F0_Ch06_Solver_Output_V12
Autodesk Nastran 2023 参考手册说明书
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
future.batchtools 0.12.0 用户指南说明书
Package‘future.batchtools’February24,2023Version0.12.0Depends R(>=3.2.0),parallelly,future(>=1.31.0)Imports batchtools(>=0.9.13),utilsSuggests globals,future.apply,listenv,markdown,R.rspVignetteBuilder R.rspTitle A Future API for Parallel and Distributed Processing using'batchtools'Description Implementation of the Future API on top of the'batchtools'package.This allows you to process futures,as defined by the'future'package,in parallel out of the box,not only on your local machine or ad-hoccluster of machines,but also via high-performance compute('HPC')jobschedulers such as'LSF','OpenLava','Slurm','SGE',and'TORQUE'/'PBS',e.g.'y<-future.apply::future_lapply(files,FUN=process)'.License LGPL(>=2.1)LazyLoad TRUEURL https://,https:///HenrikBengtsson/future.batchtoolsBugReports https:///HenrikBengtsson/future.batchtools/issues RoxygenNote7.2.3NeedsCompilation noAuthor Henrik Bengtsson[aut,cre,cph]Maintainer Henrik Bengtsson<*****************>Repository CRANDate/Publication2023-02-2409:30:02UTCR topics documented:batchtools_custom (2)batchtools_local (4)1batchtools_template (5)future.batchtools (8)future.batchtools.options (8)Index10 batchtools_custom Batchtools futures for custom batchtools configurationDescriptionBatchtools futures for custom batchtools configurationUsagebatchtools_custom(expr,envir=parent.frame(),substitute=TRUE,globals=TRUE,label=NULL,resources=list(),workers=NULL,conf.file=findConfFile(),cluster.functions=NULL,registry=list(),...)Argumentsexpr The R expression to be evaluatedenvir The environment in which global environment should be located.substitute Controls whether expr should be substitute():d or not.globals(optional)a logical,a character vector,a named list,or a Globals object.If TRUE,globals are identified by code inspection based on expr and tweak search-ing from environment envir.If FALSE,no globals are used.If a character vec-tor,then globals are identified by lookup based their names globals searchingfrom environment envir.If a named list or a Globals object,the globals areused as is.label(optional)Label of the future(where applicable,becomes the job name for most job schedulers).resources(optional)A named list passed to the batchtools template(available as variable resources).See Section’Resources’in batchtools::submitJobs()moredetails.workers(optional)The maximum number of workers the batchtools backend may use atany time.Interactive and"local"backends can only process one future at thetime(workers=1L),whereas HPC backends,where futures are resolved viaseparate jobs on a scheduler,can have multiple workers.In the latter,the defaultis workers=NULL,which will resolve to getOption("future.batchtools.workers").If neither are specified,then the default is100.conf.file(character)A batchtools configurationfile as for instance returned by batchtools::findConfFile().cluster.functionsA ClusterFunctions object.registry(optional)A named list of settings to control the setup of the batchtools registry....Additional arguments passed to BatchtoolsFuture().ValueAn object of class BatchtoolsFuture.Examplesoptions(error=function(...){print(traceback())})cf<-batchtools::makeClusterFunctionsInteractive(external=TRUE)print(cf)str(cf)plan(batchtools_custom,cluster.functions=cf)print(plan())print(nbrOfWorkers())##Create explicit futuref<-future({cat("PID:",Sys.getpid(),"\n")42L})print(f)v<-value(f)print(v)options(error=NULL)##Create explicit futuref<-future({cat("PID:",Sys.getpid(),"\n")42L})print(f)v<-value(f)print(v)4batchtools_local ##Create explicit futuref<-future({cat("PID:",Sys.getpid(),"\n")42L})v<-value(f)print(v)batchtools_local batchtools local and interactive futuresDescriptionA batchtools local future is an synchronous uniprocess future that will be evaluated in a backgroundR session.A batchtools interactive future is an synchronous uniprocess future that will be evaluatedin the current R session(and variables will be assigned to the calling environment rather than to alocal one).Both types of futures will block until the futures are resolved.Usagebatchtools_local(...,envir=parent.frame())Argumentsenvir The environment in which global environment should be located....Additional arguments passed to BatchtoolsUniprocessFuture().Detailsbatchtools local futures rely on the batchtools backend set up by batchtools::makeClusterFunctionsInteractive(exter =TRUE)and batchtools interactive futures on the one set up by batchtools::makeClusterFunctionsInteractive().These are supported by all operating systems.An alternative to batchtools local futures is to use cluster futures of the future package with a singlelocal background session,i.e.plan(cluster,workers="localhost").An alternative to batchtools interactive futures is to use plan(sequential,split=TRUE)futuresof the future package.ValueAn object of class BatchtoolsUniprocessFuture.Examples##Use local batchtools futuresplan(batchtools_local)##A global variablea<-1##Create explicit futuref<-future({b<-3c<-2a*b*c})v<-value(f)print(v)##Create implicit futurev%<-%{b<-3c<-2a*b*c}print(v)batchtools_template Batchtools futures for LSF,OpenLava,SGE,Slurm,TORQUE etc.DescriptionBatchtools futures for LSF,OpenLava,SGE,Slurm,TORQUE etc.are asynchronous multiprocess futures that will be evaluated on a compute cluster via a job scheduler.Usagebatchtools_lsf(expr,envir=parent.frame(),substitute=TRUE,globals=TRUE,label=NULL,template=NULL,resources=list(),workers=NULL,registry=list(),...)batchtools_openlava( expr,envir=parent.frame(), substitute=TRUE, globals=TRUE,label=NULL,template=NULL, resources=list(), workers=NULL,registry=list(), ...)batchtools_sge(expr,envir=parent.frame(), substitute=TRUE, globals=TRUE,label=NULL,template=NULL, resources=list(), workers=NULL,registry=list(), ...)batchtools_slurm(expr,envir=parent.frame(), substitute=TRUE, globals=TRUE,label=NULL,template=NULL, resources=list(), workers=NULL,registry=list(), ...)batchtools_torque(expr,envir=parent.frame(), substitute=TRUE, globals=TRUE,label=NULL,template=NULL, resources=list(), workers=NULL,registry=list(),...)Argumentsexpr The R expression to be evaluatedenvir The environment in which global environment should be located.substitute Controls whether expr should be substitute():d or not.globals(optional)a logical,a character vector,a named list,or a Globals object.IfTRUE,globals are identified by code inspection based on expr and tweak search-ing from environment envir.If FALSE,no globals are used.If a character vec-tor,then globals are identified by lookup based their names globals searchingfrom environment envir.If a named list or a Globals object,the globals areused as is.label(optional)Label of the future(where applicable,becomes the job name for mostjob schedulers).template(optional)A batchtools templatefile or a template string(in brew format).If notspecified,it is left to the batchtools package to locate suchfile using its searchrules.resources(optional)A named list passed to the batchtools template(available as variableresources).See Section’Resources’in batchtools::submitJobs()moredetails.workers(optional)The maximum number of workers the batchtools backend may use atany time.Interactive and"local"backends can only process one future at thetime(workers=1L),whereas HPC backends,where futures are resolved viaseparate jobs on a scheduler,can have multiple workers.In the latter,the defaultis workers=NULL,which will resolve to getOption("future.batchtools.workers").If neither are specified,then the default is100.registry(optional)A named list of settings to control the setup of the batchtools registry....Additional arguments passed to BatchtoolsFuture().DetailsThese type of batchtools futures rely on batchtools backends set up using the following batchtoolsfunctions:•batchtools::makeClusterFunctionsLSF()for Load Sharing Facility(LSF)•batchtools::makeClusterFunctionsOpenLava()for OpenLava•batchtools::makeClusterFunctionsSGE()for Sun/Oracle Grid Engine(SGE)•batchtools::makeClusterFunctionsSlurm()for Slurm•batchtools::makeClusterFunctionsTORQUE()for TORQUE/PBSValueAn object of class BatchtoolsFuture.future.batchtools future.batchtools:A Future for batchtoolsDescriptionThe future.batchtools package implements the Future API on top of batchtools such that futures can be resolved on for instance high-performance compute(HPC)clusters via job schedulers.The Future API is defined by the future package.DetailsTo use batchtools futures,load future.batchtools,and select the type of future you wish to use via future::plan().Exampleslibrary(future.batchtools)##Use local batchtools futuresplan(batchtools_local)##A global variablea<-1v%<-%{b<-3c<-2a*b*c}print(v)plan(batchtools_local)demo("mandelbrot",package="future",ask=FALSE)future.batchtools.optionsOptions used for batchtools futuresDescriptionBelow are the R options and environment variables that are used by the future.batchtools package.See future::future.options for additional ones that apply to futures in general.WARNING:Note that the names and the default values of these options may change in future ver-sions of the package.Please use with care until further notice.Settings for batchtools futures‘future.batchtools.workers’:(a positive numeric or+Inf)The default number of workers available on HPC schedulers with job queues.(Default:100)‘future.batchtools.output’:(logical)If TRUE,batchtools will produce extra output.If FALSE, such output will be disabled by setting batchtools options‘batchtools.verbose’and‘batchtools.progress’to FALSE.