x =-(x -32)2+94,∵a =-1<0,∴当x =32时,线段PD 的长度有最大值,最大值为94;(3)存在.由抛物线的对称性得,对称轴垂直平分线段AB ,∴MA =MB ,当M 、B 、C 不在同一条直线上时,由三角形的三边关系得, |MA -MC |=|MB -MC |<BC , 当M 、B 、C 三点共线时, |MA -MC |=|MB -MC |=BC ,∴|MA -MC |≤BC ,即当点M 在BC 的延长线上时, |MA -MC |最大,最大值即为BC 的长度, 设直线BC 的解析式为y =kx +b (k ≠0), ∵B (1,0),C (0,3),∴⎩⎪⎨⎪⎧k +b =0b =3, 解得⎩⎪⎨⎪⎧k =-3b =3,∴直线BC 的解析式为y =-3x +3, ∴当x =2时,y =-3×2+3=-3, ∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大. 6. 如图①,抛物线y =-x 2+bx +c 经过A (-1,0),B (4,0)两点,与y 轴相交于点C ,连接BC .点P 为抛物线上一动点,过点P 作x 轴的垂线l ,交直线BC 于点G ,交x 轴于点E .图① 图②第6题图(1)求抛物线的表达式;(2)当P 在y 轴右边的抛物线上运动时,过点C 作CF ⊥直线l ,垂足为F .当点P 运动到何处时,以P ,C ,F 为顶点的三角形与△OBC 相似?并求出此时点P 的坐标;(3)如图②,当点P 在直线BC 上方的抛物线上运动时,连接PC ,PB .请问△PBC 的面积S 能否取得最大值?若能,请求出最大面积S ,并求出此时点P 的坐标;若不能,请说明理由.解:(1)由于抛物线y =-x 2+bx +c 经过点A (-1,0)和B (4,0),∴抛物线的表达式为y =-(x +1)(x -4)=-x 2+3x +4; (2)对于抛物线y =-x 2+3x +4,令x =0,则y =4, ∴C (0,4), ∵B (4,0), ∴OC =OB =4,设P 点的坐标为(t ,-t 2+3t +4),则CF =t ,PF =|-t 2+3t +4-4|=|-t 2+3t |,如果以P ,C ,F 为顶点的三角形与△OBC 相似,则CF =PF , 即t =|-t 2+3t |,当t =-t 2+3t 时,解得t 1=0(舍去),t 2=2, 此时,-t 2+3t +4=-22+3×2+4=6, ∴P 的坐标为(2,6);当-t =-t 2+3t 时,解得t 3=0(舍去),t 4=4, 此时,-t 2+3t +4=-42+3×4+4=0, ∴P 的坐标为(4,0).∴P 点的坐标为(2,6)或(4,0);(3)设直线BC 的解析式为y =kx +m (k ≠0),代入点B (4,0)和点C (0,4)得:⎩⎪⎨⎪⎧4k +m =0m =4, 解得⎩⎪⎨⎪⎧k =-1m =4,∴直线BC 的解析式为y =-x +4. 设P 点坐标为(n ,-n 2+3n +4), ∵点G 在直线BC 上, ∴G (n ,-n +4),∵点P 在直线BC 上方抛物线上运动,∴PG =-n 2+3n +4-(-n +4)=-n 2+4n ,∵S △PBC =S △PGC +S △PGB =12PG ·OE +12PG ·BE =12PG ×OB =12×(-n 2+4n )×4=-2(n -2)2+8,∵-2<0,0<n <4,∴当n =2时,S △PBC 有最大值为8,此时P 点的坐标为(2,6). 7. 在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与y 轴交于点C ,其顶点记为M ,自变量x =-1和x =5对应的函数值相等.若点M 在直线l ∶y =-12x +16上,点(3,-4)在抛物线上. (1)求该抛物线的解析式;(2)设y =ax 2+bx +c 对称轴右侧x 轴上方的图象上任一点为P ,在x 轴上有一点A (-72,0),试比较锐角∠PCO 与∠ACO 的大小(不必证明),并写出相应的P 点横坐标x 的取值范围;(3)直线l 与抛物线另一交点记为B ,Q 为线段BM 上一动点(点Q 不与M 重合).设Q 点坐标为(t ,n ),过Q 作QH ⊥x 轴于点H ,将以点Q ,H ,O ,C 为顶点的四边形的面积S 表示为t 的函数,标出自变量t 的取值范围,并求出S 可能取得的最大值.解:(1)∵自变量x =-1和x =5对应的函数值相等,∴抛物线的对称轴为x =2,∵点M 在直线l :y =-12x +16上, ∴y M =-8,该抛物线的解析式为y =a (x -2)2-8,将(3,-4)代入得a -8=-4,解得a =4,∴抛物线的解析式为y =4(x -2)2-8,整理得y =4x 2-16x +8; (2)由抛物线的解析式y =4x 2-16x +8得,点C 的坐标为(0,8),顶点M 的坐标为(2,-8),∵点A (-72,0),∴直线AC 的解析式为y =167x +8,设点P 的坐标为(x ,4x 2-16x +8),令y =0,即4x 2-16x +8=0,解得x 1=2+2,x 2=2-2(舍去), ∴x >2+2,又∵∠PCO 为锐角, ∴y <8,令y =8,即4x 2-16x +8=8, 解得x 1=0(舍去),x 2=4, ∴2+2<x <4,若∠PCO =∠ACO ,则点P 关于y 轴的对称点P ′(-x ,4x 2-16x +8)在直线AC 上, ∴-167x +8=4x 2-16x +8,解得x 1=0(舍去),x 2=247,综上可知,当2+2<x <247时,∠PCO <∠ACO ;当x =247时,∠PCO =∠ACO ;当247<x <4时,∠PCO >∠ACO ; (3)解方程组⎩⎪⎨⎪⎧y =-12x +16y =4x 2-16x +8,求得B 点坐标为(-1,28), ∴直线BM 的解析式为y =-12x +16, 令y =0,解得x =43,∵Q 为线段BM 上一动点,且不与点M 重合, ∴Q (t ,-12t +16)(-1≤t <2),①当-1≤t <0时,S =12(-t )×(-12t +16+8)=6t 2-12t =6(t -1)2-6,∵-1≤t <0,∴当t =-1时,S 最大=18;②当0<t <43时,S =12t (-12t +16+8)=-6t 2+12t =-6(t -1)2+6,∵0<t <43,∴当t =1时,S 最大=6;③当43<t <2时,S =12t ·8+12t (12t -16)=6t 2-4t =6(t -13)2-23,∵43<t <2, ∴此时S 无最大值.综上所述,当t =-1时,S 有最大值,最大值为18.8. 如图,已知抛物线y =-12x 2+bx +c 与x 轴交于点B ,E 两点,与y 轴交于点A ,OB =8,tan ∠ABD =1,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C ,D 同时出发,当动点D 到达原点O 时,点C ,D 停止运动.第8题图(1)求抛物线的解析式;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,直接写出P 点的坐标;若不存在,请说明理由.解:(1)∵OB =8,tan ∠ABD =1,∴OA =OB =8,∴A (0,8),B (8,0).把点A (0,8),B (8,0)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧c =8-12×82+8b +c =0,解得⎩⎪⎨⎪⎧b =3c =8,∴抛物线解析式为y =-12x 2+3x +8;(2)令y =0时,有-12x 2+3x +8=0,解得x 1=-2,x 2=8, ∴E (-2,0), ∴BE =10,∵S △CED =12DE ·OC ,∴S =12t (10-t )=-12t 2+5t ,∴S 与t 的函数解析式为S =-12t 2+5t =-12(t -5)2+252(0≤t ≤8),∴当t =5时,△CED 的面积最大,最大面积为252;(3)存在,P 点坐标为(8,0)或(43,1009)或(343,-2009).【解法提示】当△CED 的面积最大时,t =5,即BD =DE =5,此时要使S △PCD =S △CED ,CD 为公共边,只需求出过点B 、或点E 且平行于CD 的直线即可,如下:第8题解图设直线CD 的解析式为y =kx +b , 由(2)可知OC =5,OD =3, ∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入y =kx +b ,得⎩⎪⎨⎪⎧b =53k +b =0,解得⎩⎪⎨⎪⎧k =-53b =5, ∴直线CD 的解析式为y =-53x +5,∵DE =DB =5,∴过点B 且平行于CD 的直线为y =-53(x -5)+5,过点E 且平行于CD 的直线为y =-53(x +5)+5,与抛物线解析式联立得方程①:-12x 2+3x +8=-53(x -5)+5,解得x 1=8,x 2=43,方程②:-12x 2+3x +8=-53(x +5)+5,解得x 3=343,x 4=-2,分别将x 的值代入抛物线的解析式,得y 1=0,y 2=1009,y 3=-2009,y 4=0,又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009).9. 抛物线C 1∶y 1=-3x 2+23x 的顶点为A ,与x 轴的正半轴交于点B .(1)求点A 、点B 的坐标;(2)设直线y 2=3x +m ,若无论x 取何值时,都有y 2>y 1,求m 的取值范围;(3)将抛物线C 1上的点(x ,y )变为(kx ,ky )(|k |>1),变换后得到的抛物线记作C 2,抛物线C 2的顶点为C ,点P 在抛物线C 2上,满足S △P AC =S △ABC ,且∠ACP =90°.