管理决策理论之贝叶斯法则

合集下载

第四章 贝叶斯决策

第四章 贝叶斯决策
22
高校师资
解 先计算做地震试验好与不好的概率; 高校师资 做地震试验好的概率(全概公式) P(F)=P(O)P(F∣O )+P(D)P(F∣D ) =0.5×0.9+0.5×0.2=0.55 做地震试验不好的概率 P(U)= P(O)P( U∣O)+P(D) P(U∣D) =0.5×0.1+0.5×0.8=0.45
由表中还可知:气象站发出天气好预报的概率P(e1)是0.66,气象站 发出天气坏预报的概率P( e2 )是0.34。
29
(3)后验预分析 为了帮助决策,我们利用以上分析的结果,画出本例的决策树图(参 见图3)。
9 月施工 400 3 10 月施工 不买情报 9 月施工 479.82 1 购买情报 预报天气好 (0.66) 479.82 2 预报天气坏 (0.34) 0 5 727 4 10 月施工 -235.25 9 月施工 8 10 月施工 天气好(0.1765) 天气坏(0.8235) 727 8 天气好(0.818) 天气坏(0.182) 1000 -500 0 1000 -500 0
26
(2)后验概率估计 设气象站发出的预报为,其结果无非是以下两种:天气好,天气坏。 则预报的准确率就是似然度。按照前面介绍过的估计后验概率的方法 ,可分别列出两种预报结果的后验概率计算表。
表 9-8 气象站发出天气好预报的后验概率的计算 P(θ j ) ⋅ P( e1 / θ j ) 后验概率 似然度 天气状况 先验概率 P( e1 / θ j ) P (θ j / e1 ) θj P(θj) 天气好θ1 天气坏θ2 0.6 0.4 1.0 0.9 0.3 0.54 0.12 0.66 0.818 0.182
17
例如,某地发生了一个案件,怀疑对象有 甲、乙、丙三人. 在不了解案情细节(事件B) 偏小 之前,侦破人员根据过去 丙 乙 甲 的前科,对他们作案的可 P(A1) P(A2) P(A3) 能性有一个估计,设为 但在知道案情细 节后, 这个估计 就有了变化.

管理决策分析第五章贝叶斯决策分析

管理决策分析第五章贝叶斯决策分析
29.375 0.32 20.853 0.35+10 0.33 20(万元)
该企业收益期 望值能增加:
E2 E1 20 17 3(万元)
只要试销所需费用不超过3万元,就应该进行 市场调查;否则,则不应进行试销。
p132例5.2
3、验后分析: ❖在试销费用不超过3万元的情况下,进行试
实际的后验分布;
再利用后验分布进行决策分析,选出最满意 的可行方案;
对信息的价值和成本作对比分析,对决策分 析的经济效益情况作出合理的说明.
验后分析和预验分析的异同: 相同:都是通过贝叶斯公式修正先验分布 不同:主要在于侧重点不同
贝叶斯决策的基本步骤
4.序贯分析(主要针对多阶段决策) 指把复杂的决策问题的决策分析全过程划分 为若干阶段,每一阶段都包括先验分析、预 验分析和验后分析等步骤, 每个阶段前后相 连,形成决策分析全过程.
10(万元)
aopt (H1)= a1 即:试销为产品需求量大时,最优方案是引进 大型设备。
p132例5.2 ❖ 当 (市 需场 求调 量查 一值 般为)时H:2
Ea2 / H2 30 p1 / H2 25 p2 / H2 (10) p3 / H2
30 0.2571 25 0.5714 (10) 0.1715 20.283(万元)
通过调查,该企业收益期望值能增加
E2 E1 1.1301 1.1 0.030(1 万元)
因此,只要调查费用不超过0.0301万元,就应 该进行市场调查;否则,则不应进行市场调查。
p129例5.1
3、验后分析:综上所述, ❖在咨询公司收费不超过0.0301万元的情况下,
进行市场调查,能使该企业新产品开发决 策取得较好的经济效益;否则,不做市场 调查。