(Default:getOption("future.debug",FALSE))‘future.batchtools.expiration.tail’:(a positive numeric)When a batchtools job expires, the last few lines will be relayed by batchtools futures to help troubleshooting.This optioncontrols how many lines are displayed.(Default:48L)‘future.cache.path’:(character string)An absolute or relative path specifying the root folder in which batchtools registry folders are stored.This folder needs to be accessible from allhosts("workers").Specifically,it must not be a folder that is only local to the machine suchas file.path(tempdir(),".future"if an job scheduler on a HPC environment is used.(Default:.future in the current working directory)‘future.delete’:(logical)Controls whether or not the future’s batchtools registry folder is deleted after the future result has been collected.If TRUE,it is always deleted.If FALSE,it is neverdeleted.If not set or NULL,the it is deleted,unless running in non-interactive mode and thebatchtools job failed or expired,which helps to troubleshoot when running in batch mode.(Default:NULL(not set))Environment variables that set R optionsAll of the above R‘future.batchtools.*’options can be set by corresponding environment vari-able R_FUTURE_BATCHTOOLS_*when the future.batchtools package is loaded.This means thatthose environment variables must be set before the future.batchtools package is loaded in or-der to have an effect.For example,if R_FUTURE_BATCHTOOLS_WORKERS="200"is set,then option‘future.batchtools.workers’is set to200(numeric).Examples#Set an R option:options(future.cache.path="/cluster-wide/folder/.future")Indexbatchtools::findConfFile(),3batchtools::makeClusterFunctionsInteractive(),4batchtools::makeClusterFunctionsLSF(),7batchtools::makeClusterFunctionsOpenLava(),7batchtools::makeClusterFunctionsSGE(),7batchtools::makeClusterFunctionsSlurm(),7batchtools::makeClusterFunctionsTORQUE(),7batchtools::submitJobs(),2,7batchtools_bash (batchtools_local ),4batchtools_custom ,2batchtools_interactive (batchtools_local ),4batchtools_local ,4batchtools_lsf (batchtools_template ),5batchtools_openlava (batchtools_template ),5batchtools_sge (batchtools_template ),5batchtools_slurm (batchtools_template ),5batchtools_template ,5batchtools_torque(batchtools_template ),5BatchtoolsFuture(),3,7BatchtoolsUniprocessFuture(),4cluster ,4ClusterFunctions ,3future.batchtools ,8future.batchtools-package(future.batchtools ),8future.batchtools.expiration.tail(future.batchtools.options ),8future.batchtools.options ,8future.batchtools.output (future.batchtools.options ),8future.batchtools.workers ,3,7future.batchtools.workers (future.batchtools.options ),8future.cache.path(future.batchtools.options ),8future.delete (future.batchtools.options ),8future::future.options ,8future::plan(),8Globals ,2,7R_FUTURE_BATCHTOOLS_EXPIRATION_TAIL (future.batchtools.options ),8R_FUTURE_BATCHTOOLS_OUTPUT (future.batchtools.options ),8R_FUTURE_BATCHTOOLS_WORKERS (future.batchtools.options ),8R_FUTURE_CACHE_PATH (future.batchtools.options ),8R_FUTURE_DELETE (future.batchtools.options ),810。
气泡混合轻质土使用规程
目次1总则 (3)2术语和符号 (4)2.1 术语 (4)2.2 符号 (5)3材料及性能 (6)3.1 原材料 (6)3.2 性能 (6)4设计 (8)4.1 一般规定 (8)4.2 性能设计 (8)4.3 结构设计 (9)4.4 附属工程设计 (10)4.5 设计计算 (10)5配合比 (13)5.1 一般规定 (13)5.2 配合比计算 (13)5.3 配合比试配 (14)5.4 配合比调整 (14)6工程施工 (15)6.1 浇筑准备 (15)6.2 浇筑 (15)6.3 附属工程施工 (15)6.4 养护 (16)7质量检验与验收 (17)7.1 一般规定 (17)7.2 质量检验 (17)7.3 质量验收 (18)附录A 发泡剂性能试验 (20)附录B 湿容重试验 (22)附录C 适应性试验 (22)附录D 流动度试验 (24)附录E 干容重、饱水容重试验 (25)附录F 抗压强度、饱水抗压强度试验 (27)附录G 工程质量检验验收用表 (28)本规程用词说明 (35)引用标准名录 (36)条文说明 (37)Contents1.General provisions (3)2.Terms and symbols (4)2.1 Terms (4)2.2 Symbols (5)3. Materials and properties (6)3.1 Materials (6)3.2 properties (6)4. Design (8)4.1 General provisions (8)4.2 Performance design (8)4.3 Structure design (9)4.4 Subsidiary engineering design (9)4.5 Design calculation (10)5. Mix proportion (13)5.1 General provisions (13)5.2 Mix proportion calculation (13)5.3 Mix proportion trial mix (14)5.4 Mix proportion adjustment (14)6. Engineering construction (15)6.1 Construction preparation (15)6.2 Pouring .............................................................. .. (15)6.3 Subsidiary engineering construction (16)6.4 Maintenance (17)7 Quality inspection and acceptance (18)7.1 General provisions (18)7.2 Quality evaluate (18)7.3 Quality acceptance (19)Appendix A Test of foaming agent performance (20)Appendix B Wet density test (22)Appendix C Adaptability test (23)Appendix D Flow value test.................................................................................. .. (24)Appendix E Air-dry density and saturated density test (25)Appendix F Compressive strength and saturated compressive strength test (27)Appendix G Table of evaluate and acceptance for quality (28)Explanation of Wording in this code (35)Normative standard (36)Descriptive provision (37)1总则1.0.1为规范气泡混合轻质土的设计、施工,统一质量检验标准,保证气泡混合轻质土填筑工程安全适用、技术先进、经济合理,制订本规程。
基于DWT_和SVD_的鲁棒零水印算法
第36卷第4期湖南理工学院学报(自然科学版)V ol. 36 No. 4 2023年12月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Dec. 2023基于DWT和SVD的鲁棒零水印算法王利彬, 王树梅(江苏师范大学计算机科学与技术学院, 江苏徐州 221116)摘要:为了解决传统水印算法需要平衡鲁棒性和不可见性矛盾的问题, 提出一种用DWT和SVD构造零水印算法的方案. 利用SVD分解后U、V矩阵第一个列向量被攻击后具有稳定性的特点, 采用DWT使低频区域能量集中, 再使用SVD分解获取U、V矩阵. 通过比较U、V矩阵第一列向量的方式保证了水印的鲁棒性. 同时对数字水印进行Arnold变换, 既可隐藏水印信息, 又可提高水印信息的安全性. 由于算法采用零水印方式, 故拥有良好的不可见性. 实验结果表明, 该算法拥有较高的鲁棒性, 并且简单易行.关键词:零水印; 离散小波变换; 奇异值分解中图分类号: TP391 文献标识码: A 文章编号: 1672-5298(2023)04-0035-04A Robust Zero-watermarking AlgorithmBased on DWT and SVDWANG Libin, WANG Shumei(School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China) Abstract: In order to solve the problem that traditional watermarking algorithms need to balance the contradiction between robustness and invisibility, a scheme for constructing zero watermarking algorithms with DWT and SVD is proposed. Using the stability of the first column vectors of the U and V matrices after SVD decomposition, DWT is used to concentrate the energy in the low-frequency region, and then SVD decomposition is used to obtain the U and V matrices. The robustness of the watermark is ensured by comparing the first column vectors of the U and V matrices. At the same time, the Arnold transform is applied to the digital watermark, which can both hide the watermark information and improve the security of the watermark information. Since the algorithm adopts zero watermarking, it has good invisibility. The experimental results show that the algorithm has high robustness and is simple and easy to implement.Key words: zero-watermark; discrete wavelet transform; singular value decomposition0 引言信息隐藏技术是在传统加密学的基础上, 利用多媒体时空上的冗余性以及人眼的不敏感性, 隐藏信息的存在. 图像作为日常生活中常见的数字媒体形式, 也是一个很好的信息隐藏载体. 由于图像中存在着很高的冗余性, 故可以利用人眼的不敏感性和图像的冗余性将秘密信息嵌入到载体图像之中. 其过程是将加密后的水印信息利用嵌入算法隐藏到宿主图像中[1]. 例如在空间域中, 将原始图像像素提取转为二进制, 并将信息嵌入到最低位的最低有效位算法LSB[2], 或者是通过各种变换域构造算法, 比如利用离散余弦变换DCT中频和低频系数构造算法[3~5], 利用DWT构造算法[6~9], 或者利用DFT构造算法[10]. 以上算法均有较强的鲁棒性和不可见性, 满足了信息隐藏的需求. 但由于传统构造算法需要将水印信息嵌入到图像中去, 所以平衡鲁棒性和不可见性之间的矛盾成为了主要问题. 为了平衡鲁棒性和不可见性之间的矛盾, 本文采用零水印算法通过小波变换选择低频LL区域, 再进行分块, 通过奇异值分解获得每个子块的U、V矩阵. U、V矩阵中的第一列具有较好的稳定性[11], 通过比较每个子块U、V矩阵的大小获得图像的特征信息并进行存储, 最后与经Arnold变换后的水印图像做异或运算, 将得到的矩阵信息S保存下来. 水印检测过程中, 将S与待检测图像相异或, 通过逆Arnold变换恢复水印信息. 实验结果证明, 本算法具有较强的鲁棒性和不可见性.收稿日期: 2022-08-17作者简介: 王利彬, 男, 硕士研究生. 主要研究方向: 数字图像处理通信作者: 王树梅, 女, 博士, 副教授. 主要研究方向: 数字图像处理, 数字水印, 信息隐藏36 湖南理工学院学报(自然科学版) 第36卷1 理论基础1.1小波变换小波变换是图像处理中十分受重视的技术, 它不仅继承了傅里叶分析的良好性质, 也弥补了傅里叶分析的许多不足. 小波变换的窗口大小是固定的, 而波形能够通过分析要求进行局部改变, 具有自适应性.当分析信号的高频部分时, 小波分析就显示较低的频率分析率; 而当分析信号的低频部分时, 小波分析就显示出较高的频率分析率[12].在数字图像处理中, 信号是离散的, 所以离散小波变换的应用范围更加广阔. 离散小波函数的定义为2,000()||().m m m n t a a t nb ϕϕ--=- (1)其中m , n 都是整数. 设尺度伸缩因子为a , 平移参数为 b , a 与b 分别满足0m a a =, 00m b nb a =. 离散小波变换的定义为,(,(()d ).)m n Wfx m n f t t t ϕ+∞-∞=⎰ (2)1.2 奇异值分解奇异值分解SVD 是线性代数中处理矩阵的一种重要工具, 能够获取矩阵数据的奇异值. 可以将图像看作一个矩阵, 本文将应用矩阵的SVD 来获取图像的特征信息. 图像大小为N N ⨯, 其奇异值分解为1.r TT i i i i I USV u v λ===∑ (3)其中U 和V 为左右奇异向量, 是大小为N N ⨯的正交矩阵, 12diag (,,,,0,,0)r S λλλ= 为非负对角矩阵,其中i λ为图像的奇异值并且满足120,r r λλλ> ≥≥≥为矩阵的秩.图像U , V 矩阵所对应的第一列主要用来表征图像的结构信息. 在文[9]中, 先对图像添加高斯噪声和进行JPEG 压缩攻击, 再计算攻击前后的向量内积变化. 实验数据表明, 只有U , V 矩阵的第一列向量在经过攻击后仍具有良好的稳定性.2 零水印算法设计设载体图像为I , 其大小为N N ⨯, 水印图像为W , 其大小为M M ⨯.2.1 零水印构造步骤Step1 对载体图像I 进行DWT 变换, 分为LL 、LH 、HL 、HH 四部分, 选择LL 进行分块, 分成88⨯不重叠的子块block.Step2 对每个子块block 进行奇异值分解, 选择U , V 矩阵第一列中的第一个元素进行比较. 若u v >则置1, 若u v <, 则置0, 依次遍历每一个子块的结果, 将比较结果存入矩阵temp.Step3 对原水印图像进行K 次Arnold 变换, 将变换结果记作W '.Step4 将W '与 temp 矩阵相异或, 将所得结果记作S .Step5 将所得结果S 和K 保存在认证库中, 使用认证库中数据对待检测图片进行检测.2.2 零水印检测步骤Step1 对待检测图像进行如零水印构造步骤Step1 和Step2所示的操作, 得到待检测图像的temp 矩阵.Step2 将待检测图像的temp 矩阵与认证库中的矩阵异或, 得到矩阵S .图1 水印图像算法框图 水印图像W Arnold 变换 与temp 异或 保存S 与K 结果第4期王利彬, 等: 基于DWT和SVD的鲁棒零水印算法 37 Step3 对矩阵S进行K次Arnold逆变换, 得到原水印图像.3 实验结果及分析采用归一化相似度NC来进行评价. NC用来评价检测后的水印和原始水印的相似度, 若NC的值越⨯像素大小的灰度图像Lena作为载体接近1, 则表示提取出的水印和原始水印越相似. 实验使用512512⨯像素大小的二值图像如图3所示.图像如图2所示, 采用3232图2 原始图像与攻击后图像图3 原始与攻击后的水印图像38 湖南理工学院学报(自然科学版) 第36卷本文采用的具体攻击类型如下. 实验结果见表1.(1)高斯噪声, 在图像中添加零均值, 方差为0.01的高斯噪声;(2)椒盐噪声, 添加比例为2%;;(3)均值滤波, 滤波模板尺寸为55(4)旋转攻击, 旋转角度为10°;(5)剪切攻击, 裁剪图像左上角四分之一大小.表1 水印载体图像在各种攻击下的实验结果攻击类型高斯噪声椒盐噪声均值滤波旋转攻击剪切攻击PSNR值20.01 19.36 28.25 5.68 11.55NC值0.90 0.91 0.95 0.71 0.95 从实验结果来看, 该算法对于常见的噪声、滤波之类的攻击方式有良好的鲁棒性. 在几何攻击中, 曾尝试剪切图像的二分之一大小, 结果图像仍具有很好的鲁棒性. 但针对旋转攻击, 图像的鲁棒性较差.4 结束语本文采用DWT变换选择LL低频部分做分块, 并对子块进行奇异值分解, 构造了一种新的零水印算法. 利用U, V矩阵第一列的元素具有稳定性的特点, 使得算法在面对常见攻击时具有较好的鲁棒性. 在后续研究工作中, 该算法在面对水印的旋转攻击时还需要进一步改进.参考文献:[1]王树梅. 数字图像水印技术综述[J]. 湖南理工学院学报(自然科学版), 2022, 35(1): 31−36+68.[2]Chan C K, Cheng L M. Hiding data in images by simple LSB substitution[J]. Pattern Recognition, 2004, 37(3): 469−474.[3]王珂. 基于DCT域中频系数替换的盲水印算法攻击的研究[J]. 信息通信, 2017 (11): 4−7.[4]汪太月, 李宏伟. 基于DCT变换的彩色图像置乱数字水印算法[J]. 通信技术, 2014, 47(9): 1084−1089.[5]刘昕浩, 郭腾, 谢德辉, 等. 基于Logistic混沌映射的图像加密通信系统研究[J]. 湖南理工学院学报(自然科学版), 2015, 28(4): 27−31.[6]雷求胜. 基于小波变换的数字水印图像处理技术研究[J]. 电子设计工程, 2021, 29(22): 161−165.[7]吕海翠, 傅鹂, 王丹. 小波变换的低频数字水印[J]. 计算机工程与应用, 2009, 45(11): 99−101.[8]熊祥光, 王力. 一种改进的DWT-SVD域参考水印方案[J]. 计算机工程与应用, 2014, 50(7): 75−79.[9]陈明举, 陈善学. 一种基于小波变换与奇异分解的图像水印算法[J]. 信息与电子工程, 2007, 5(1): 57−61.[10]王树梅, 张文斌. 一种基于傅里叶变换的鲁棒水印算法[J]. 湖南理工学院学报(自然科学版), 2019, 32(3): 17−22.[11]王巍. 变换域图像零水印技术研究[D]. 北京: 北京邮电大学, 2013.[12]杨垚婷. 基于小波变换的数字水印算法的研究与实现[D]. 成都: 成都理工大学, 2017.。