当k >1时,求k 的值;解:(1)∵y 1=-3x 2+23x =-3(x -1)2+3,∴A (1,3),当y 1=0时,即-3x 2+23x =0, ∴x 1=0,x 2=2, ∴B (2,0);(2)∵y 1=-3x 2+23x 开口向下,顶点坐标为A (1,3), ∵无论x 取何值时 ,都有y 2>y 1,∴直线y 2=3x +m 与抛物线y 1=-3x 2+23x 无交点, 即3x +m =-3x 2+23x 无实数根, ∴b 2-4ac =(3)2-43m <0. ∴m >34, ∴m 的取值范围是m >34; (3)如解图,当k >1时,∵抛物线C 2经过原点O ,(k ,3k ),(2k ,0)三点, ∴抛物线C 2的解析式为y =-3kx 2+23x , ∴O ,A ,C 三点共线,且顶点C 为(k ,3k ),第9题解图如解图,∵S △P AC =S △ABC ,且两三角形均以AC 为底边, ∴点P 和点B 到线段AC 距离相等, ∴BP ∥AC ,过点P 作PD ⊥x 轴于点D ,过点B 作BE ⊥AO 于点E , ∵AO =2,OB =2且sin ∠AOB =32, ∴△AOB 为等边三角形, ∵BP ∥AC ,∴∠PBD =∠AOB =60°, 又∵∠ACP =90°, ∠CEB =90°,∴四边形CEBP 为矩形, ∴OE =1,CE =BP =2k -1, ∵∠PBD =60°,∴BD =k -12,PD =32(2k -1),∴P (k +32,32(2k -1)),∴32(2k -1)=-3k (k +32)2+23(k +32), 解得k =92.10. 如图,抛物线y =ax 2+bx -3与x 轴交于点A (1,0)和点B ,与y 轴交于点C ,且其对称轴l 为直线x =-1,点P 是抛物线上B ,C 之间的一个动点(点P 不与点B ,C 重合).(1)直接写出抛物线的解析式;第10题图(2)小唐探究点P 的位置时发现:当动点N 在对称轴l 上时,存在PB ⊥NB ,且PB =NB 的关系,请求出点P 的坐标;(3)是否存在点P 使得四边形PBAC 的面积最大?若存在,请求出四边形PBAC 面积的最大值,若不存在,请说明理由.解:(1)y =x 2+2x -3;【解法提示】∵A (1,0),对称轴l 为直线x =-1,∴B (-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3;(2)如解图①,过点P 作PM ⊥x 轴于点M ,连接BP ,过点B 作BN ⊥PB 交直线l 于点N ,设抛物线的对称轴与x 轴交于点Q , ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°. ∵∠PMB =90°,∴∠PBM +∠BPM =90°. ∴∠BPM =∠NBQ . 又∵PB =NB , ∴△BPM ≌△NBQ . ∴PM =BQ .由(1)得y =x 2+2x -3, ∵Q (-1,0), B (-3,0)∴BQ =2, ∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点,且点P 的纵坐标为-2, 将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(不合题意,舍去), ∴点P 的坐标为(-1-2,-2);第10题解图①(3)存在.如解图②,连接AC ,BC ,CP ,PB ,过点P 作PD ∥y 轴交BC 于点D , ∵A (1,0),B (-3,0),C (0,-3), ∴S △ABC =12×3×4=6,直线BC 的解析式为y =-x -3.设P (t ,t 2+2t -3),则D (t ,-t -3),∴S △BPC =12×3×(-t -3-t 2-2t +3)=-32t 2-92t ,∴S 四边形PBAC =-32t 2-92t +6=-32(t +32)2+758,当t =-32时,S 四边形PBAC 存在最大值,最大值为758.此时点P 的坐标为(-32,-154).第10题解图②11. 如图,在平面直角坐标系中,已知抛物线y =ax 2+bx -2(a ≠0)与x 轴交于A (1,0)、B (3,0)两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,-1),该抛物线与BE 交于另一点F ,连接BC .(1)求该抛物线的解析式,并用配方法把解析式化为y =a (x -h )2+k 的形式;第11题图(2)若点H (1,y )在BC 上,连接FH ,求△FHB 的面积;(3)在x 轴上方的抛物线上,是否存在点P ,使得∠PBF 被BA 平分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax 2+bx -2与x 轴交于A (1,0),B (3,0)两点,∴⎩⎪⎨⎪⎧a +b -2=09a +3b -2=0,解得⎩⎨⎧a =-23b =83,∴该抛物线的解析式为y =-23x 2+83x -2,∴y =-23x 2+83x -2=-23(x -2)2+23;(2)设直线BE 的解析式为y =k 1x +b 1, ∵B (3,0),E (0,-1),∴⎩⎪⎨⎪⎧3k 1+b 1=0b 1=-1,解得⎩⎪⎨⎪⎧k 1=13b 1=-1,∴直线BE 的解析式为y =13x -1,∵点F 是抛物线与BE 的交点, 设点F 的坐标为(x ,13x -1),∴13x -1=-23x 2+83x -2, 整理得2x 2-7x +3=0, 解得x 1=12,x 2=3(舍去),∴13x -1=-56, ∴F (12,-56),如解图,过点A 作平行y 轴的直线交BC 于点H ,交BE 于点G ,第11题解图设直线BC 的解析式为y =k 2x +b 2, ∵B (3,0),C (0,-2),∴⎩⎪⎨⎪⎧3k 2+b 2=0b 2=-2,解得⎩⎪⎨⎪⎧k 2=23b 2=-2, ∴直线BC 的解析式为y =23x -2,设H 为(1,y ), ∴y =23×1-2=-43,∴H (1,-43),设点G 的坐标为(1,y 1), ∵直线BE 的解析式为y =13x -1,∴y 1=13×1-1=-23,∴G (1,-23),过点F 作FK ⊥GH ,垂足为点K , ∴FK =12,GH =23,∵S △FHB =S △FHG +S △GHB ,∴S △FHB =12GH (FK +AB )=12×23×(12+2)=56;(3)存在,P (32,12).【解法提示】当BA 平分∠PBF 时,∠PBA =∠FBA , ∴tan ∠PBA =tan ∠FBA =OE OB =13,如解图,过点P 作PI ⊥OB 于点I ,则tan ∠PBA =PI IB =13,设点P 的纵坐标为n ,则PI =n ,∴IB =3n , ∴OI =3-3n , ∴P (3-3n ,n ),把点P (3-3n ,n )代入y =-23x 2+83x -2,得n =-23(3-3n )2+83(3-3n )-2,整理得2n 2-n =0,解得n 1=0(舍去),n 2=0.5, ∴3-3n =1.5,∴点P 的坐标为(1.5,0.5).12. 在平面直角坐标系xOy 中,抛物线y =mx 2-2mx +m -1(m >0)与x 轴的交点为A ,B .(1)求抛物线的顶点坐标;第12题图(2)横、纵坐标都是整数的点叫做整点. ①当m =1时,求线段AB 上整点的个数; ②若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m 的取值范围.解:(1)∵y =mx 2-2mx +m -1=m (x -1)2-1,∴抛物线的顶点坐标为(1,-1); (2)①∵m =1,∴抛物线表达式为y =x 2-2x ,令y =0,解得x =0或2,不妨设A (0,0)和B (2,0), ∴线段AB 上的整点的个数为3个.第12题解图②如解图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,∵抛物线的顶点坐标为(1,-1), ∴在线段AB 之间整点有5个,∴点A 在(-1,0)与(-2,0)之间(包括(-1,0)),知识像烛光,能照亮一个人,也能照亮无数的人。
2020-2021备战中考数学压轴题之二次函数(备战中考题型整理,突破提升)及详细答案
2020-2021备战中考数学压轴题之二次函数(备战中考题型整理,突破提升)及详细答案一、二次函数1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-;联立两解析式求交点22343232323y=x+y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在223432333y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中ACK=EFHAKC=EHFAC=EF∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,23),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-23=43,即E的纵坐标为-43,∴ E(-1,-43);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-43)、(0,23)或E(-1,43-),F(-4,103)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m 2+3(m +1)=13,即m 2+3m ﹣10=0,解得m 1=2,m 2=﹣5.∵OA <OB ,∴抛物线的对称轴在y 轴右侧,∴m =2,∴抛物线的解析式为y =x 2﹣2x ﹣3;(2)连接BE 、OE .∵在Rt △BCD 中,∠CBD =90°,EC =ED ,∴BE =12CD =CE . 