风险性决策与贝叶斯决策概述

风险性决策与贝叶斯决策概述

风险性决策与贝叶斯决策概述风险性决策与贝叶斯决策是决策理论中的两个重要概念。

在许多情况下,决策者需要面对未知的风险和不确定性。

风险性决策和贝叶斯决策提供了一种方法来处理这些不确定性,并选择最优的决策方案。

风险性决策是一种针对已知概率分布的决策过程。

在风险性决策中,决策者可以根据已有的风险概率分布来评估每种可能的决策结果的预期值。

这样,决策者可以使用数学模型和决策分析工具,比较不同决策方案的预期风险和收益,并选择具有最佳预期结果的方案。

风险性决策适用于那些风险可以被量化和预测的情况,例如金融投资、保险和项目管理。

贝叶斯决策是一种基于贝叶斯定理的决策方法。

在贝叶斯决策中,决策者不仅仅考虑已有的概率分布,还会考虑先验知识和新观察到的数据。

决策者可以使用贝叶斯定理来更新对不确定事件的概率估计,并根据这些更新的概率估计来做出决策。

贝叶斯决策适用于那些决策中存在随机变量和未知参数的情况,例如医疗诊断、风险管理和机器学习。

风险性决策和贝叶斯决策可以共同应用于实际问题中。

在某些情况下,决策者可能首先使用风险性决策分析来评估不同决策方案的风险和预期收益,然后根据这些分析结果进行决策。

在随后的决策过程中,决策者可以使用贝叶斯决策的方法来更新先验概率和概率分布,并调整决策方案。

需要注意的是,风险性决策和贝叶斯决策都需要对概率和风险进行合理的估计。

这要求决策者具备相关领域的知识和经验,以便能够获得准确的概率估计和风险评估。

此外,决策者还需要考虑决策的后果和可能的不确定性,以便能够做出明智的决策。

总之,风险性决策和贝叶斯决策是处理不确定性和风险的有效方法。

风险性决策基于已有的概率分布进行决策分析,而贝叶斯决策则通过更新概率估计和概率分布来进行决策。

这两种方法可以在不同的情境下相互补充,帮助决策者做出理性和最优的决策。

风险性决策和贝叶斯决策是决策理论中的两个重要工具,帮助决策者在面对不确定性的情况下做出理性的决策。

虽然它们在方法和原理上有些差异,但它们共同的目标是找到最佳的决策方案。

贝叶斯定理及其应用

贝叶斯定理及其应用

贝叶斯定理及其应用贝叶斯定理是概率论中的重要理论,它指出了如何在已知一些数据的情况下,更新推断某一事件的概率。

在统计学、机器学习、人工智能等领域,贝叶斯定理都有着广泛的应用。

本文将介绍贝叶斯定理的原理和应用,并探讨它在现代科技中的重要性。

一、贝叶斯定理的原理贝叶斯定理是指,在已知某个假设下某个事件发生的概率,以及该事件的先验概率,如何更新该事件的后验概率。

这种方法被称为贝叶斯推断。

假设我们有一个颜色瓶子的实验。

我们知道,有70%的瓶子是红色的,30%的瓶子是蓝色的。

假设我们在这些瓶子中随机抽出一个瓶子,然后在瓶子内找到一支笔芯,颜色是黄色的。

那么,现在我们可以使用贝叶斯定理来推断此瓶子是红色的概率。

首先,我们需要定义以下术语:- A:要推断的事件。

在此例中,A是“抽中的瓶子为红色”。

- B:已知条件。

在此例中,B是“笔芯的颜色是黄色”。

- P(A):A的先验概率。

在此例中,P(A)是“抽中的瓶子为红色”的概率,即0.7。

- P(B|A):在A成立的条件下,B发生的概率。

在此例中,P(B|A)是“在红色瓶子中找到黄色笔芯”的概率,我们假设为0.2。

- P(B|~A):在A不成立的情况下,B发生的概率。

在此例中,P(B|~A)是“在蓝色瓶子中找到黄色笔芯”的概率,我们假设为0.8。

根据贝叶斯定理,我们可以推导出:P(A|B) = P(A) * P(B|A) / P(B)其中,P(A|B)是A的后验概率,即已知B后A的概率;P(B)是B的概率,即黄色笔芯出现的概率,可以用全概率公式计算出:P(B) = P(A) * P(B|A) + P(~A) *P(B|~A) = 0.7 * 0.2 + 0.3 * 0.8 = 0.38。