ICEM-Intro_14.5_L07_Solver_Output
Nastran
Ansys and Abaqus
LS-Dyna and Autodyn
• Constraints tab
– –
© 2012 ANSYS, Inc. April 1, 2013
– All functions are only available for LS-Dyna and
Autodyn “Define contact” is allowable with Ansys and Abaqus Nastran only allows the first two functions
–
–
–
© 2012 ANSYS, Inc. April 1, 2013
(*.fbc) and the project It’s always safe to save these when asked, but not necessary if you know you saved them and didn’t make any changes since then It will then ask for the ICEM CFD mesh file to translate • *.uns file if the solver requires an unstructured mesh • *.multiblock file if the solver requires a structured mesh A final menu will pop up that has specific options for the solver translation being used • The example on the left is for Fluent_V6 All translators will require a boundary condition file even if no BC’s are set • A empty BC file will contain just the part names There will always be a name for the output file
06_HFSS的求解器(1)
Iterative Solver(迭代法求解)
Direct Solver:未知量N的1.2~1.3 次方 Iterative Solver:未知量N的1.0~1.1 次方: 接近线性
4-22
Iterative Solver
4-36
Faster Solutions
4-37
Memory Savings
4-38
Example #2: Asymmetric Dish Antenna
4-39
Example #2: Summary
4-40
Remote Simulation Manager
4-41
Platform Support
• S11 @ 12 GHz
1st S11 = 0.86584 Mixed S11 = 0.86511
4-18
Mixed Element Order Example #2
4-19
Mixed Element Order Example #3
4-20
Solver Technology Overview
收敛判断:
4-4
HFSS的求解设置
边界设置
Assign Reassign Delete All Visualization Reprioritize Edit Global Material Environment Assign Edit Impedance Multi… Reassign Delete All Visualization Reorder Matrix
[Fluent] Solver error原因及处理方法综整
[Fluent] Solver error 原因及处理方法综整
Error: Floating point error: invalid number 原因: 数据矩阵求解过程中出现的问题。 方法:1、检查网格质量。9 U' B1 o; v9 E0 k, X
( t5 A$ ~ O: A8 Q% \8 x$ P
原因: license 过期 方法: 更新 license。
Fluent: 时机:在水流过毛细管的仿针的基础之上,加入了表面张力,再求解就总出现这个错误 Updating solution at time level N... Error: Too many (5895) VOF sub-timesteps. The velocity) ]9 p4 T' i8 } ^ field is probably diverging. Please check the solution," S# ], L% G/ k2 Q, J7 y @- q and reduce the time-step if necessary. Error Object: () 原因: 流体流动的特征时间小一个数量级才行$ ?1 ]' n9 i) J, V5 E1 M 方法: 应该可以先设置小的时间步迭代,之后再逐渐增加时间步长 ---------by wzg235
o
(感谢 gallongallon 提供) 3. 解决方法是把 courant number 调小一点,把松弛因子调小一点 (provided byraindrops)
其他可能方法:/ H: T; u5 p, l* t5 k. ` 1:你在 solve----control-----limit 下改变 mix turbulent viscosity ratio 的设置值(默认是 100000), 但是不建议轻易使用,因为这个可能会造成你的解有可能和工程真实解有出入 2:重新设置 一下边界条件,尤其要注意出口和入口(如果有)的湍流动能的设置 3:检查一下你的速度设置在实际中是不是真实存在的,我有一次就是出现了这样的低级错 误' Q$ @! l9 f5 N! I& D5 S$ ] 4:尽量把网格的质量提高上去,尽量使用结构化的网格这样的好处多多。 ----------by shsaixiaoxue
MaxDEA
Detailed Contents
Chapter 1: Main Features of MaxDEA ..................................................8
1.1 Main Features ............................................................................................... 8 1.2 Models in MaxDEA...................................................................................... 9 1.3 What’s NEW ............................................................................................... 12 1.4 Compare MaxDEA Editions ..................................................................... 17
3.1 Import Data ................................................................................................ 19 3.2 Define Data ................................................................................................. 24 3.3 Set and Run Model..................................................................................... 25 3.4 Export Results ............................................................................................ 77
MORNSUN LS08-13BxxSS系列AC DC电源说明书
8W,DIY AC/DC converterRoHSFEATURES●Ultra-wide 85-305VAC and 100-430VDC input voltage range ●Accepts AC or DC input (dual-use of same terminal)●Operating ambient temperature range:-40℃~+85℃●Multi-application available,flexible layout ●High power density,high reliability●Low power consumption,green power●Output short circuit,over-current protection●Designed to meet IEC/EN/UL62368safety standards (Pending)●Designed to meet IEC/EN/UL60335safety standardsLS08-13BxxSS series is one of Mornsun’s highly efficient green power AC-DC Converter series.They feature ultra-wide wide input rangeaccepting either AC or DC voltage,high efficiency,low power consumption and CLASS II reinforced insulation.All models are particularly suitable for industrial control,electric power,instrumentation and smart home applications which don’t have high requirement for dimension.A variety of EMC external circuits meet the needs of multiple industries.Input SpecificationsItemOperating Conditions Min.Typ.Max.Unit Input Voltage Range AC input 85--305V AC DC input100--430VDC Input Frequency 47--63HzInput Current 115V AC ----0.3A 277V AC ----0.15Inrush Current115V AC --15--277V AC--30--Recommended External Input Fuse 1A,slow-blow,requiredHot PlugUnavailableOutput SpecificationsItemOperating Conditions Min.Typ.Max.UnitOutput Voltage Accuracy 0%-100%load 3.3V output --±1.5±3%Other output--±1±2Line Regulation Rated load --±0.5±1Load Regulation 0%-100%load--±1±1.5Ripple &Noise *20MHz bandwidth (peak-to-peak value)--80150mV Temperature Coefficient --±0.02--%/°C Short Circuit Protection Hiccup,continuous,self-recoveryOver-current Protection ≥110%Io,self-recoveryMinimum Load----%Note:*The “parallel cable”method is used for ripple and noise test,please refer to AC-DC Converter Application Notes for specific information.Selection GuideCertificationPart No.Output PowerNominal Output Voltage and Current (Vo/Io)Efficiency at 230V AC(%)Typ.Capacitive Load(µF)Max.CE/UL/CB (Pending)LS08-13B03SS 5.28W3.3V/1600mA 701500LS08-13B05SS8W 5V/1600mA 741500LS08-13B09SS 9V/880mA 751000LS08-13B12SS 12V/670mA 76680LS08-13B15SS 15V/530mV 77470LS08-13B24SS24V/330mA79330General SpecificationsItem Operating Conditions Min.Typ.Max.UnitIsolation Test Input-output Electric Strength Test for1min.,(leakage current<5mA)3000----VACOperating Temperature-40--+85℃Storage Temperature-40--+105Storage Humidity----95%RHPower Derating -40℃~-25℃ 2.67----%/℃+55℃~+85℃ 2.5----85V AC-100VAC1----277V AC-305V AC0.54----Safety Standard IEC/EN/UL62368,IEC/EN/UL60335 Safety Certification IEC/EN/UL62368(Pending) Safety CLASS CLASS IIMTBF MIL-HDBK-217F@25°C>300,000h Mechanical SpecificationsCase Material44.50x24.00x15.00mmWeight11g(Typ.)Cooling method Free air convectionElectromagnetic Compatibility(EMC)Emissions CECISPR32/EN55032CLASS A(Recommended circuit1,4)CISPR32/EN55032CLASS B(Recommended circuit2,3) RECISPR32/EN55032CLASS A(Recommended circuit1,4)CISPR32/EN55032CLASS B(Recommended circuit2,3)Immunity ESD IEC/EN61000-4-2Contact±6KV Perf.Criteria B RS IEC/EN61000-4-310V/m perf.Criteria AEFTIEC/EN61000-4-4±2KV(Recommended circuit1,2)perf.Criteria BIEC/EN61000-4-4±4KV(Recommended circuit3,4)perf.Criteria B SurgeIEC/EN61000-4-5line to line±1KV(Recommended circuit1,2)perf.Criteria BIEC/EN61000-4-5line to line±2KV(Recommended circuit3,4)IEC/EN61000-4-5line to line±4KV(Recommended circuit4)perf.Criteria B CS IEC/EN61000-4-610Vr.m.s perf.Criteria A Voltage dips,shortinterruptions and voltagevariations immunityIEC/EN61000-4-110%,70%perf.Criteria BProduct Characteristic CurveNote:①With an AC input between85-100VAC/277-305VAC and a DC input between100-120VDC/390-430VDC,the output power must be derated as per temperature derating curves;②This product is suitable for applications using natural air cooling;for applications in closed environment please consult factory or one of our FAE.Additional Circuits Design ReferenceLS series additional circuits design referenceLS08series additional components selection guidePart No.FUSE(required)C1required)C2(required)L1(required)C3(required )C4CY1(required )LS08-13B03SS 1A/300V22µF/450V470µF/16V(solid-state capacitor) 4.7µH 150µF/35V 0.1µF/50V1.0nF/400V ACLS08-13B05SS LS08-13B09SS 220µF/16V(solid-state capacitor)100µF/35V LS08-13B12SS LS08-13B15SS 470uF/35V 47µF/35VLS08-13B24SS220uF/35VNote:1.C1:input capacitors,C2:output storage capacitors,they must be connected externally.2.We recommend using an electrolytic capacitor with high frequency and low ESR rating for C3(refer to manufacture’s datasheet).Combined with C2,L1,they form a pi-type filter circuit.Choose a capacitor voltage rating with at least 20%margin,in other words not exceeding 80%.C4is a ceramic capacitor,used for filtering high frequency noise.A suppressor diode (TVS)is a recommended to protect the application in case of a converter failure and specification should be 1.2times of the output voltage.Immunity design circuits for referenceEmissions design circuits for referenceCLASS ⅢCLASS ⅣCLASS ACLASS BEnvironmental Application EMC SolutionLS series environmental application EMC solution selection tableRecommendedcircuit Application environmental Typical industryInput voltagerangeEnvironment temperature Emissions Immunity 1Basic applicationNone85~305V AC -40℃~+85℃CLASS A CLASS Ⅲ2Indoor civil environment Smart home/Home appliances(2Y)-25℃~+55℃CLASS BCLASS ⅢIndoor general environment Intelligent building/Intelligentagriculture 3Indoor industrial environment Manufacturing workshop -25℃~+55℃CLASS B CLASS Ⅳ4Outdoor general environmentITS/Video monitoring/Charging point/Communication/Securityand