令y =x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∵C (0,﹣3),∴OB =OC ,又∵BE =CE ,OE =OE ,∴△OBE ≌△OCE (SSS ),∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限,∴E 113+113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC ,∴S △ACF =2S △AOC ,∴AF =2OA =2,∴F (1,0).∵A (﹣1,0),C (0,﹣3),∴直线AC 的解析式为y =﹣3x ﹣3.∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b ,将F (1,0)代入,得0=﹣3+b ,解得b =3,∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩, 解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩, ∴点Q 的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210+.(3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10.∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0), ∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)∴()22EF m 2m 32m 6m 4m 3=--+-+=---. ∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---.②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).4.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3).(1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2).【解析】【分析】(1)根据待定系数法,可得答案; (2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3;(2)设BC 的解析式为y=kx+b ,将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=2,n 2﹣2n ﹣3=-3,P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2(不符合题意,舍),n 3,n 2﹣2n ﹣,P (,综上所述:P (2,﹣3)或(,2﹣).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.5.如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为P (2,9),与x 轴交于点A ,B ,与y 轴交于点C (0,5).(Ⅰ)求二次函数的解析式及点A ,B 的坐标;(Ⅱ)设点Q 在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q 的坐标;(Ⅲ)若点M 在抛物线上,点N 在抛物线的对称轴上,使得以A ,C ,M ,N 为顶点的四边形是平行四边形,且AC 为其一边,求点M ,N 的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(5,45);(3)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.6.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.7.函数()2110,>02y x mx x m =-++≥的图象记为1C ,函数()2110,>02y x mx x m =---<的图象记为2C ,其中m 为常数,1C 与2C 合起来的图象记为C .(Ⅰ)若1C 过点()1,1时,求m 的值; (Ⅱ)若2C 的顶点在直线1y =上,求m 的值; (Ⅲ)设C 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,求m 的取值范围. 【答案】(Ⅰ)12m =;(Ⅱ)2m =;(Ⅲ)912m ≤≤. 【解析】 【分析】(Ⅰ)将点C 的坐标代入1C 的解析式即可求出m 的值;(Ⅱ)先求出抛物线2C 的顶点坐标,再根据顶点在直线y 1=上得出关于m 的方程,解之即可(Ⅲ)先求出抛物线1C 的顶点坐标,结合(Ⅱ)抛物线2C 的顶点坐标,和x 的取值范围,分三种情形讨论求解即可; 【详解】解:(Ⅰ)将点()1,1代入1C 的解析式,解得1m .2=(Ⅱ)抛物线2C 的顶点坐标为2m m,12⎛⎫-- ⎪⎝⎭, 令2m 112-=,得m 2,=± ∵m>0,∴m 2.=(Ⅲ)∵抛物线1C 的顶点2m P m,12⎛⎫+ ⎪⎝⎭,抛物线2C 的顶点2m Q m,12⎛⎫-- ⎪⎝⎭, 当0m 2<≤时,最高点是抛物线G 1的顶点∴203m y 1922≤=+≤,解得1m 2.≤≤ 当2m 4<≤时,G 1中(2,2m-1)是最高点,0y =2m-1 ∴32≤2m-19≤,解得2m 4.<≤ 当m>4时,G 2中(-4,4m-9)是最高点,0y =4m-9. ∴32≤4m-99≤,解得94m 2<≤. 综上所述,91m 2≤≤即为所求. 【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题.8.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.9.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.10.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题11.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN 沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【答案】(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为317±或117±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到930{3b cc-++==,解得2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE=BEDE =12,∵∠MBA=∠BDE,∴2233m mm-++-=12,当点M在x轴上方时,2233m mm-++-=12,解得m=﹣12或3(舍弃),∴M(﹣12,74),当点M在x轴下方时,2233m mm---=12,解得m=﹣32或m=3(舍弃),∴点M(﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m 2+2m+3=1﹣m 时,解得m=317±, 当﹣m 2+2m+3=m ﹣1时,解得m=1172±, ∴满足条件的m 的值为317±或1172±. 【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.12.如图,已知直线y =﹣2x +4分别交x 轴、y 轴于点A 、B .抛物线过A 、B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D . (1)如图1,设抛物线顶点为M ,且M 的坐标是(12,92),对称轴交AB 于点N . ①求抛物线的解析式;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)是否存在这样的点D ,使得四边形BOAD 的面积最大?若存在,求出此时点D 的坐标;若不存在,请说明理由.【答案】(1)①y =﹣2x 2+2x +4;;②不存在点P ,使四边形MNPD 为菱形;;(2)存在,点D 的坐标是(1,4). 【解析】 【分析】(1)①由一次函数图象上点的坐标特征求得点B 的坐标,设抛物线解析式为y =a 21922x ⎛⎫-+ ⎪⎝⎭,把点B 的坐标代入求得a 的值即可; ②不存在点P ,使四边形MNPD 为菱形.设点P 的坐标是(m ,﹣2m+4),则D (m ,﹣2m 2+2m+4),根据题意知PD ∥MN ,所以当PD =MN 时,四边形MNPD 为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.13.如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FN⊥BC.(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y.①求y与x的函数关系式;②当x取何值时,y有最大值,并求出这个最大值.【答案】(1)AE=EF;(2)①y=-12x2+2x(0<x<4),②当x=2,y最大值=2.【解析】【分析】(1)在AB上取一点G,使AG=EC,连接GE,利用ASA,易证得:△AGE≌△ECF,则可证得:AE=EF;(2)同(1)可证明AE=EF,利用AAS证明△ABE≌△ENF,根据全等三角形对应边相等可得FN=BE,再表示出EC,然后利用三角形的面积公式即可列式表示出△ECF的面积为y,然后整理再根据二次函数求解最值问题.