最终,我们可以得到:P(A|B) = 0.7 * 0.2 /0.38 ≈ 0.37。

也就是说,根据黄色笔芯的出现,我们可以把红瓶子的概率从先验的0.7调整为后验的0.37。

这个例子简单易懂,但是在实际应用中,贝叶斯定理可能会涉及到多个事件,需要考虑更多的先验概率以及条件概率。

贝叶斯决策分析课件

贝叶斯决策分析课件

02 先验概率与似然函数
先验概率
先验概率
在贝叶斯决策分析中,先验概率是指根据历史数据或其他 信息,对某个事件或状态发生的可能性进行的估计。
确定先验概率的方法
确定先验概率的方法包括主观概率法、历史数据法、专家 评估法等。这些方法根据不同的情况和数据来源,对事件 或状态的可能性进行评估。
先验概率的特点
降维与特征选择
通过贝叶斯方法进行特征选择和降维,提高机器 学习模型的性能。
贝叶斯决策分析在金融风险管理中的应用
风险评估
利用贝叶斯方法评估金融风险,如市场风险、信用风险等。
信贷风险评估
通过构建贝叶斯网络模型,对信贷申请人的风险进行评估。
投资组合优化
利用贝叶斯方法优化投资组合,实现风险与收益的平衡。
贝叶斯决策分析在医疗诊断中的应用
率。
后验概率的应用场景
01
02
03
04
后验概率在决策分析中有着广 泛的应用,尤其是在处理不确 定性和主观概率的情况下。
在预测模型中,后验概率可以 用于预测未来的事件或结果。
在分类问题中,后验概率可以 用于确定某个样本属于某个类
别的概率。
在机器学习中,后验概率可以 用于确定某个模型或算法的准
确性和可靠性。
赖关系。
贝叶斯网络构建
根据领域知识和数据,构建贝叶 斯网络结构,确定节点和有向边

贝叶斯网络推理
利用贝叶斯网络进行概率推理, 计算特定条件下某变量的概率值

贝叶斯决策分析在机器学习中的应用
分类问题
利用贝叶斯分类器对数据进行分类,如朴素贝叶 斯分类器。
聚类问题
将贝叶斯方法应用于聚类分析,如高斯混合模型 。

贝叶斯法则博弈论

贝叶斯法则博弈论

贝叶斯法则是概率论的一个重要定理,它描述了在已知先验概率和新信息的情况下,如何更新概率的过程。

在贝叶斯法则中,先验概率和后验概率之间的关系可以用以下公式表示:
P(A|B) = P(B|A) * P(A) / P(B)
其中,P(A|B)表示在已知B发生的情况下,事件A发生的概率;P(B|A)表示在已知A发生的情况下,事件B发生的概率;P(A)表示事件A的先验概率;P(B)表示事件B的先验概率。

在博弈论中,贝叶斯法则可以用于计算玩家的最优策略。

玩家在游戏中需要根据对手的行为和自己的信息来调整自己的策略。

通过使用贝叶斯法则,玩家可以根据对手的行为和自己的观察来更新对对手策略的估计,并选择最优的行动方案。

例如,考虑一个两人博弈的情形,玩家A和玩家B轮流投掷硬币。

假设玩家A在前两次中投掷到正面,那么他可以使用贝叶斯法则来计算在已知这些信息的情况下,选择正面投掷的后验概率。

如果玩家B都选择了反面,那么玩家A可以计算出在已知这些信息的情况下,选择正面投掷的最优策略。

总之,贝叶斯法则是一个重要的概率论定理,在博弈论中有广泛的应
用。

通过使用贝叶斯法则,玩家可以根据对手的行为和自己的信息来调整自己的策略,从而选择最优的行动方案。

贝叶斯法则公式

贝叶斯法则公式

贝叶斯法则公式贝叶斯法则公式是一个用于计算概率的数学公式,其背后的理论基础是贝叶斯统计学。

贝叶斯法则公式在各种领域都有广泛的应用,例如医学、金融、机器学习等。

贝叶斯法则公式的形式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B) 表示在 B 发生的条件下 A 发生的概率,P(B|A) 表示在 A 发生的条件下 B 发生的概率,P(A) 表示 A 发生的概率,P(B) 表示 B 发生的概率。