protection-40℃~+85℃CLASS ACLASS ⅣOutdoor harsh environmentOn-line power meter Communication base station-40℃~+85℃CLASS A>CLASS ⅣSurge:line to ground ±4KV EFT:CLASS ⅣElectromagnetic Compatibility Solution--Recommended Circuit1.Recommended circuit 1——Basic applicationrecommended circuit 1Application environmentalAmbient temperature rangeImmunity CLASSEmissions CLASSBasic application-40℃~+85℃CLASS ⅢCLASS AComponentRecommended valueR112Ω/3W LDM4.7mH2.Recommended circuit 2——Indoor civil /Universal system recommended circuits for general environmentRecommended circuit 2Application environmentalAmbient temperature rangeImmunity CLASSEmissions CLASS Indoor civil /general -25℃~+55℃CLASS ⅢCLASS BComponentRecommended valueR112Ω/3W CY1(CY2) 1.0nF/400V ACLCM 3.5mH LDM 0.33mH CX0.1µF/310VAC FUSE (required)1A/300V ,slow-blowNote:In the home appliance application environment,the two Y capacitors of the primary and secondary need to be externally connected (CY1/CY2,value at 2.2nF/400VAC),which can meet the EN60335certification.In other industries,only one Y capacitor is needed.3.Recommended circuit 3——Universal system recommended circuits for indoor industrial environmentRecommended circuit 3Application environmental Ambienttemperature rangeImmunity CLASSEmissions CLASSIndoor industrial-25℃~+55℃CLASS ⅣCLASS BComponentRecommended valueMOV S14K350C1450V/22uF CY1 2.2nF/400V AC CX 0.1µF/310V ACLCM 3.5mH LDM 0.33mH R112Ω/3WFUSE (required)2A/300V ,slow-blow4.Recommended circuit 4——Universal system recommended circuits for outdoor general/harsh environmentRecommended circuit 4Application environmental Ambienttemperature rangeImmunity CLASSEmissions CLASSOutdoor general environment-40℃~+85℃CLASS ⅣCLASS AComponentRecommended valueMOV S14K350C1450V/22uF LDM 4.7mH R112Ω/3WFUSE (required)2A/300V ,slow-blowApplication environmental Ambient temperaturerangeImmunity CLASS EmissionsCLASSOutdoor harsh environment -40℃~+85℃>CLASSⅣSurge:line to ground±4KVEFT:CLASSⅣCLASS AComponent Recommended valueMOV S20K350C1450V/33uF(Surge protection priority)LDM 4.7mHR133Ω/5WFUSE(required) 6.3A/300V,slow-blow5.For additional information please refer to application notes on . LS08-13BxxSS Dimensions and Recommended LayoutNote:1.For additional information on Product Packaging please refer to .Packaging bag number:58220032;2.External electrolytic capacitors are required to modules,more details refer to typical applications;3.This part is open frame,at least6.4mm safety distance between the primary and secondary external components of the module isneeded to meet the safety requirement;4.Unless otherwise specified,parameters in this datasheet were measured under the conditions of Ta=25℃,humidity<75%,nominal inputvoltage(115V and230V)and rated output load;5.In order to improve the efficiency at light load,there will be audible noise generated,but it does not affect product performance andreliability;6.Module required dispensing fixed after assembled;7.All index testing methods in this datasheet are based on our company corporate standards;8.We can provide product customization service,please contact our technicians directly for specific information;9.Products are related to laws and regulations:see"Features"and"EMC";10.Our products shall be classified according to ISO14001and related environmental laws and regulations,and shall be handled byqualified units.Mornsun Guangzhou Science&Technology Co.,Ltd.Address:No.5,Kehui St.1,Kehui Development Center,Science Ave.,Guangzhou Science City,Huangpu District,Guangzhou,P.R.China Tel:86-20-38601850Fax:86-20-38601272E-mail:***************。
3GPP协议-36521-1-e40_s00-s05
3GPP TS 36.521-1 V14.4.0 (2017-09)Technical Specification3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) conformance specification;Radio transmission and reception;Part 1: Conformance Testing(Release 14)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.KeywordsUMTS LTE3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members a nd of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (92)Introduction (92)1Scope (93)2References (94)3Definitions, symbols and abbreviations (96)3.1Definitions (96)3.2Symbols (98)3.3Abbreviations (100)4General (103)4.1Categorization of test requirements in CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0, UEcategory M1, UE category 1bis, UE category NB1 and V2X Communication (104)4.2RF requirements in later releases (105)5Frequency bands and channel arrangement (106)5.1General (106)5.2Operating bands (106)5.2A Operating bands for CA (108)5.2B Operating bands for UL-MIMO (116)5.2C Operating bands for Dual Connectivity (116)5.2D Operating bands for ProSe (117)5.2E Operating bands for UE category 0 and UE category M1 (118)5.2F Operating bands for UE category NB1 (118)5.2G Operating bands for V2X Communication (118)5.3TX–RX frequency separation (119)5.3A TX–RX frequency separation for CA (120)5.4Channel arrangement (120)5.4.1Channel spacing (120)5.4.1A Channel spacing for CA (121)5.4.1F Channel spacing for UE category NB1 (121)5.4.2Channel bandwidth (121)5.4.2.1Channel bandwidths per operating band (122)5.4.2A Channel bandwidth for CA (124)5.4.2A.1Channel bandwidths per operating band for CA (126)5.4.2B Channel bandwidth for UL-MIMO (171)5.4.2B.1Channel bandwidths per operating band for UL- MIMO (171)5.4.2C Channel bandwidth for Dual Connectivity (171)5.4.2D Channel bandwidth for ProSe (171)5.4.2D.1Channel bandwidths per operating band for ProSe (171)5.4.2F Channel bandwidth for category NB1 (172)5.4.2G Channel bandwidth for V2X Communication (173)5.4.2G.1Channel bandwidths per operating band for V2X Communication (173)5.4.3Channel raster (174)5.4.3A Channel raster for CA (175)5.4.3F Channel raster for UE category NB1 (175)5.4.4Carrier frequency and EARFCN (175)5.4.4F Carrier frequency and EARFCN for category NB1 (177)6Transmitter Characteristics (179)6.1General (179)6.2Transmit power (180)6.2.1Void (180)6.2.2UE Maximum Output Power (180)6.2.2.1Test purpose (180)6.2.2.4Test description (182)6.2.2.4.1Initial condition (182)6.2.2.4.2Test procedure (183)6.2.2.4.3Message contents (183)6.2.2.5Test requirements (183)6.2.2_1Maximum Output Power for HPUE (185)6.2.2_1.1Test purpose (185)6.2.2_1.2Test applicability (185)6.2.2_1.3Minimum conformance requirements (185)6.2.2_1.4Test description (185)6.2.2_1.5Test requirements (186)6.2.2A UE Maximum Output Power for CA (187)6.2.2A.0Minimum conformance requirements (187)6.2.2A.1UE Maximum Output Power for CA (intra-band contiguous DL CA and UL CA) (189)6.2.2A.1.1Test purpose (189)6.2.2A.1.2Test applicability (189)6.2.2A.1.3Minimum conformance requirements (189)6.2.2A.1.4Test description (189)6.2.2A.1.5Test Requirements (191)6.2.2A.2UE Maximum Output Power for CA (inter-band DL CA and UL CA) (192)6.2.2A.2.1Test purpose (192)6.2.2A.2.2Test applicability (192)6.2.2A.2.3Minimum conformance requirements (192)6.2.2A.2.4Test description (192)6.2.2A.2.5Test Requirements (194)6.2.2A.3UE Maximum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (196)6.2.2A.4.1UE Maximum Output Power for CA (intra-band contiguous 3DL CA and 3UL CA) (196)6.2.2A.4.1.1Test purpose (196)6.2.2A.4.1.2Test applicability (196)6.2.2A.4.1.3Minimum conformance requirements (196)6.2.2A.4.1.4Test description (196)6.2.2A.4.1.5Test Requirements (198)6.2.2A.4.2UE Maximum Output Power for CA (inter-band 3DL CA and 3UL CA) (198)6.2.2A.4.2.1Test purpose (199)6.2.2A.4.2.2Test applicability (199)6.2.2A.4.2.3Minimum conformance requirements (199)6.2.2A.4.2.4Test description (199)6.2.2A.4.2.5Test Requirements (201)6.2.2B UE Maximum Output Power for UL-MIMO (201)6.2.2B.1Test purpose (201)6.2.2B.2Test applicability (202)6.2.2B.3Minimum conformance requirements (202)6.2.2B.4Test description (204)6.2.2B.4.1Initial condition (204)6.2.2B.4.2Test procedure (205)6.2.2B.4.3Message contents (205)6.2.2B.5Test requirements (205)6.2.2B_1HPUE Maximum Output Power for UL-MIMO (207)6.2.2B_1.1Test purpose (207)6.2.2B_1.2Test applicability (207)6.2.2B_1.3Minimum conformance requirements (207)6.2.2B_1.4Test description (207)6.2.2B_1.5Test requirements (208)6.2.2C 2096.2.2D UE Maximum Output Power for ProSe (209)6.2.2D.0Minimum conformance requirements (209)6.2.2D.1UE Maximum Output Power for ProSe Discovery (209)6.2.2D.1.1Test purpose (209)6.2.2D.1.2Test applicability (209)6.2.2D.1.3Minimum Conformance requirements (209)6.2.2D.2UE Maximum Output Power for ProSe Direct Communication (211)6.2.2D.2.1Test purpose (211)6.2.2D.2.2Test applicability (211)6.2.2D.2.3Minimum conformance requirements (211)6.2.2D.2.4Test description (211)6.2.2E UE Maximum Output Power for UE category 0 (212)6.2.2E.1Test purpose (212)6.2.2E.2Test applicability (212)6.2.2E.3Minimum conformance requirements (212)6.2.2E.4Test description (212)6.2.2E.4.3Message contents (213)6.2.2E.5Test requirements (213)6.2.2EA UE Maximum Output Power for UE category M1 (215)6.2.2EA.1Test purpose (215)6.2.2EA.2Test applicability (215)6.2.2EA.3Minimum conformance requirements (215)6.2.2EA.4Test description (216)6.2.2EA.4.3Message contents (217)6.2.2EA.5Test requirements (217)6.2.2F UE Maximum Output Power for category NB1 (218)6.2.2F.1Test purpose (218)6.2.2F.2Test applicability (218)6.2.2F.3Minimum conformance requirements (218)6.2.2F.4Test description (219)6.2.2F.4.1Initial condition (219)6.2.2F.4.2Test procedure (220)6.2.2F.4.3Message contents (220)6.2.2F.5Test requirements (220)6.2.2G UE Maximum Output Power for V2X Communication (221)6.2.2G.1UE Maximum Output Power for V2X Communication / Non-concurrent with E-UTRA uplinktransmission (221)6.2.2G.1.1Test purpose (221)6.2.2G.1.2Test applicability (221)6.2.2G.1.3Minimum conformance requirements (221)6.2.2G.1.4Test description (222)6.2.2G.1.4.1Initial conditions (222)6.2.2G.1.4.2Test procedure (222)6.2.2G.1.4.3Message contents (222)6.2.2G.1.5Test requirements (223)6.2.2G.2UE Maximum Output Power for V2X Communication / Simultaneous E-UTRA V2X sidelinkand E-UTRA uplink transmission (223)6.2.2G.2.1Test purpose (223)6.2.2G.2.2Test applicability (223)6.2.2G.2.3Minimum conformance requirements (223)6.2.2G.2.4Test description (224)6.2.2G.2.4.1Initial conditions (224)6.2.2G.2.4.2Test procedure (225)6.2.2G.2.4.3Message contents (226)6.2.2G.2.5Test requirements (226)6.2.3Maximum Power Reduction (MPR) (226)6.2.3.1Test purpose (226)6.2.3.2Test applicability (226)6.2.3.3Minimum conformance requirements (227)6.2.3.4Test description (227)6.2.3.4.1Initial condition (227)6.2.3.4.2Test procedure (228)6.2.3.4.3Message contents (228)6.2.3.5Test requirements (229)6.2.3_1Maximum Power Reduction (MPR) for HPUE (231)6.2.3_1.1Test purpose (231)6.2.3_1.4Test description (232)6.2.3_1.5Test requirements (232)6.2.3_2Maximum Power Reduction (MPR) for Multi-Cluster PUSCH (232)6.2.3_2.1Test purpose (232)6.2.3_2.2Test applicability (232)6.2.3_2.3Minimum conformance requirements (233)6.2.3_2.4Test description (233)6.2.3_2.4.1Initial condition (233)6.2.3_2.4.2Test procedure (234)6.2.3_2.4.3Message contents (234)6.2.3_2.5Test requirements (234)6.2.3_3Maximum Power Reduction (MPR) for UL 64QAM (235)6.2.3_3.1Test purpose (236)6.2.3_3.2Test applicability (236)6.2.3_3.3Minimum conformance requirements (236)6.2.3_3.4Test description (236)6.2.3_3.4.1Initial condition (236)6.2.3_3.4.2Test procedure (237)6.2.3_3.4.3Message contents (237)6.2.3_3.5Test requirements (238)6.2.3_4Maximum Power Reduction (MPR) for Multi-Cluster PUSCH with UL 64QAM (240)6.2.3_4.1Test purpose (240)6.2.3_4.2Test applicability (240)6.2.3_4.3Minimum conformance requirements (240)6.2.3_4.4Test description (241)6.2.3_4.4.1Initial condition (241)6.2.3_4.4.2Test procedure (242)6.2.3_4.4.3Message contents (242)6.2.3_4.5Test requirements (242)6.2.3A Maximum Power Reduction (MPR) for CA (243)6.2.3A.1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) (243)6.2.3A.1.1Test purpose (243)6.2.3A.1.2Test applicability (243)6.2.3A.1.3Minimum conformance requirements (244)6.2.3A.1.4Test description (245)6.2.3A.1.5Test Requirements (248)6.2.3A.1_1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) for UL64QAM (250)6.2.3A.1_1.1Test purpose (251)6.2.3A.1_1.2Test applicability (251)6.2.3A.1_1.3Minimum conformance requirements (251)6.2.3A.1_1.4Test description (252)6.2.3A.1_1.5Test requirement (254)6.2.3A.2Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) (255)6.2.3A.2.1Test purpose (255)6.2.3A.2.2Test applicability (255)6.2.3A.2.3Minimum conformance requirements (255)6.2.3A.2.4Test description (256)6.2.3A.2.5Test Requirements (260)6.2.3A.2_1Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) for UL 64QAM (263)6.2.3A.2_1.1Test purpose (263)6.2.3A.2_1.2Test applicability (263)6.2.3A.2_1.3Minimum conformance requirements (263)6.2.3A.2_1.4Test description (264)6.2.3A.2_1.5Test Requirements (266)6.2.3A.3Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) (267)6.2.3A.3.1Test purpose (267)6.2.3A.3.2Test applicability (267)6.2.3A.3.3Minimum conformance requirements (268)6.2.3A.3.4Test description (268)6.2.3A.3_1Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) forUL 64QAM (270)6.2.3A.3_1.1Test purpose (270)6.2.3A.3_1.2Test applicability (270)6.2.3A.3_1.3Minimum conformance requirements (270)6.2.3A.3_1.4Test description (271)6.2.3A.3_1.5Test Requirements (272)6.2.3B Maximum Power Reduction (MPR) for UL-MIMO (272)6.2.3B.1Test purpose (272)6.2.3B.2Test applicability (272)6.2.3B.3Minimum conformance requirements (273)6.2.3B.4Test description (273)6.2.3B.4.1Initial condition (273)6.2.3B.4.2Test procedure (274)6.2.3B.4.3Message contents (275)6.2.3B.5Test requirements (275)6.2.3D UE Maximum Output Power for ProSe (277)6.2.3D.0Minimum conformance requirements (277)6.2.3D.1Maximum Power Reduction (MPR) for ProSe Discovery (278)6.2.3D.1.1Test purpose (278)6.2.3D.1.2Test applicability (278)6.2.3D.1.3Minimum conformance requirements (278)6.2.3D.1.4Test description (278)6.2.3D.1.4.1Initial condition (278)6.2.3D.1.4.2Test procedure (279)6.2.3D.1.4.3Message contents (279)6.2.3D.1.5Test requirements (280)6.2.3D.2Maximum Power Reduction (MPR) ProSe Direct Communication (281)6.2.3D.2.1Test purpose (282)6.2.3D.2.2Test applicability (282)6.2.3D.2.3Minimum conformance requirements (282)6.2.3D.2.4Test description (282)6.2.3D.2.4.1Initial conditions (282)6.2.3D.2.4.2Test procedure (282)6.2.3D.2.4.3Message contents (282)6.2.3D.2.5Test requirements (282)6.2.3E Maximum Power Reduction (MPR) for UE category 0 (282)6.2.3E.1Test purpose (282)6.2.3E.2Test applicability (282)6.2.3E.3Minimum conformance requirements (282)6.2.3E.4Test description (282)6.2.3E.4.1Initial condition (282)6.2.3E.4.2Test procedure (283)6.2.3E.4.3Message contents (283)6.2.3E.5Test requirements (283)6.2.3EA Maximum Power Reduction (MPR) for UE category M1 (284)6.2.3EA.1Test purpose (284)6.2.3EA.2Test applicability (284)6.2.3EA.3Minimum conformance requirements (284)6.2.3EA.4Test description (285)6.2.3EA.4.1Initial condition (285)6.2.3EA.4.2Test procedure (287)6.2.3EA.4.3Message contents (287)6.2.3EA.5Test requirements (287)6.2.3F Maximum Power Reduction (MPR) for category NB1 (290)6.2.3F.1Test purpose (290)6.2.3F.2Test applicability (290)6.2.3F.3Minimum conformance requirements (290)6.2.3F.4Test description (291)6.2.3F.4.1Initial condition (291)6.2.3F.5Test requirements (292)6.2.3G Maximum Power Reduction (MPR) for V2X communication (292)6.2.3G.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 (293)6.2.3G.1.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / Contiguousallocation of PSCCH and PSSCH (293)6.2.3G.1.1.1Test purpose (293)6.2.3G.1.1.2Test applicability (293)6.2.3G.1.1.3Minimum conformance requirements (293)6.2.3G.1.1.4Test description (293)6.2.3G.1.1.4.1Initial condition (293)6.2.3G.1.1.4.2Test procedure (294)6.2.3G.1.1.4.3Message contents (294)6.2.3G.1.1.5Test Requirements (294)6.2.3G.1.2 2956.2.3G.1.3Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / SimultaneousE-UTRA V2X sidelink and E-UTRA uplink transmission (295)6.2.3G.1.3.1Test purpose (295)6.2.3G.1.3.2Test applicability (295)6.2.3G.1.3.3Minimum conformance requirements (295)6.2.3G.1.3.4Test description (295)6.2.3G.1.3.4.1Initial conditions (295)6.2.3G.1.3.4.2Test procedure (296)6.2.3G.1.3.4.3Message contents (297)6.2.3G.1.3.5Test requirements (297)6.2.4Additional Maximum Power Reduction (A-MPR) (297)6.2.4.1Test purpose (297)6.2.4.2Test applicability (297)6.2.4.3Minimum conformance requirements (298)6.2.4.4Test description (310)6.2.4.4.1Initial condition (310)6.2.4.4.2Test procedure (339)6.2.4.4.3Message contents (339)6.2.4.5Test requirements (344)6.2.4_1Additional Maximum Power Reduction (A-MPR) for HPUE (373)6.2.4_1.2Test applicability (374)6.2.4_1.3Minimum conformance requirements (374)6.2.4_1.4Test description (375)6.2.4_1.5Test requirements (376)6.2.4_2Additional Maximum Power Reduction (A-MPR) for UL 64QAM (378)6.2.4_2.1Test purpose (378)6.2.4_2.2Test applicability (378)6.2.4_2.3Minimum conformance requirements (378)6.2.4_2.4Test description (378)6.2.4_2.4.1Initial condition (378)6.2.4_2.4.2Test procedure (392)6.2.4_2.4.3Message contents (392)6.2.4_2.5Test requirements (392)6.2.4_3Additional Maximum Power Reduction (A-MPR) with PUSCH frequency hopping (404)6.2.4_3.1Test purpose (404)6.2.4_3.2Test applicability (404)6.2.4_3.3Minimum conformance requirements (405)6.2.4_3.4Test description (405)6.2.4_3.5Test requirements (406)6.2.4A Additional Maximum Power Reduction (A-MPR) for CA (407)6.2.4A.1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) (407)6.2.4A.1.1Test purpose (407)6.2.4A.1.2Test applicability (407)6.2.4A.1.3Minimum conformance requirements (407)6.2.4A.1.3.5A-MPR for CA_NS_05 for CA_38C (411)6.2.4A.1.4Test description (413)6.2.4A.1.5Test requirements (419)6.2.4A.1_1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) for UL 64QAM (425)6.2.4A.1_1.1Test purpose (425)6.2.4A.1_1.2Test applicability (425)6.2.4A.1_1.3Minimum conformance requirements (426)6.2.4A.1_1.3.5A-MPR for CA_NS_05 for CA_38C (429)6.2.4A.1_1.3.6A-MPR for CA_NS_06 for CA_7C (430)6.2.4A.1_1.3.7A-MPR for CA_NS_07 for CA_39C (431)6.2.4A.1_1.3.8A-MPR for CA_NS_08 for CA_42C (432)6.2.4A.1_1.4Test description (432)6.2.4A.1_1.5Test requirements (437)6.2.4A.2Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) (443)6.2.4A.2.1Test purpose (443)6.2.4A.2.2Test applicability (444)6.2.4A.2.3Minimum conformance requirements (444)6.2.4A.2.4Test description (444)6.2.4A.2.4.1Initial conditions (444)6.2.4A.2.4.2Test procedure (457)6.2.4A.2.4.3Message contents (458)6.2.4A.2.5Test requirements (461)6.2.4A.3Additional Maximum Power Reduction (A-MPR) for CA (intra-band non-contiguous DL CAand UL CA) (466)6.2.4A.3.1Minimum conformance requirements (466)6.2.4A.2_1Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) forUL 64QAM (466)6.2.4A.2_1.1Test purpose (466)6.2.4A.2_1.2Test applicability (466)6.2.4A.2_1.3Minimum conformance requirements (467)6.2.4A.2_1.4Test description (467)6.2.4A.2_1.4.1Initial conditions (467)6.2.4A.2_1.4.2Test procedure (479)6.2.4A.2_1.4.3Message contents (480)6.2.4A.2_1.5Test requirements (480)6.2.4B Additional Maximum Power Reduction (A-MPR) for UL-MIMO (484)6.2.4B.1Test purpose (484)6.2.4B.2Test applicability (485)6.2.4B.3Minimum conformance requirements (485)6.2.4B.4Test description (485)6.2.4B.4.1Initial condition (485)6.2.4B.4.2Test procedure (508)6.2.4B.4.3Message contents (508)6.2.4B.5Test requirements (508)6.2.4E Additional Maximum