【详解】(1)如图,在AB上取AG=EC,∵四边形ABCD是正方形,∴AB=BC,有∵AG=EC ,∴BG=BE ,又∵∠B=90°,∴∠AGE=135°,又∵∠BCD=90°,CP平分∠DCN,∴∠ECF=135°,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC , 在△AGE 和△ECF 中,AGE ECF AG ECGAE CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGE ≌△ECF , ∴AE=EF ;(2)①∵由(1)证明可知当E 不是中点时同理可证AE=EF , ∵∠BAE=∠NEF ,∠B=∠ENF=90°, ∴△ABE ≌△ENF , ∴FN=BE=x , ∴S △ECF =12(BC-BE)·FN , 即y=12x(4-x ), ∴y=-12x 2+2x (0<x <4), ②()()222111y x 2x x 4x x 22222=-+=--=--+, 当x=2,y 最大值=2. 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,正确添加辅助线、熟练掌握相关知识是解题的关键.14.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.【答案】(1)-3;(2)坐标(-1,1);(3)Q ()4,1-. 【解析】 【分析】(1)利用抛物线解析式得到A 、B 、C 三点坐标,然后利用三角形面积公式列出方程解出a ;(2)利用第一问得到A 、B 、C 三点坐标,求出AC 解析式,找到AC 垂直平分线的解析式,与AB 垂直平分线解析式联立,解出x 、y 即为圆心坐标;(3)过点P 做PD ⊥x 轴,PD =d ,发现△ABP 与△QBP 的面积相等,得到A 、D 两点到PB 得距离相等,可得AQ PB ∥,求出PB 解析式,与二次函数解析式联立得到P 点坐标,又易证ABQ QPA ∆∆≌,得到BQ =AP 26Q 点坐标,点与点的距离列出方程,解出Q 点坐标即可 【详解】(1)解:由题意得()()1y x x a =--- 由图知:0a <所以A (,0a ),()10B ,,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()10B ,,()0,3C ∴直线AC 得解析式为:3y x =+AC 中点坐标为33,22⎛⎫-⎪⎝⎭ ∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =- ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1). (3)解:过点P 做PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅=2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B ∴1y x =- ∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠ 易得:ABQ QPA ∆∆≌ ∴BQ =AP 26设Q (m ,-1)(0m <) ∴()221126m -+=4m =-∴Q ()4,1-. 【点睛】本题考查二次函数综合性问题,涉及到一次函数、三角形外接圆圆心、全等三角形等知识点,第一问关键在于用a 表示出A 、B 、C 三点坐标;第二问关键在于找到AC 垂直平分线的解析式,与AB 垂直平分线解析式;第三问关键在于能够求出PB 的解析式15.已知抛物线27y x 3x 4=--的顶点为点D ,并与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C .(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(34,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.①点G是否在直线l上,请说明理由;②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1) D(32,﹣4)(2) P(0,74)或(0,17)(3)详见解析【解析】【分析】(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根据顶点坐标公式计算即可求出顶点D的坐标.(2)根据点A、C的坐标求出OA、OC的长,再分OA和OA是对应边,OA和OC是对应边两种情况,利用相似三角形对应边成比例列式求出OP的长,从而得解.(3)①设直线l的解析式为y=kx+b(k≠0),利用待定系数法求一次函数解析式求出直线l的解析式,再利用中点公式求出点G的坐标,然后根据直线上点的坐标特征验证即可.②设抛物线的对称轴与x轴交点为H,求出OE、OF、HD、HB的长,然后求出△OEF和△HDB相似,根据相似三角形对应角相等求出∠OFE=∠HBD,然后求出EG⊥BD,从而得到直线l是线段BD的垂直平分线,根据线段垂直平分线的性质点D关于直线l的对称点就是B,从而判断出点M就是直线DE与抛物线的交点.再设直线DE的解析式为y=mx+n,利用待定系数法求一次函数解析求出直线DE的解析式,然后与抛物线解析式联立求解即可得到符合条件的点M.。
冲刺2020年中考数学选择压轴题必做题型:二次函数(附解析)
冲刺2020年中考数学选择压轴题必做题型:二次函数1.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c >0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,①错误;②当x=﹣1时,y>0,∴a﹣b+c>0,∵,∴b=﹣2a,把b=﹣2a代入a﹣b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<﹣b,当x=﹣1时,y>0,∴a﹣b+c>0,∴a+c>b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:C.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,c<﹣1,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①abc>0;②﹣3<x2<﹣2;③4a﹣2b+c<﹣1;④a﹣b>am2+bm(m≠﹣1);其中,正确的结论个数是()A.1个B.2个C.3个D.4个解:抛物线开口向上,a>0,对称轴为x=﹣1,因此a、b同号,b>0,而c<﹣1,因此abc<0,故①不符合题意;对称轴为x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,根据对称性得;﹣3<x2<﹣2,因此②符合题意;由对称性可知,当x=0与x=﹣2时,y的值是相等的,又c<﹣1,因此4a﹣2b+c<﹣1是正确的,故③符合题意;当x=﹣1时,y=a﹣b+c,当x=m时,y=am2+bm+c,因此a﹣b+c<am2+bm+c(m 最小≠﹣1),即;a﹣b<am2+bm(m≠﹣1),故④不符合题意;综上所述,正确的结论有2个,故选:B.3.已知抛物线y=ax2+bx+c的图象如图所示,对称轴为直线x=1.以下结论:①2a>﹣b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的实数);④3a+c<0其中正确结论的个数为()A.1个B.2个C.3个D.4个解:∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,所以①错误;∵对称轴为直线x=1,抛物线与x轴的一个交点在(﹣1,0)和(0,0)之间,∴抛物线与x轴的一个交点在(2,0)和(3,0)之间,∴x=2时,y<0,∴4a+2b+c<0,所以②错误;∵x=1时,y有最小值a+b+c,∴am2+bm+c>a+b+c(m是大于1的实数),所以③正确;∵x=﹣1时,y>0,即a﹣b+c>0,把b=﹣2a代入得3a+c>0,所以④错误.故选:A.4.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=2有两个不相等的实数根;④4a﹣2b+c=0;⑤若点A(m,n)在该抛物线上,则am2+bm+c ≤a+b+c,其中正确的个数有()A.1个B.2个C.3个D.4个解:由图象可得,a<0,b>0,c>0,∴abc<0,故①错误,﹣=1,则b=﹣2a,故2a+b=0,故②正确;抛物线与x轴有两个交点,故方程ax2+bx+c=2有两个不相等的实数根,故③正确;∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(4,0),抛物线的对称轴是x =1,∴该抛物线与x轴的另一个交点为(﹣2,0),∴当x=﹣2时,y=4a﹣2b+c=0,故④正确;∵当x=1时,该函数取得最大值,此时y=a+b+c,∴点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,故⑤正确;故选:D.5.如图所示,点A,B,C是抛物线y=ax2+bx+c(a≠0)(x为任意实数)上三点,则下列结论:①﹣=2 ②函数y=ax2+bx+c最大值大于4 ③a+b+c>2,其中正确的有()A.①B.②③C.①③D.①②解:抛物线y=ax2+bx+c(a≠0的大致图象如有图.抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,∵0<t<1,∴.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>3,即a+b+c>3>2.因此③正确.故选:B.6.若二次函数y=ax2+bx+c的图象与x轴交于A和B两点,顶点为C,且b2﹣4ac=4,则∠ACB的度数为()A.120°B.90°C.60°D.30°解:令y=0则ax2+bx+c=0,∴x1=,x2=,∴AB=||.∵b2﹣4ac=4∴C(﹣,).∴AC==.由抛物线的对称性可知BC=,∴AC2+BC2=AB2,∴∠ACB=90°.