贝叶斯法则公式的核心思想是在已知某些证据的情况下,更新我们对某个假设的概率。

例如,在医学诊断中,医生可能会根据病人的症状和检查结果,来更新对某种疾病的诊断概率。

贝叶斯法则公式的应用非常广泛,下面我们将介绍一些具体的例子。

医学诊断在医学诊断中,贝叶斯法则公式可以用于计算疾病的概率。

例如,假设有一个患者出现了发热、咳嗽和喉咙痛的症状,我们想知道他是否患上了流感。

我们可以根据已知的数据来计算患上流感的概率。

假设患上流感的概率为 P(流感),发热、咳嗽和喉咙痛的概率分别为 P(发热)、P(咳嗽) 和 P(喉咙痛),而发热、咳嗽和喉咙痛同时出现的概率为 P(发热, 咳嗽, 喉咙痛)。

根据贝叶斯法则公式,我们可以得到:P(流感|发热, 咳嗽, 喉咙痛) = P(发热, 咳嗽, 喉咙痛|流感) * P(流感) / P(发热, 咳嗽, 喉咙痛)其中,P(发热, 咳嗽, 喉咙痛|流感) 表示在患有流感的情况下,出现发热、咳嗽和喉咙痛的概率,可以通过历史数据来估计;P(流感) 表示患有流感的先验概率,可以通过流行病学调查来估计;P(发热, 咳嗽, 喉咙痛) 表示出现发热、咳嗽和喉咙痛的概率,可以通过历史数据来估计。

金融风险管理在金融风险管理中,贝叶斯法则公式可以用于计算风险的概率。

例如,假设我们想知道一个投资组合的收益率在下一个月内是否会超过某个阈值。

我们可以根据已知的数据来计算超过阈值的概率。

假设超过阈值的概率为 P(超过阈值),投资组合的历史收益率符合正态分布,其均值为μ,标准差为σ。

第二章贝叶斯决策理论

第二章贝叶斯决策理论
1
第二章 贝叶斯决策理论
2.2 几种 常用旳决策规则
• 基于最小错误率旳贝叶斯决策 • 基于最小风险旳贝叶斯决策 • 分类器设计
2
2.2.1 基于最小错误率旳贝叶斯决策
在模式分类问题中,基于尽量降低分类旳错 误旳要求,利用概率论中旳贝叶斯公式,可得出 使错误率为最小旳分类规则,称之为基于最小错 误率旳贝叶斯决策。
11 0,
12 6
21 1,
22 0
根据例2.1旳计算成果可知后验概率为
P(1 | x) 0.818,
P(2 | x) 0.182
再按式(2-15)计算出条件风险 2 R(1 | x) 1 j P( j | x) 12P(2 | x) 1.092 j 1
R(2 | x) 21P(1 | x) 0.818 由于R(1 | x) R(2 | x)
c
c
R(i | x) (i , j )P( j | x) P( j | x)
(2 19)
j 1
j 1
ji
c
P( j
j 1
| x)
表达对x采用决策 i旳条件错误概率。
ji
26
• 所以在0-1损失函数时,使
R( k
|
x)
min
i 1,,c
R(i
|
x)
旳最小风险贝叶斯决策就等价于
c
c
j1
P( j
(i ,
j
)
10,,ii
j, j,
i, j 1,2,, c
(2 18)
25
• 式中假定对于c类只有c个决策,即不考虑“拒绝”旳
情况。式(2-18)中(i , j ) 是对于正确决策(即i=j)

第五章贝叶斯决策分析

第五章贝叶斯决策分析

第五章贝叶斯决策分析
贝叶斯决策分析(Bayesian Decision Analysis)是一种基于贝叶斯统计推理的决策方法。

它以数据作为输入,利用贝叶斯统计推理以及现实世界中的模型参数等,建立统计学模型,分析不同决策情况的可能性,最终指导决策者进行最优决策。

贝叶斯决策分析采用了极大似然估计(Maximum Likelihood Estimation)和贝叶斯统计推理(Bayesian Statistical Inference)的方法,从而给出了可行的决策结果。