Power Reduction (A-MPR) for UE category 0 (530)6.2.4E.1Test purpose (530)6.2.4E.2Test applicability (531)6.2.4E.3Minimum conformance requirements (531)6.2.4E.4Test description (531)6.2.4E.4.1Initial condition (531)6.2.4E.4.2Test procedure (535)6.2.4E.4.3Message contents (535)6.2.4E.5Test requirements (536)6.2.4EA Additional Maximum Power Reduction (A-MPR) for UE category M1 (542)6.2.4EA.1Test purpose (542)6.2.4EA.2Test applicability (542)6.2.4EA.3Minimum conformance requirements (543)6.2.4EA.4Test description (544)6.2.4EA.4.1Initial condition (544)6.2.4EA.4.2Test procedure (552)6.2.4G Additional Maximum Power Reduction (A-MPR) for V2X Communication (562)6.2.4G.1Additional Maximum Power Reduction (A-MPR) for V2X Communication / Non-concurrentwith E-UTRA uplink transmissions (562)6.2.4G.1.1Test purpose (562)6.2.4G.1.2Test applicability (562)6.2.4G.1.3Minimum conformance requirements (563)6.2.4G.1.4Test description (563)6.2.4G.1.4.1Initial condition (563)6.2.4G.1.4.2Test procedure (564)6.2.4G.1.4.3Message contents (564)6.2.4G.1.5Test Requirements (564)6.2.5Configured UE transmitted Output Power (564)6.2.5.1Test purpose (564)6.2.5.2Test applicability (564)6.2.5.3Minimum conformance requirements (564)6.2.5.4Test description (594)6.2.5.4.1Initial conditions (594)6.2.5.4.2Test procedure (595)6.2.5.4.3Message contents (595)6.2.5.5Test requirement (596)6.2.5_1Configured UE transmitted Output Power for HPUE (596)6.2.5_1.1Test purpose (596)6.2.5_1.2Test applicability (597)6.2.5_1.3Minimum conformance requirements (597)6.2.5_1.4Test description (597)6.2.5_1.4.1Initial conditions (597)6.2.5_1.4.2Test procedure (597)6.2.5_1.4.3Message contents (597)6.2.5_1.5Test requirement (598)6.2.5A Configured transmitted power for CA (599)6.2.5A.1Configured UE transmitted Output Power for CA (intra-band contiguous DL CA and UL CA) (599)6.2.5A.1.1Test purpose (599)6.2.5A.1.2Test applicability (599)6.2.5A.1.3Minimum conformance requirements (599)6.2.5A.1.4Test description (601)6.2.5A.1.5Test requirement (602)6.2.5A.2Void (603)6.2.5A.3Configured UE transmitted Output Power for CA (inter-band DL CA and UL CA) (603)6.2.5A.3.1Test purpose (603)6.2.5A.3.2Test applicability (603)6.2.5A.3.3Minimum conformance requirements (603)6.2.5A.3.4Test description (605)6.2.5A.3.5Test requirement (606)6.2.5A.4Configured UE transmitted Output Power for CA (intra-band non-contiguous DL CA and ULCA) (607)6.2.5A.4.1Test purpose (607)6.2.5A.4.2Test applicability (607)6.2.5A.4.3Minimum conformance requirements (607)6.2.5A.4.4Test description (608)6.2.5A.4.5Test requirement (610)6.2.5B Configured UE transmitted Output Power for UL-MIMO (611)6.2.5B.1Test purpose (611)6.2.5B.2Test applicability (611)6.2.5B.3Minimum conformance requirements (611)6.2.5B.4Test description (612)6.2.5B.4.1Initial conditions (612)6.2.5B.4.2Test procedure (612)6.2.5B.4.3Message contents (613)6.2.5B.5Test requirement (613)6.2.5E Configured UE transmitted Output Power for UE category 0 (614)6.2.5E.4.1Initial conditions (614)6.2.5E.4.2Test procedure (614)6.2.5E.4.3Message contents (614)6.2.5E.5Test requirement (615)6.2.5EA Configured UE transmitted Power for UE category M1 (615)6.2.5EA.1Test purpose (615)6.2.5EA.2Test applicability (615)6.2.5EA.3Minimum conformance requirements (615)6.2.5EA.4Test description (616)6.2.5EA.4.1Initial condition (616)6.2.5EA.4.2Test procedure (617)6.2.5EA.4.3Message contents (617)6.2.5EA.5Test requirements (617)6.2.5F Configured UE transmitted Output Power for UE category NB1 (618)6.2.5F.1Test purpose (618)6.2.5F.2Test applicability (618)6.2.5F.3Minimum conformance requirements (618)6.2.5F.4Test description (619)6.2.5F.4.1Initial conditions (619)6.2.5F.4.2Test procedure (620)6.2.5F.4.3Message contents (620)6.2.5F.5Test requirement (620)6.2.5G Configured UE transmitted Output Power for V2X Communication (620)6.2.5G.1Configured UE transmitted Output Power for V2X Communication / Non-concurrent with E-UTRA uplink transmission (621)6.2.5G.1.1Test purpose (621)6.2.5G.1.2Test applicability (621)6.2.5G.1.3Minimum conformance requirements (621)6.2.5G.1.4Test description (622)6.2.5G.1.4.1Initial conditions (622)6.2.5G.1.4.2Test procedure (622)6.2.5G.1.4.3Message contents (622)6.2.5G.1.5Test requirements (622)6.2.5G.2Configured UE transmitted Output Power for V2X Communication / Simultaneous E-UTRAV2X sidelink and E-UTRA uplink transmission (622)6.2.5G.2.1Test purpose (623)6.2.5G.2.2Test applicability (623)6.2.5G.2.3Minimum conformance requirements (623)6.2.5G.2.4Test description (625)6.2.5G.2.4.1Initial conditions (625)6.2.5G.2.4.2Test procedure (626)6.2.5G.2.4.3Message contents (626)6.2.5G.2.5Test requirements (626)6.3Output Power Dynamics (627)6.3.1Void (627)6.3.2Minimum Output Power (627)6.3.2.1Test purpose (627)6.3.2.2Test applicability (627)6.3.2.3Minimum conformance requirements (627)6.3.2.4Test description (627)6.3.2.4.1Initial conditions (627)6.3.2.4.2Test procedure (628)6.3.2.4.3Message contents (628)6.3.2.5Test requirement (628)6.3.2A Minimum Output Power for CA (629)6.3.2A.0Minimum conformance requirements (629)6.3.2A.1Minimum Output Power for CA (intra-band contiguous DL CA and UL CA) (629)6.3.2A.1.1Test purpose (629)6.3.2A.1.4.2Test procedure (631)6.3.2A.1.4.3Message contents (631)6.3.2A.1.5Test requirements (631)6.3.2A.2Minimum Output Power for CA (inter-band DL CA and UL CA) (631)6.3.2A.2.1Test purpose (631)6.3.2A.2.2Test applicability (632)6.3.2A.2.3Minimum conformance requirements (632)6.3.2A.2.4Test description (632)6.3.2A.2.4.1Initial conditions (632)6.3.2A.2.4.2Test procedure (633)6.3.2A.2.4.3Message contents (633)6.3.2A.2.5Test requirements (633)6.3.2A.3Minimum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (634)6.3.2A.3.1Test purpose (634)6.3.2A.3.2Test applicability (634)6.3.2A.3.3Minimum conformance requirements (634)6.3.2A.3.4Test description (634)6.3.2A.3.4.1Initial conditions (634)6.3.2A.3.4.2Test procedure (635)6.3.2A.3.4.3Message contents (635)6.3.2A.3.5Test requirements (635)6.3.2B Minimum Output Power for UL-MIMO (636)6.3.2B.1Test purpose (636)6.3.2B.2Test applicability (636)6.3.2B.3Minimum conformance requirements (636)6.3.2B.4Test description (636)6.3.2B.4.1Initial conditions (636)6.3.2B.4.2Test procedure (637)6.3.2B.4.3Message contents (637)6.3.2B.5Test requirement (637)6.3.2E Minimum Output Power for UE category 0 (638)6.3.2E.1Test purpose (638)6.3.2E.2Test applicability (638)6.3.2E.3Minimum conformance requirements (638)6.3.2E.4Test description (638)6.3.2E.4.1Initial conditions (638)6.3.2E.4.2Test procedure (639)6.3.2E.4.3Message contents (639)6.3.2E.5Test requirement (639)6.3.2EA Minimum Output Power for UE category M1 (639)6.3.2EA.1Test purpose (639)6.3.2EA.2Test applicability (640)6.3.2EA.3Minimum conformance requirements (640)6.3.2EA.4Test description (640)6.3.2EA.4.1Initial condition (640)6.3.2EA.4.2Test procedure (641)6.3.2EA.4.3Message contents (641)6.3.2EA.5Test requirements (641)6.3.2F Minimum Output Power for category NB1 (641)6.3.2F.1Test purpose (641)6.3.2F.2Test applicability (641)6.3.2F.3Minimum conformance requirements (642)6.3.2F.4Test description (642)6.3.2F.4.1Initial conditions (642)6.3.2F.4.2Test procedure (643)6.3.2F.4.3Message contents (643)6.3.2F.5Test requirements (643)6.3.3Transmit OFF power (643)6.3.3.5Test requirement (644)6.3.3A UE Transmit OFF power for CA (644)6.3.3A.0Minimum conformance requirements (644)6.3.3A.1UE Transmit OFF power for CA (intra-band contiguous DL CA and UL CA) (645)6.3.3A.1.1Test purpose (645)6.3.3A.1.2Test applicability (645)6.3.3A.1.3Minimum conformance requirements (645)6.3.3A.1.4Test description (645)6.3.3A.1.5Test Requirements (645)6.3.3A.2UE Transmit OFF power for CA (inter-band DL CA and UL CA) (646)6.3.3A.2.1Test purpose (646)6.3.3A.2.2Test applicability (646)6.3.3A.2.3Minimum conformance requirements (646)6.3.3A.2.4Test description (646)6.3.3A.2.5Test Requirements (646)6.3.3A.3UE Transmit OFF power for CA (intra-band non-contiguous DL CA and UL CA) (646)6.3.3A.3.1Test purpose (646)6.3.3A.3.2Test applicability (646)6.3.3A.3.3Minimum conformance requirements (647)6.3.3A.3.4Test description (647)6.3.3A.3.5Test Requirements (647)6.3.3B UE Transmit OFF power for UL-MIMO (647)6.3.3B.1Test purpose (647)6.3.3B.2Test applicability (647)6.3.3B.3Minimum conformance requirement (647)6.3.3B.4Test description (647)6.3.3B.5Test requirement (648)6.3.3C 6486.3.3D UE Transmit OFF power for ProSe (648)6.3.3D.0Minimum conformance requirements (648)6.3.3D.1UE Transmit OFF power for ProSe Direct Discovery (648)6.3.3D.1.1Test purpose (649)6.3.3D.1.2Test applicability (649)6.3.3D.1.3Minimum Conformance requirements (649)6.3.3D.1.4Test description (649)6.3.3D.1.5Test requirements (650)6.3.3E UE Transmit OFF power for UE category 0 (650)6.3.3E.1Test purpose (650)6.3.3E.2Test applicability (650)6.3.3E.3Minimum conformance requirement (650)6.3.3E.4Test description (651)6.3.3E.5Test requirement (651)6.3.3EA UE Transmit OFF power for UE category M1 (651)6.3.3EA.1Test purpose (651)6.3.3EA.2Test applicability (651)6.3.3EA.3Minimum conformance requirements (651)6.3.3EA.4Test description (651)6.3.3EA.5Test requirements (652)6.3.3F Transmit OFF power for category NB1 (652)6.3.3F.1Test purpose (652)6.3.3F.2Test applicability (652)6.3.3F.3Minimum conformance requirement (652)6.3.3F.4Test description (652)6.3.3F.5Test requirement (652)6.3.4ON/OFF time mask (652)6.3.4.1General ON/OFF time mask (652)6.3.4.1.1Test purpose (652)6.3.4.1.2Test applicability (653)。
Turbostream CFD 求解器的一份用户指南说明书