故选:B.7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),其部分图象如图所示,现有下列结论:①abc>0:②b2﹣4ac<0;③a+b>0;④当x>0时,y随x的增大而减小;⑤3a+c=0;⑥c<4b.其中正确的结论有()A.1个B.2个C.3个D.4个解:①由抛物线开口方向向下知,a<0.由抛物线对称轴位于y轴右侧知,a、b异号,即ab<0,抛物线与y轴交于正半轴,则c>0.则abc<0.故错误;②由抛物线与x轴有两个不同的交点知,b2﹣4ac>0.故错误;③由对称轴x=﹣=1知b=﹣2a,则a+b=a﹣2a=﹣a>0,即a+b>0.故正确;④如图所示,当x>1时,y随x的增大而减小,故错误;⑤如图所示,根据抛物线的对称性知,抛物线与x轴的另一交点坐标是(﹣1,0).所以当x=﹣1时,y=a﹣b+c=a+2a+c=3a+c=0,即3a+c=0,故正确;⑥∵3a+c=0.∴c=﹣3a.∴c﹣4b=﹣3a﹣4b=﹣3a+8a=5a<0.故正确.综上所述,其中正确的结论有3个.故选:C.8.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选:A.9.已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b <0;③a+b>m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1,其中正确的是()A.2个B.3个C.4个D.1个解:①由图象可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故本选项正确;②由对称轴可知:<1,∴﹣b<2a,∴2a+b>0,故本选项错误;③当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2与y1的大小无法确定;故本选项错误;④当x=1时,a+b+c=0;当x=﹣1时,a﹣b+c>0;∴(a+b+c)(a﹣b+c)=0,即(a+c)2﹣b2=0,∴(a+c)2=b2故本选项错误;⑤当x=﹣1时,a﹣b+c=2;当x=1时,a+b+c=0,∴a+c=1,∴a=1+(﹣c)>1,即a>1;故本选项正确;综上所述,正确的是①⑤.故选:A.10.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①abc<0;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<0.正确的结论有()A.4个B.3个C.2个D.1个解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵抛物线的对称轴为直线x=﹣,而﹣1<﹣<0,∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,∴y1>y2,所以,②正确;∵x=1时,y>0,即a+b+c>0,x=﹣1时,y<0,即a﹣b+c<0,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<0,∴b2>(a+c)2,所以③正确;∵﹣1<﹣<0,∴﹣2a<﹣b,∴2a﹣b>0,所以④错误.故选:B.11.抛物线y=ax2+bx+c(a≠0)的图象如图所示,顶点(﹣2,﹣7a),下列结论:①ax2+bx+c >0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=2有四个根,则这四个根的和为﹣4,其中正确的结论有()A.1个B.2个C.3个D.4个解:①∵y=ax2+bx+c(a≠0)的图象与x轴有两个交点,且开口向上,∴ax2+bx+c的值一部分大于0,一部分等于0,一部分小于0,故①不符合题意;∵抛物线的顶点坐标(﹣2,﹣7a),∴﹣=﹣2,=﹣7a,∴b=4a,c=﹣3a,∴抛物线的解析式为y=ax2+4ax﹣3a,5a﹣b+c=5a﹣4a﹣3a=﹣2a<0,故②不符合题意,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故结论③符合题意,若方程|ax2+bx+c|=2有四个根,设方程ax2+bx+c=2的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣2的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④不符合题意,故选:A.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的结论有()①abc<0;②2a+b=0;③b2﹣4ac<0;④9a+3b+c>0;⑤c+8a<0.A.1个B.2个C.3个D.4个解:∵图象的开口向下,与y轴的交点在y轴的正半轴上,对称轴是直线x=1,∴a<0,c>0,﹣=1,即2a+b=0,b>0,∴abc<0,故①②正确;∵抛物线的图象和x轴有两个交点,∴b2﹣4ac>0,故③错误;∵抛物线的图象的对称轴是直线x=1,和x轴的一个交点坐标是(﹣1,0),∴另一个交点坐标是(3,0),即当x=3时,y=a×32+b×3+c=0,故④错误;∵2a+b=0,即b=﹣2a,代入解析式得:y=ax2﹣2ax+c,当x=3时,y=9a﹣6a+c=3a+c=0,∵a<0,∴3a+c+5a=8a+c<0,故⑤正确;即正确的有3个,故选:C.13.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a ﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2解:由抛物线对称轴为直线x=﹣b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(﹣1,3)则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=﹣1,与x轴的一个交点(﹣3,0)则有对称性抛物线与x轴的另一个交点为(1,0)则④正确;∵A(﹣1,3),B(﹣3,0),直线y2=mx+n与抛物线交于A,B两点∴当当﹣3<x<﹣1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.14.二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,3),则下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个解:①根据题意得:,解得:a=﹣1,b=﹣2,c=3,∴y=﹣x2﹣2x+3=﹣(x+1)2+4,∴二次函数图象的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,故①正确;②∵当x=2时,y<0,∴4a+2b+c<0,故②正确;③∵抛物线与x轴的交点分别是(﹣3,0),(1,0),∴一元二次方程ax2+bx+c=1的两根之和=﹣3+1=﹣2,故③错误;④由函数图象可知,当y≤3时,x≥0或x≤﹣2,故④错误.故选:B.15.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0B.﹣C.2D.﹣2解:当y=0时,x2﹣3x=0,解得:x1=0,x2=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A2的坐标为(6,0).∵2020=336×6+4,∴当x=4时,y=m.由图象可知:当x=2时的y值与当x=4时的y值互为相反数,∴m=﹣(2×2﹣3×2)=2.故选:C.16.抛物线y=x2+4x+5﹣m与x轴有两个不同的交点,则m的取值范围是()A.m<﹣1B.0<m≤1C.m<1D.m>1解:∵抛物线y=x2+4x+5﹣m与x轴有两个交点,∴△=b2﹣4ac>0,即16﹣4(5﹣m)>0,解得m>1,故选:D.17.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴3a+c=0.故③正确;④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).∴当y>0时,﹣1<x<3故④正确.综上所述,正确的结论有4个.故选:D.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc <0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为()A.2个B.3个C.4个D.5个解:①由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故①正确;②由图象可知:a<0,b>0,c>0,abc<0,故②正确;③当x=1时,y=a+b+c>0,即b>﹣a﹣c,当x=﹣1时,y=a﹣b+c<0,即b>a+c,故③错误;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤错误.综上所述,①②④正确.故选:B.19.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=﹣2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是﹣4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④解:①由图象可知,抛物线开口向下,所以①正确;②若当x=﹣2时,y取最大值,则由于点A和点B到x=﹣2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A 和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x <﹣4或x>0,从而④错误.故选:B.20.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表所示,下列结论,其中正确的个数为()①ac<0;②当x>1时,y的值随x值的增大而减小.③当﹣1<x<3时,ax2+(b﹣1)x+c>0;④对于任意实数m,4m(am+b)﹣6b<9a总成立.A.1个B.2个C.3个D.4个解:①由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故①正确;②∵二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,∴当x≥1.5时,y的值随x值的增大而减小,故②错误;③∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故③正确.④将x=﹣1、y=﹣1,x=0、y=3,x=1、y=5代入y=ax2+bx+c,得,解得:,∴y=﹣x2+3x+3=﹣(x﹣)2+,可知当x=时,y取得最大值,即当x=m时,am2+bm+c≤a+b+c,变形可得4m(am+b)﹣6b≤9a,故④错误;故选:B.。