贝叶斯决策分析模型假设了有一个无穷大的条件概率分布集,即根据历史观测值估计的各种情况及其发生概率。

模型的输入包括现有信息的观测值,如目标对象或数据的性质,环境和模型参数的估计值等,以及决策者的系统目标函数。

这些输入被用来估计条件概率,即感兴趣的决策性问题中每一个状态的发生概率,以及状态特征随时间变化的概率。

有了所有的输入信息之后,贝叶斯决策分析可以给出最优决策,它是针对模型的描述做出的。

例如,一个简单的决策模型可以表示为,有两个观测变量X和Y,每个观测变量有三种状态,共有九种模式(3×3=9)。

管理决策理论:贝叶斯法则

管理决策理论:贝叶斯法则

管理决策理论:贝叶斯法则什么是贝叶斯法则贝叶斯的统计学中有一个基本的工具叫贝叶斯法则、也称为贝叶斯公式,尽管它是一个数学公式,但其原理毋需数字也可明了。

如果你看到一个人总是做一些好事,则那个人多半会是一个好人。

这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。

用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。

贝叶斯法则又被称为贝叶斯定理、贝叶斯规则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。

所谓贝叶斯法则,是指当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。

但行为经济学家发现,人们在决策过程中往往并不遵循贝叶斯规律,而是给予最近发生的事件和最新的经验以更多的权值,在决策和做出判断时过分看重近期的事件。

面对复杂而笼统的问题,人们往往走捷径,依据可能性而非根据概率来决策。

这种对经典模型的系统性偏离称为“偏差”。

由于心理偏差的存在,投资者在决策判断时并非绝对理性,会行为偏差,进而影响资本市场上价格的变动。

但长期以来,由于缺乏有力的替代工具,经济学家不得不在分析中坚持贝叶斯法则。

贝叶斯法则的原理通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。

作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。

一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯法则。

贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。

Pr(A|B)= Pr(B|A)Pr(A)/Pr(B)∝L(A|B)Pr(A)其中L(A|B)是在B发生的情况下A发生的可能性。

贝叶斯法则的应用

贝叶斯法则的应用

贝叶斯法则的应用引言贝叶斯法则是一种基于概率论的统计推断方法,广泛应用于各个领域,包括医学、金融、自然语言处理等。

它的核心思想是通过已知的先验概率和观测到的证据,来计算后验概率。

本文将深入探讨贝叶斯法则的原理及其在实际应用中的具体案例。

贝叶斯法则的原理贝叶斯法则是基于条件概率的推断方法,它的核心公式如下:P(A|B)=P(B|A)⋅P(A)P(B)其中,P(A|B)表示在已知B发生的条件下,A发生的概率;P(B|A)表示在已知A发生的条件下,B发生的概率;P(A)和P(B)分别表示A和B独立发生的概率。