To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware cost•Turbomachinery research laboratory•Does both experimental and computational work•Typical routine simulation •Structured grid, steady state •3million grid nodes•8 hours on four CPU cores •20 minutes on GPU•The processor landscape is rapidly changing, but CFD codes can have a life-span of 30 years•Our work focuses on structured grids•Structured grid solvers: a series of stencil operations•Stencil operations: discrete approximations of the equations•Single implementation?•Multiple implementations?•Alternative:•High level language for stencil operations •Source-to-source compilation•Structured grid indexingi, j+1, ki, j, k+1i, j, ki-1, j, k i+1, j, ki, j, k-1i, j-1, k•in Fortran•Stencil definition:•The stencil definition is transformed at compile-time into code that can run on the chosen processor•The transformation is performed by filling in a pre-defined template using the stencil definitionStencil definition CPU templateGPU templateCPU source (.c)GPU source (.cu)•The stencil definition is transformed at compile-time into code that can run on the chosen processor•The transformation is performed by filling in a pre-defined template using the stencil definitionStencil definition CPU templateGPU templateCPU source (.c)GPU source (.cu)X sourceX template•There are many optimisation strategies for stencil operations (see paper from Supercomputing 2008 by Datta et al.)•CPUs:•Parallelise with pthreads•Cache by-pass using SSE (streaming stores)•GPUs:•Cyclic queues•Split between register storage and shared memory storage•Intel Nehalem 2.66 GHz•AMD Phenom II 3.0 GHz •NVIDIA GT200 (Quadro Fx5800)•Heat conduction benchmark kernel•We have implemented a new solver that can run on both CPUs and GPUs•The starting point was an existing solver called TBLOCK•The new solver is called Turbostream•Developed by John Denton•Blocks with arbitrary patch interfaces •Simple and fast algorithm•15,000 lines of Fortran 77•Main solver routines are only 5000 lines•Explicit scheme•Variable time steps and multi-grid for convergence acceleration •Time-accurate solutions using Jameson’s Dual Time Stepping procedure•Multi-stage calculations using mixing planes or sliding planes•3000 lines of stencil definitions (~15 different stencil kernels)•Code generated from stencil definitions is 15,000 lines •Additional 5000 lines of C for boundary conditions, file I/O etc.•Source code is very similar to TBLOCK –every subroutine has an equivalent stencil definition•TBLOCK uses all four cores on the CPU through MPI •Turbostream is ~20 times faster•Benchmark case is an unsteady simulation of a turbine stage•16 NVIDIA G200 GPUs, 1 Gb/s Ethernet •Weak scaling: 6 million grid nodes per GPU •Strong scaling: 6 million grid nodes in total•Three-stage low-speed turbine case from Rosic et al. (2006)•Used to demonstrate the importance of hub and shroud leakages in multi-stage turbinesPitch-wise averaged entropy function:•Steady calculation with mixing planes • 4 million grid nodescontours, stator 3Experiment TBLOCK Turbostream•The switch to many-core processors enables a step change in performance, but existing codes have to be rewritten•The differences between processors make it difficult to hand-code a solver that will run on all of them•We suggest a high level abstraction coupled with source-to-source compilation• A new solver called Turbostream, which is based on Denton’s TBLOCK, has been implemented•Turbostream is ~20 times faster than TBLOCK when running on an NVIDIA GPU as compared to a quad-core Intel CPU•Single blade-row calculations almost interactive on a desktop (10 –30 seconds)•Multi-stage calculations in a few minutes on a small cluster ($10,000)•Full annulus URANS completes overnight on a modest cluster ($100,000)。
ceres solver 引用文献
文章标题:深度解析Ceres Solver:从原理到应用一、引言在计算机视觉、机器人技术和三维重建等领域,优化问题一直是一个核心的议题。
而Ceres Solver作为一个功能强大的求解器,在解决非线性最小二乘问题和一般最小化问题上扮演着重要的角色。
本文将从Ceres Solver的基本原理、应用范围以及优缺点等方面进行全面评述,旨在帮助读者更深入地了解这一工具的特点和使用方法。
二、Ceres Solver的基本原理Ceres Solver是由Google开发的一个开源C++库,用于解决大规模最小二乘问题。
它的基本原理是通过数值优化的方法寻找问题的局部最优解。
在此过程中,Ceres Solver采用了自动微分的技术,可以高效地计算目标函数的梯度和海塞矩阵,进而实现对目标函数的优化。
与传统的梯度下降等算法相比,Ceres Solver能够更快速、更精确地找到最优解,尤其适用于处理高维、非凸、大规模的优化问题。
三、Ceres Solver的应用范围Ceres Solver在计算机视觉、SLAM、结构光、三维重建等领域有着广泛的应用。
在相机标定、图像配准、三维重建和运动估计等问题中,Ceres Solver都能够提供强大的优化能力,帮助用户快速准确地求解复杂的优化问题。
Ceres Solver还支持多种类型的目标函数和参数化方法,可以适用于不同领域和需求的问题,使其具有很强的通用性和灵活性。
四、Ceres Solver的优缺点分析就Ceres Solver的优点而言,它拥有高效、精确的优化能力,能够在处理大规模、高维度的非线性最小二乘问题时展现出明显的优势。
Ceres Solver还具有良好的可扩展性和通用性,可以方便地与其他库和工具进行整合和扩展。
然而,Ceres Solver也存在一些缺点,比如在处理稀疏矩阵和大规模数据时性能有所下降,对于初学者来说上手难度较大等。
五、对Ceres Solver的个人观点和理解作为一名从事计算机视觉和机器学习方向的研究者,我个人觉得Ceres Solver是一个非常强大且有前景的工具。
ODYSSEE求解器安装指南说明书
ContentsODYSSEE Solver (2)Download installers (2)ODYSSEE Solver installation (2)For Windows: (2)For RHEL 7.9: (2)Licenses (3)Examples for Windows (4)Examples for RHEL 7.9 (4)Help Documents for Windows (4)Help Documents for RHEL 7.9 (4)ODYSSEE SolverInstallation guideODYSSEE SolverODYSSEE Solver includes:➢ODYSSEE QUASAR: A solver to make predictive models and data mining analysis.➢ODYSSEE NOVA: An optimizer to search for the optimal variables to minimize an objective function, while respecting constraints defined.Download installersGo to the MSC Software Download Center to download:➢ODYSSEE Solver product exists for:•Windows 10, ODYSSEE-Solver_2023.*_x64.exe•RHEL 7.9 Supported plateform and fully certified, RHEL 8.6 Supported plateform, ODYSSEE-Solver-2023.1-1.el8.x86_64.rpmNote: The Helium MSC Licensing tool must be installed either on the server for a network license or on the user's computer for a seat license. Please, go to the MSC Software Download Center to download: MSC Licensing Helium.ODYSSEE Solver installationFor Windows:1.If ODYSSEE Solver was already installed in past, removed manually the examples directory inpersonal user directory usually: UserName\Documents\ODYSSEE\Solver\Examples2. Execute the new set-up ODYSSEE Solver_2023.*_x64.exe.3. Select the language.4. During the installation select the directory installation and click on Next. By default, it is:C:\Program Files\ODYSSEE\Solver5. Click on install button.For RHEL 7.9:1. Uninstall old versions if they exist on the computer.a. Open a command promptb. Write the command: sudo yum remove ODYSSEE-Solver2. Install the new set-up ODYSSEE-Solver-2023.1-1.el8.x86_64.rpm.a. Write the command: sudo yum install ODYSSEE-Solver-2023.1-1.el8.x86_64.rpm3. Execute ODYSSEE Solver run:a. "QuasarEngine_2" for the AI solverb. or "Nova" for the OptimizerLicensesA license file has been sent by e-mail from your Hexagon/MSC contact.ODYSSEE-Solver_2023.*_x64.exe is compatible with Helium MSC licensing (FLEXERA system).To check the license:•Open a command prompt•Go by the cd command in the ODYSSEE Solver directory•Run “QuasarEngine_2.exe”A message appears asking to configure the license:(1) Select a license file(2) Configure a network license server IpFor both types of licenses (Network or seat), enter 2And next, specify the Network license server Ip: 27500@HOSTNAME or 27500@ip and press enter.o HOSTNAME or ip of the server if you received a network license.o HOSTNAME or ip of the local computer if you received a seat license.Note: for seat license, to obtain the host name, open a command prompt and enter ipconfig/all.Note (Windows): if ODYSSEE Solver return this message: Unable to checkout a token for ODYSSEE Solver, check- If the user computer can ping on the server.- If the LMtool service is started on the server.o Launch LMtools.exe.o Go to the Service/Licenseo Select the good service in the list.o Go to Start/Stop/reread tab.o Start the service.o Retry to launch the application.Note: If there is no service, please refer to MSC Licensing Helium User’s Guide.pdf available in MSC Software Download Center.Examples for WindowsQuasar examples are available in:C:\Program Files\ODYSSEE\Solver\Documentation\Quasar\_ExamplesOr into.\Documents\ODYSSEE\Solver\Examples\QuasarNova examples are available in:C:\Program Files\ODYSSEE\Solver\Documentation\Nova\examplesOr into.\Documents\ODYSSEE\Solver\Examples\NovaExamples for RHEL 7.9Quasar examples are available in:/usr/local/bin/ODYSSEE/Solver/Documentation/Quasar/_ExamplesOr into/home/.../Documents/ODYSSEE/Solver/Examples/QuasarNova examples are available in:/usr/local/bin/ODYSSEE/Solver/Documentation/Nova/examplesOr into/home/.../Documents/ODYSSEE/Solver/Examples/NovaHelp Documents for WindowsThe Help document for Quasar is available in:C:\Program Files\ODYSSEE\Solver\Documentation\Quasar\Quasar Help2022.*.pdfThe Help document for Nova is available in:C:\Program Files\ODYSSEE\Solver\Documentation\Nova\Nova Help 2022.*.pdf Help Documents for RHEL 7.9The Help document for Quasar is available in:/usr/local/bin/ODYSSEE/Solver/Documentation/Quasar/Quasar Help 2023.*.pdfThe Help document for Nova is available in:/usr/local/bin/ODYSSEE/Solver/Documentation/Nova/Nova Help 2023.*.pdf。
赛米控丹佛斯电子 Board_93_GB_SKYPER_42_R 数据表