2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析
2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.2.如图1,对称轴为直线x =1的抛物线y =12x 2+bx +c ,与x 轴交于A 、B 两点(点A 在点B 的左侧),且点A 坐标为(-1,0).又P 是抛物线上位于第一象限的点,直线AP 与y 轴交于点D ,与抛物线对称轴交于点E ,点C 与坐标原点O 关于该对称轴成轴对称. (1)求点 B 的坐标和抛物线的表达式; (2)当 AE :EP =1:4 时,求点 E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到 OC ′,旋转角为 α(0°<α<90°),连接 C ′D 、C′B ,求 C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+2 3C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AE AP =AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=973.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论: ①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m 10,即点C 坐标为:(10,0)或(﹣10,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5222±,即:点C 坐标为(5222+,0)或(5﹣220);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C的坐标为:(±410,0)或(5222±,0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【解析】 【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解; (2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润. 【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k bk b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩,即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大, 则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6), ∵﹣20<0,故w 有最大值, 当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190, 50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w , 由题意得:50(500﹣20x )≥12000,解得:x ≤13, w =﹣20(x ﹣25)(x ﹣6), 当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).5.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x 元. (1)写出销售量y (件)和获得利润w (元)与销售单价x (元)之间的函数关系; (2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? 【答案】(1)y =﹣10x+1000;w=﹣10x 2+1300x ﹣30000 (2)商场销售该品牌玩具获得的最大利润是8640元. 【解析】 【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y =600﹣10(x ﹣40),再利用w= y•(x ﹣30)即可表示出w 与x 之间的关系式;(2)先将w =﹣10x 2+1300x ﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x =46时有最大值,代入求值即可解题. 【详解】 解:(1)依题意,易得销售量y (件)与销售单价x (元)之间的函数关系:y =600﹣10(x ﹣40)=﹣10x+1000获得利润w (元)与销售单价x (元)之间的函数关系为:w =y•(x ﹣30)=(1000﹣10x )(x ﹣30)=﹣10x 2+1300x ﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46 w =﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+12250 ∵a =﹣10<0,对称轴x =65 ∴当44≤x≤46时,y 随x 的增大而增大 ∴当x =46时,w 最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元. 【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.6.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC =45°+15°=60°, ∴OD =OC•tan30°=设DC 为y =kx ﹣3,0),可得:k =联立两个方程可得:23133y y x ⎧=-⎪⎨=-⎪⎩,解得:1212036x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(6);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=设EC 为y =kx ﹣3,代入(0)可得:k 3=,联立两个方程可得:23133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:1212032x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 2,﹣2).综上所述M 的坐标为(,6,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.7.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE =. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.8.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.9.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=2,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,②当PQ ∥AB ,DB=DP 时,DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =, 9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,2DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DN DB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时,DB =DP DN DA DC∴=,245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.10.已知:二次函数2432y x x a =-++(a 为常数).(1)请写出该二次函数图象的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,求a 的取值范围.【答案】(1)见解析;(2)523a ≤<. 【解析】【分析】(1)可从开口方向、对称轴、最值等角度来研究即可;(2) 先由二次函数的图象与一次函数21y x =-的图象有两个交点,即关于x 的一元二次方程26330x x a -++=有两个不相等的实数根,由此可得2a <,再根据二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,也就是说二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点,画出函数2633w x x a =-++的图象,结合图象,可知当4x =时,26330x x a -++≥,将x=4代入求得a 的取值范围,由此即可求得答案.