贝叶斯法则的核心思想是通过观测到的证据来更新对事件发生概率的估计。

它将先验概率和观测到的证据结合起来,得到后验概率。

通过不断地更新后验概率,我们可以逐步改进对事件发生概率的估计。

贝叶斯法则在医学诊断中的应用医学诊断是贝叶斯法则的一个重要应用领域。

在医学诊断中,医生需要根据患者的症状和检查结果来判断患者是否患有某种疾病。

贝叶斯法则可以帮助医生计算患病的后验概率,从而辅助医生做出准确的诊断。

先验概率的估计在医学诊断中,医生需要根据病史、家族史等信息来估计患病的先验概率。

这些先验概率可以基于大规模的流行病学数据进行估计,也可以根据临床经验进行主观判断。

先验概率的准确性对于后续的诊断结果至关重要。

观测到的证据医生在诊断过程中会观察到患者的症状和检查结果等证据。

这些证据可以用来计算后验概率,从而判断患者是否患有某种疾病。

例如,对于某种疾病来说,某个症状的发生概率为P(B|A),则观测到该症状后,患病的后验概率可以通过贝叶斯法则计算得出。

后验概率的更新通过观测到的证据,结合先验概率,可以计算出后验概率。

然后,根据后验概率的大小,医生可以判断患者是否患有某种疾病。

如果后验概率较高,则可以进行进一步的检查和治疗;如果后验概率较低,则可以排除该疾病的可能性。

贝叶斯法则在金融风险评估中的应用贝叶斯法则在金融领域中也有广泛的应用,尤其是在风险评估方面。

贝叶斯定理简介及应用

贝叶斯定理简介及应用

贝叶斯定理简介及应用贝叶斯定理是概率论中的一项重要定理,它能够根据已知的条件概率来计算出相反事件的概率。

贝叶斯定理的应用非常广泛,涉及到许多领域,如医学诊断、信息检索、机器学习等。

本文将简要介绍贝叶斯定理的原理,并探讨其在实际应用中的一些例子。

一、贝叶斯定理的原理贝叶斯定理是由英国数学家托马斯·贝叶斯提出的,它是一种基于条件概率的推理方法。

贝叶斯定理的核心思想是,通过已知的条件概率来计算出相反事件的概率。

贝叶斯定理的数学表达式如下:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

贝叶斯定理的原理可以通过一个简单的例子来说明。

假设有一种罕见疾病,已知该疾病的发生率为1%,并且有一种检测方法,该方法的准确率为99%。

现在某人接受了该检测方法,结果显示为阳性,请问该人真正患有该疾病的概率是多少?根据贝叶斯定理,我们可以计算出该人真正患有该疾病的概率。

假设事件A表示该人患有该疾病,事件B表示检测结果为阳性。

已知P(A) = 0.01,P(B|A) = 0.99,P(B)可以通过全概率公式计算得到: P(B) = P(B|A) * P(A) + P(B|A') * P(A')其中,P(A')表示事件A的补事件,即该人不患有该疾病的概率。

根据题目中的信息,P(A') = 1 - P(A) = 0.99。

代入上述公式,可以计算出P(B) = 0.01 * 0.99 + 0.99 * 0.01 = 0.0198。

根据贝叶斯定理,可以计算出该人真正患有该疾病的概率:P(A|B) = (P(B|A) * P(A)) / P(B) = (0.99 * 0.01) / 0.0198 ≈ 0.5即该人真正患有该疾病的概率约为50%。

贝叶斯定理解释

贝叶斯定理解释

贝叶斯定理解释
贝叶斯定理是一种关于条件概率的定理,最初由18世纪的英国数学家托马斯·贝叶斯(Thomas Bayes)提出。

该定理的主要观点是,当分析大量数据时,事件发生的概率将接近于总体中事件发生的概率。

贝叶斯定理也被称为贝叶斯公式,它用于计算在给定证据或信息的情况下,某个假设被确认为真的概率。

这个定理假设了先验概率的存在,即在没有考虑任何其他因素的情况下,事件发生的概率。

贝叶斯定理通过将先验概率与新的证据或信息相结合,得出后验概率,即考虑了新信息后,事件发生的概率。

贝叶斯定理在许多领域都有应用,例如自然语言处理、机器学习、推荐系统、图像识别、博弈论等。

在实际应用中,贝叶斯定理可以帮助我们理解和预测事物的变化,以及在不确定的情况下做出决策。

然而,贝叶斯定理也有其局限性。

在实际应用中,我们往往无法获得完整的数据集,因此先验概率和似然函数可能存在误差。

此外,贝叶斯定理对于主观判断的依赖度较高,不同的人可能会得出不同的后验概率。

因此,在使用贝叶斯定理时,需要谨慎处理数据和主观判断的误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理决策理论之贝叶斯法则
2010-11-05 17:14:14来源:长松咨询网作者:点击:175
摘要:贝叶斯法则又被称为贝叶斯定理、贝叶斯规则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。