®Adaptor boardIGBT Driver CoreBoard 93 GB SKYPER 42 R Preliminary Data Features•Two output channels •Gold nickel finish •Failure managementTypical Applications*•Adaptor board for SKYPER 42 IGBT drivers in bridge circuits for industrial applications •PCB with gold plating •DC bus up to 1200VFootnotesIsolation test voltage with external high voltage diodeThe isolation test is not performed as a series test at SEMIKRONThe driver power can be expanded to 50µC with external boost capacitorsIsolation coordination in compliance with EN50178 PD2Operating temperature is real ambient temperature around the driver core Degree of protection: IP00This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.Absolute Maximum Ratings SymbolConditionsValuesUnitV s Supply voltage primary 16V Iout PEAK Output peak current 30A Iout AVmax Output average current 150mA f max Max. switching frequency100kHz V CECollector emitter voltage sense across the IGBT1700V V isol IO Isolation test voltage input - output (AC, rms, 2s)4000V V isolPD Partial discharge extinction voltage, rms, Q PD ≤ 10pC1500V V isol12Isolation test voltage output 1 - output 2 (AC, rms, 2s)1500V R Gon min Minimum rating for external R Gon 0.8ΩR Goff min Minimum rating for external R Goff 0.8ΩT op Operating temperature -40...85°C T stgStorage temperature-40 (85)°CCharacteristics SymbolConditionsmin.typ.max.UnitV s Supply voltage primary side 14.41515.6V V i Input signal voltage on / off 15 / 0V V IT+Input treshold voltage HIGH 12.3V V IT-Input threshold voltage (LOW) 4.6V V G(on)Turn on output voltage 15V V G(off)Turn off output voltage-8V t d(on)IO Input-output turn-on propagation time 1.1µs t d(off)IOInput-output turn-on propagation time1.1µsAdaptor Board 93 SKYPER® 42 RTechnical ExplanationsRevision 04------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ This Technical Explanation is valid for the following parts:Related documents:Prepared by: Johannes Krapp------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ContentApplication and Handling Instructions (2)Further application support (2)General Description (2)Dimensions (3)PIN Array (3)Setting Dynamic Short Circuit Protection (4)Collector Series Resistance (4)Adaptation Gate Resistors (5)Boost Capacitors (6)Environmental conditions (6)Mounting Notes (6)Please note:All values in this technical explanation are typical values. Typical values are the average values expected in large quantities and are provided for information purposes only. These values can and do vary in different applications. All operating parameters should be validated by user’s technical experts for each application.Application and Handling Instructions▪Please provide for static discharge protection during handling. As long as the hybrid driver is not completely assembled, the input terminals have to be short-circuited. Persons working with devices have to wear a grounded bracelet. Any synthetic floor coverings must not be statically chargeable. Even during transportation the input terminals have to be short-circuited using, for example, conductive rubber. Worktables have to be grounded. The same safety requirements apply to MOSFET- and IGBT-modules.▪Any parasitic inductances within the DC-link have to be minimised. Over-voltages may be absorbed by C- or RCD-snubber networks between main terminals for PLUS and MINUS of the power module.▪When first operating a newly developed circuit, SEMIKRON recommends to apply low collector voltage and load current in the beginning and to increase these values gradually, observing the turn-off behaviour of the free-wheeling diode and the turn-off voltage spikes generated across the IGBT. An oscillographic control will be necessary. Additionally, the case temperature of the module has to be monitored. When the circuit works correctly under rated operation conditions, short-circuit testing may be done, starting again with low collector voltage.▪It is important to feed any errors back to the control circuit and to switch off the device immediately in failure events.Repeated turn-on of the IGBT into a short circuit with a high frequency may destroy the device.▪The inputs of the hybrid driver are sensitive to over-voltage. Voltages higher than V S +0,3V or below -0,3V may destroy these inputs. Therefore, control signal over-voltages exceeding the above values have to be avoided.▪The connecting leads between hybrid driver and the power module should be as short as possible (max. 20cm), the driver leads should be twisted.Further application supportLatest information is available at . For design support please read the SEMIKRON Application Manual Power Modules available at .General DescriptionThe Board 93 GB SKYPER® 42 is an adaptor board for the IGBT module SKiM® 93 (spring contact). The board is paralleling three channels so the SKiM module can be used in half bridge configuration. The board can be customized allowing adaptation and optimization to the used IGBT module.The switching characteristic of the IGBT can be influenced through user settings, e.g. changing turn-on and turn-off speed by variation of R Gon and R Goff. Furthermore, it is possible to adjust the monitoring level and blanking time for the DSCP (see Technical Explanations SKYPER® 42 R).Please note:This technical explanation is based on the Technical Explanations for SKYPER®42 R. Please read the Technical Explanations SKYPER® 42 R before using the Adaptor Board.Dimensions116 PIN ArraySetting Dynamic Short Circuit ProtectionThe Vce formula for the Vce monitoring is described in the technical explanation of SKYPER 42 R. Collector Series ResistanceDesignation Shape SettingR105 MiniMELF (SMD) R VCE*Factory setting: not equippedTOPR205 MiniMELF (SMD) R VCE *Factory setting: not equippedBOTAdaptation Gate ResistorsBoost CapacitorsEnvironmental conditionsPlease refer to the technical explanation of SKYPER 42 R for the environmental conditions.Mounting NotesDISCLAIMERSEMIKRON reserves the right to make changes withoutfurnished in this document is believed to be accurate and reliable. However, no representation or warranty is given and no liability is assumed with respect to the accuracy or use of such information. SEMIKRON does not assume any liability arising out of the application or use of any product or circuit described herein. Furthermore,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
Triangle Boxes
– Groups of 4 triangles that form a tetrahedron with no actual volume element inside
•
Overlapping Elements
– Continuous set of surface elements that occupy the same surface area (surface mesh that folds on to itself)
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
6-4
Release 12.0 January 2010
Solver Output
Mesh Checks: Possible Problems
• Multiple Edges
• Unwanted elements • Unwanted holes/gaps • May result in incorrect solution
– C check any combination of errors/possible problems at Can h k bi ti f / ibl bl t any one time
• • •
Single-Multiple Edges
– Surface element with both free and multiple edges
Stand-Alone Surface Mesh
– Surface elements that don't share a face with a volumetric element
• Individually select • Click on Error or Possible Problems tabs will select all options in column – selecting again will de-select all • Set Defaults will select most commonly seen/detrimental diagnostics
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
6-5
Release 12.0 January 2010
Solver Output
Mesh Checks
• If Create Subsets was selected
– Will go through all checked criteria at once – Elements that have a particular error/problem are put into a subset with that diagnostic type name – Subsets activated in Model Tree
Solver Output
Edit Mesh
Training Manual
Usage of Edit Mesh tools • To diagnose and fix any problems and improve mesh quality • To convert element types • Refine and/or coarsen mesh • Manual and automatic tools • For imported as well as internally created mesh
– Errors – most likely to cause problems in:
• Solver translation • Solver input • Solution convergence/run
– Possible Problems – “Unclean surface mesh”
6-6
Release 12.0 January 2010
Solver Output
Mesh Smoothing
Training Manual
•
Automatically improve element quality
– All element types – Necessary to have geometry loaded – Nodes are moved to improve the element quality
Training Manual
•
Volume Orientation
– Left handed elements due to incorrect connectivity (node numbering of cell)
•
Uncovered Faces
– Volumetric element faces that are neither attached to the face of another volumetric element nor to a surface element (boundary face)
Single Edges
– Surface elements with a free edge – C i l d legitimate hanging Can include l iti t h i baffles
•
Unconnected Vertices
– Vertices that are not connected to any elements – Usually eliminated automatically upon saving the mesh
• A t Automatic node movement constrained by node projection ti d t t i db d j ti type to geometry type – e.g. curve nodes will be constrained to move only on curves
– Histogram is automatically displayed/updated after g smoothing
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
6-2
Release 12.0 January 2010Leabharlann Solver Output
Mesh Checks
Training Manual
•
To diagnose mesh associativity problems
– Surface elements with an edge that shares three or more elements – Can include legitimate T-junctions
Training Manual
•
Delaunay Violation
– Tri elements with nodes that are within the circumsphere of adjacent l t elements – legacy quality criteria
Chapter 6 Mesh Preparation and Output to Solver
Introduction to ANSYS ICEM CFD
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
6-1
Release 12.0 January 2010
• Fix: Automatically fix the error/problem
– Recommended only for Duplicate Elements, Volume Orientations, Periodic Problems, Overlapping Elements
• Create Subset • Ignore
– Check Mode
• Create Subsets – creates a subset of elements that fit each criteria • Check/Fix Each – offers automatic fixing of indicated problem
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
•
Penetrating Elements
– Surface element(s) that intersect or penetrate through other surface elements
•
Disconnected Bar Elements
– Bar elements where both nodes are unattached to other bars
•
2 -Single Edges
– Surface element with 2 free edges (not shared by another surface element)
•
Non-manifold vertices
– Vertices whose adjacent elements’ elements outer edges don't form a closed loop – Typically found in tent-like structures where surface elements jump from one surface to another across a narrow gap or sharp angle