【详解】(1)①图象开口向上;②图象的对称轴为直线2x =;③当2x >时,y 随x 的增大而增大;④当2x <时,y 随x 的增大而减小;⑤当2x =时,函数有最小值;(2)∵二次函数的图象与一次函数21y x =-的图象有两个交点,∴243221x x a x -++=-,即26330x x a -++=,364(33)12240a a ∆=-+=-+>,解得2a <,∵二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,∴二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点,画出二次函数2633w x x a =-++的图象,结合图象,可知当4x =时,26330x x a -++≥,∴当4x =时,2633350x x a a -++=-≥,得53a ≥, ∴当二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点时, a 的取值范围为523a ≤<. 【点睛】 本题考查的是二次函数综合题,涉及了二次函数的性质,二次函数图象与一次函数图象的交点问题,二次函数的图象与x 轴交点问题,正确进行分析并运用数形结合思想、灵活运用相关知识是解题的关键.11.如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG的最小值为P 的坐标(﹣919,19). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQ QC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,RT △QCN 中,QN=CN=7,∠QNC=90°,∴,∵sin ∠ACM=AM AC =NQ QC ,∴AM=65719,∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=1219,PM=RM=619,∴MC=22AC AM -=1419,∴PC=CM ﹣PM=819,∵PK CP CK QN CQ CN ==,∴CK=2819,PK=123,∴OK=CK ﹣CO=919,∴点P 坐标(﹣919,12319),∴PA+PC+PG 的最小值为219,此时点P 的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.12.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP =t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE =∠OCD ? (3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.【答案】(1)B (10,4),C (0,4),215463y x x =-++;(2)3;(3)103或 203. 【解析】试题分析:(1)由抛物线的解析式可求得C 点坐标,由矩形的性质可求得B 点坐标,由B 、D 的坐标,利用待定系数法可求得抛物线解析式;(2)可设P (t ,4),则可表示出E 点坐标,从而可表示出PB 、PE 的长,由条件可证得△PBE ∽△OCD ,利用相似三角形的性质可得到关于t 的方程,可求得t 的值;(3)当四边形PMQN 为正方形时,则可证得△COQ ∽△QAB ,利用相似三角形的性质可求得CQ 的长,在Rt △BCQ 中可求得BQ 、CQ ,则可用t 分别表示出PM 和PN ,可得到关于t 的方程,可求得t 的值. 试题解析:解:(1)在y =ax 2+bx +4中,令x =0可得y =4, ∴C (0,4),∵四边形OABC 为矩形,且A (10,0), ∴B (10,4),把B 、D 坐标代入抛物线解析式可得10010444240a b a b ++=⎧⎨-+=⎩,解得1653a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为y =16-x 2+53x +4; (2)由题意可设P (t ,4),则E (t ,16-t 2+53t +4), ∴PB =10﹣t ,PE =16-t 2+53t +4﹣4=16-t 2+53t , ∵∠BPE =∠COD =90°, 当∠PBE =∠OCD 时, 则△PBE ∽△OCD ,∴PE PBOD OC=,即BP •OD =CO •PE , ∴2(10﹣t )=4(16-t 2+53t ),解得t =3或t =10(不合题意,舍去), ∴当t =3时,∠PBE =∠OCD ; 当∠PBE =∠CDO 时, 则△PBE ∽△ODC ,∴PE PBOC OD=,即BP •OC =DO •PE , ∴4(10﹣t )=2(16-t 2+53t ),解得t =12或t =10(均不合题意,舍去) 综上所述∴当t =3时,∠PBE =∠OCD ;(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN , ∴∠CQO +∠AQB =90°, ∵∠CQO +∠OCQ =90°, ∴∠OCQ =∠AQB , ∴Rt △COQ ∽Rt △QAB , ∴CO OQAQ AB=,即OQ •AQ =CO •AB , 设OQ =m ,则AQ =10﹣m ,∴m (10﹣m )=4×4,解得m =2或m =8, ①当m =2时,CQ =22OC OQ +=25,BQ =22AQ AB +=45,∴sin ∠BCQ =BQ BC =25,sin ∠CBQ =CQ BC=5,∴PM =PC •sin ∠PCQ =25t ,PN =PB •sin ∠CBQ =5(10﹣t ), ∴25t =5(10﹣t ),解得t =103, ②当m =8时,同理可求得t =203, ∴当四边形PMQN 为正方形时,t 的值为103或203. 点睛:本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识.在(1)中注意利用矩形的性质求得B 点坐标是解题的关键,在(2)中证得△PBE ∽△OCD 是解题的关键,在(3)中利用Rt △COQ ∽Rt △QAB 求得CQ 的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.13.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t 的值为1或4.【解析】 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--, ∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3. Q 点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠, 将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:1132x y ⎧+=⎪⎪⎨⎪=⎪⎩2232x y ⎧=⎪⎪⎨⎪=⎪⎩∴点M的坐标为,点N的坐标为,32)2t ++.Q 点A 的坐标为()1,0,(22223321057122t AM t t t ⎛⎫⎛⎫+-∴=-+-=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(22223321057122t AN t t t ⎛⎫⎛⎫-++=-+-=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭. AMN ∆Q 为直角三角形, ∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去); ②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去); ③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=.0t >Q ,∴该方程无解(或解均为增解).∆为直角三角形时,t的值为1或4.综上所述:当AMN【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.14.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.(1)求抛物线的函数表达式及其顶点的坐标;(2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图① 图②【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);(2)L=-4m2-12m=-4(m+)2+9;当m=-时,最大值L=9;(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,,∴,所以抛物线的表达式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,所以,顶点坐标为C(-1,4).(2)因为D在直线y=x+3上,∴D(m,m+3).因为E在抛物线上,∴E(m,-m2-2m+3).DE=-m2-2m+3-(m+3)=-m2-3m.由题意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45°,∴DE=EF.L=4DE=-4m2-12m.L=-4m2-12m=-4(m+)2+9.∵a=-4<0,∴二次函数有最大值当m=-时,最大值L=9.(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.15.