什么是贝叶斯法则
贝叶斯的统计学中有一个基本的工具叫贝叶斯法则、也称为贝叶斯公式,尽管它是一个数学公式,但其原理毋需数字也可明了。

如果你看到一个人总是做一些好事,则那个人多半会是一个好人。

这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。

用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。

贝叶斯法则又被称为贝叶斯定理、贝叶斯规则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。

所谓贝叶斯法则,是指当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。

但行为经济学家发现,人们在决策过程中往往并不遵循贝叶斯规律,而是给予最近发生的事件和最新的经验以更多的权值,在决策和做出判断时过分看重近期的事件。

面对复杂而笼统的问题,人们往往走捷径,依据可能性而非根据概率来决策。

这种对经典模型的系统性偏离称为“偏差”。

由于心理偏差的存在,投资者在决策判断时并非绝对理性,会行为偏差,进而影响资本市场上价格的变动。

但长期以来,由于缺乏有力的替代工具,经济学家不得不在分析中坚持贝叶斯法则。

贝叶斯法则的原理
通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。

作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生
的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。

一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯法则。

贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。

Pr(A|B)= Pr(B|A)Pr(A)/Pr(B)∝L(A|B)Pr(A)
其中L(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯法则中,每个名词都有约定俗成的名称:Pr(A)是A的先验概率或边缘概率。

之所以称为"先验"是因为它不考虑任何B方面的因素。

Pr(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。

Pr(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

Pr(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant)。

按这些术语,Bayes法则可表述为:后验概率= (相似度* 先验概率)/标准化常量也就是说,后验概率与先验概率和相似度的乘积成正比。

另外,比例Pr(B|A)/Pr(B)也有时被称作标准相似度(standardised likelihood),Ba yes法则可表述为:后验概率= 标准相似度* 先验概率
贝叶斯法则的举例分析
可以将贝叶斯法则的分析思路表达如下。

挑战者B不知道原垄断者A是属于高阻挠成本类型还是低阻挠成本类型,但B知道,如果A属于高阻挠成本类型,B进入市场时A进行阻挠的概率是20%(此时A为了保持垄断带来的高利润,不计成本地拼命阻挠);如果A属于低阻挠成本类型,B进入市场时A进行阻挠的概率是100%。

博弈开始时,B认为A属于高阻挠成本企业的概率为70%,因此,B估计自己在进入市场时,受到A阻挠的概率为:0.7×0.2+0.3×1=0.44 0.44是在B给定A 所属类型的先验概率下,A可能采取阻挠行为的概率。

当B进入市场时,A确实进行阻挠。

使用贝叶斯法则,根据阻挠这一可以观察到的行为,B认为A属于高阻挠成本企业的概率变成A属于高成本企业的概率=0.7(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.44=0.32根据这一新的概率,B估计自己在进入市场时,受到A阻挠的概率为:0.32×0.2+0.68×1=0.744如果B再一次进入市场时,A又进行了阻挠。

使用贝叶斯法则,根据再次阻挠这一可观察到的行为,B认为A属于高阻挠成本企业的概率变成A属于高成本企业的概率=0.32(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.744=0. 086这样,根据A一次又一次的阻挠行为,B对A所属类型的判断逐步发生变化,越来越倾向于将A判断为低阻挠成本企业了。

以上例子表明,在不完全信息动态博弈中,参与人所采取的行为具有传递信息的作用。

尽管A企业有可能是高成本企业,但A企业连续进行的市场进入阻挠,给B企业以A企业是低阻挠成本企业的印象,从而使得B企业停止了进入地市场的行动。

应该指出的是,传递信息的行为是需要成本的。

假如这种行为没有成本,谁都可以效仿,那么,这种行为就达不到传递信息的目的。

只有在行为需要相当大的成本,因而别人不敢轻易效仿时,这种行为才能起到传递信息的作用。

传递信息所支付的成本是由信息的不完全性造成的。

但不能因此就说不完全信息就一定是坏事。

研究表明,在重复次数有限的囚徒困境博弈中,不完全信息可以导致博弈双方的合作。

理由是:当信息不完全时,参与人为了获得合作带来的长期利益,不愿过早暴露自己的本性。

这就是说,在一种长期的关系中,一个人干好事还是干坏事,常常不取决于他的本性是好是坏,而在很大程度上取决于其他人在多大程度上认为他是好人。

如果其他人不知道自己的真实面目,一个坏人也会为了掩盖自己而在相当长的时期内做好事。

相关文档
最新文档