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(13),点B(3,﹣3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【答案】(1)2235333y x x =-+;(2)t>4;(3)∠BOC =60°,C (32,3) 【解析】分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可; (2)利用抛物线增减性可解问题;(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (1,3),点B (3,﹣3)求出相关角度.详解:(1)把点A (1,3),点B (3,﹣3)分别代入y=ax 2+bx 得3=393a b a b ⎧+⎪⎨-=+⎪⎩,解得2353a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=﹣22353x x + (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m .(3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE , ∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大. ∵A(1B (3 ∴∠AOF=60°,∠BOF=30°, ∴∠AOB=90°, ∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(32 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的最值问题1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.43.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值88.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值39.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.11.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.试题解析1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.解:连接BD,AC,∵菱形ABCD边长为4,∠BAD=60°;∴△ABD与△BCD为正三角形,∴∠FDB=∠EAB=60°,∵AE+CF=4,DF+CF=4,∴AE=DF,∵AB=BD,∴△BDF≌△BAE,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形,∴当BE⊥AD时,△BEF的面积最小,此时BE=2△BEF面积的最小值=3.故选:B.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故选:A.3.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.5.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S△BDH==BD•AD=x(2﹣x)=﹣(x﹣)2+,∴△BDH面积的最大值是,故选:C.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.8.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值3解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.9.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为5或.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;1811.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,即AD=3﹣=时,矩形CDGE和矩形HEBF的面积和最小,故答案为12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为15cm.解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x <30.S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15cm时,S取最大值.故答案为:15.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,∵AD=3,BC=4,梯形ABCD面积为7,∴解得∵PE∥DQ,∴∠PEF=∠QFE,∠EPF=∠PFD,又∵PF∥AQ,∴∠PFD=∠EQF,∴∠EPF=∠EQF,∵EF=FE,∴△PEF≌△QFE(AAS),∵PE∥DQ,∴△AEP∽△AQD,同理,△DPF∽△DAQ,∴=,=()2,∵S△AQD=3,∴S△DPF=x2,S△APE=(3﹣x)2,∴S△PEF=(S△AQD﹣S△DPF﹣S△APE)÷2,∴y=[3﹣x2﹣(3﹣x)2]×=﹣x2+x,∵y最大值==,即y最大值=.∴△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴,而AN=AM﹣MN=AM﹣DE,∴,解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,(2)分两种情况:①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴y=x2,此时x的范围是0<x≤4.8,②当正方形DEFG的一部分在△ABC的外部时,如图(3),设DG与BC交于点Q,EF与BC交于点P,△ABC的高AM交DE于N,∵DE=x,DE∥BC,∴△ADE∽△ABC,即,而AN=AM﹣MN=AM﹣EP,∴,解得EP=8﹣x.所以y=x(8﹣x),即y=﹣x2+8x,由题意,x>4.8,且x<12,所以4.8<x<12;因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,当4.8<x<12时,因为,所以当时,△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=﹣×62+8×6=24;因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= 2.4或2.6;(3)设△ABC的面积的平方为W,求W的最大值.解:(1)∵AD=5,AB=x,BE垂直平分CD,∴BC=BD=5﹣x,在△ABC中,AC=1,∴(5﹣x)﹣1<x<1+(5﹣x),解得:2<x<3;(2)∵△ABC为直角三角形,若AB是斜边,则AB2=AC2+BC2,即x2=(5﹣x)2+1,∴x=2.6;若BC是斜边,则BC2=AB2+AC2,即(5﹣x)2=x2+1,∴x=2.4.故答案为:2.4或2.6.(3)在△ABC中,作CF⊥AB于F,设CF=h,AF=m,则W=(xh)2=x2h2,①如图,当2.4<x<3时,AC2﹣AF2=BC2﹣BF2,则1﹣m2=(5﹣x)2﹣(x﹣m)2,得:m=,∴h2=1﹣m2=,∴W=x2h2=﹣6x2+30x﹣36,即W=﹣6(x﹣)2+,当x=2.5时(满足2.4<x<3),W取最大值1.5;②当2<x≤2.4时,同理可得:W=﹣6x2+30x﹣36=﹣6(x﹣)2+,当x=2.4时,W取最大值1.44<1.5,综合①②得,W的最大值为1.5.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.解:(1)设OD=t,AD=4﹣t,AE=t,S△ODEBC=S△ABCD﹣S△DAE===(0≤t≤3)(2)∵∴∴当t=2时,S有最小值;此时:D(2,0)、E(4,2),①当P在x轴上时,设P(a,0),此时:DE2=AD2+EA2=22+22=8,EP2=(a﹣4)2+22=a2﹣8a+20,DP2=(a﹣2)2=a2﹣4a+4,∴当DE2=EP2时,8=a2﹣8a+20,∴a2﹣8a+12=0,(a﹣2)(a﹣6)=0,∴P(2,0),P1(6,0),∵P(2,0)与D重合∴舍去,当EP2=DP2时,a2﹣8a+20=a2﹣4a+4,16=4a,a=4,∴P2(4,0),当DE2=DP2时,8=a2﹣4a+4a2﹣4a﹣4=0,∴,②当P在y轴上时,设P(0,b),则DP2=22+b2=b2+4EP2=42+(b﹣2)2=16+b2﹣4b+4=b2﹣4b+20 DE2=8,∴当DP2=EP2时,b2+4=b2﹣4b+204b=16,b=4,∴P5(0,4),当EP2=DE2时,b2﹣4b+20=8b2﹣4b+12=0b2﹣4ac<0,∴无解.当DP2=DE2时,b2+4=8,b2=4,∴b=±2,∴P6(0,﹣2)(DEP三点共线,舍去),∴综上共有6个这样的P点,使得△PDE为等腰三角形.即P1(6,0),P2(4,0),,,P5(0,4),P6(0,2).(3)设AE=t,则BE=3﹣t.BF=BE=3﹣t,AD=4﹣t,∴CF=4﹣BF=t+1,过D作DP⊥BC于P.则:CP=OD=t,∴PF=1,又DP=3,∴,∴,∴在Rt△DAE中,AD2+AE2=DE2,∴(4﹣t)2+t2=10,∴t2﹣8t+16+t2=10,2t2﹣8t+6=0,t2﹣4t+3=0,∴t1=1,t2=3(舍),∴t=1(9分),∴E(4,1),F(2,3),∵E关于x轴的对称点E′(4,﹣1),F关于y轴的对称点F′(﹣2,3),则E′F′与x轴,y轴的交点即为M点,N点.设直线E′F′的解析式为y=kx+b(k≠0),则,∴,∴y=﹣x+.(10分)∴M(,0),N(0,).(12分)。