七年级(上)数学第一章检测
人教版七年级数学上册第一章达标检测卷附答案
人教版七年级数学上册第一章达标检测卷一、选择题(每题3分,共30分)1.如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃ 2.-12 022的相反数是( )A .12 022B .-12 022 C .2 022 D .-2 022 3.下列各数中,最小的数是( )A .-3B .0C .1D .24.有理数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1-m >1C .mn >0D .m +1>05.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106 吨.用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106B .16×106C .1.6×107D .16×10127.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .MB .NC .PD .O 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-11 10.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5 二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 022的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米. 14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________. 17.有5袋苹果,以每袋50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________. 18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.19.按照如图所示的计算程序,若x =2,则输出的结果是________.20.某校建立了一个身份识别系统,图①是某名学生的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行所代表的数字从左往右依次记为a ,b ,c ,d ,那么可以转换为该生所在的班级序号,其序号为a ×23+b ×22+c ×21+d ,如图①,第一行数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生,则图②识别图案的学生所在班级序号为________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分) 21.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd 的值.24.若“⊗”表示一种新运算,规定a ⊗b =a×b +a +b ,请计算下列各式的值. (1)-6⊗2; (2)[(-4)⊗(-2)]⊗12.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上). (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?27.观察下列等式并回答问题.第1个等式:a1=11×3=12×⎝⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝⎛⎭⎪⎫13-15;第3个等式:a3=15×7=12×⎝⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝⎛⎭⎪⎫17-19;….(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A2.A3.A4.B5.D6.C 7.A8.C9.B10.A二、11.-3;-1 2 02212.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-2620.6三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|. 22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗1 2=2×12+2+12 =312.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m),第三次:8+5=13(m),第四次:13-6=7(m),第五次:7+12=19(m),第六次:19-9=10(m),第七次:10+4=14(m),第八次:14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m.(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.。
人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)
人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。
人教版七年级上册数学第一章测试卷
第一章有理数章节同步训练人教版数学七年级上册一、单选题1.体育老师对六年级学生进行了仰卧起坐测试.以每分钟25个为达标,记作0.小明的成绩记作2-,则他仰卧起坐的个数是()A .27B .24C .23D .252.下列各数中:()553025.827-----+,,,,,负数有()A .1个B .2个C .3个D .4个3.下列说法正确的是()A .正分数和负分数统称为分数B .正整数和负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是整数就是负数4.随着国际油价的波动和国内成品油价格调整机制的运行,92号汽油的价格也随之变化.如果每升92号汽油的价格上涨0.2元,记作0.2+元,那么0.1-元表示每升92号汽油的价格()A .上涨0.1元B .上涨0.3元C .下降0.1元D .下降0.3元5.有理数2024-的相反数是()A .12024B .12024-C .2024D .2024-6.数轴上表示数a 和4a +的点到原点的距离相等,则a 为()A .4-B .4C .2D .2-7.实数a 、b 在数轴上的对应点的位置如图所示,下列结论正确的是()A .2a <-B .2b <C .a b <D .a b->8.式子21x -+的最小值是()A .0B .1C .2D .39.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .110.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4二、填空题11.15⎛⎫--=⎪⎝⎭,()3+-=()2⎡⎤-+-=⎣⎦12.若5x -与5互为相反数,则x =.13.不小于133-且不大于4的所有非负整数是.(一一列出)14.已知21519a a b b ++-+-++=,则ab 的最大值为;ab 的最小值为.15.如图,点A 和B 在数轴上表示的数分别是20-和40,点C 在线段..AB 上移动,图中的三条线段AB AC 、和BC ,当其中有一条线段的长度是另外一条线段长度的2倍时,则点C 在数轴上表示的数为.三、解答题16.化简:(1) 2.5-+;(2)()3.4--;(3)4+-;(4)()3--.17.把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.18.如图所示,点A 、点B 在数轴上,点C 表示 3.5--,点D 表示()2--,点E 表示122-.(1)点A 表示______,点B 表示______;(2)在数轴上表示出点C ,点D ,点E ;19.某中学开展“阅读之星,书香班级”活动,七(1)班上周星期一至星期五的借书记录如下表,超过30册的部分记为正,少于30册的部分记为负.星期一星期二星期三星期四星期五3+2-5+4+7-问:上周星期一至星期五该班一共借书多少册?20.数轴上有A,B,C三点.已知点A,B表示的数互为相反数,点A在点B的左边,且点A,B相距6个单位长度,点A,C相距2个单位长度.问:点A,B,C表示的数各是多少?参考答案:1.C2.C3.A4.C5.C6.D7.C8.B9.C10.B11.153-212.013.0,1,2,3,4,14.510-15.0或10或2016.(1) 2.5-(2)3.4(3)4(4)317.(1)②⑥⑦(2)①③⑤⑧(3)②④⑤⑦(4)①③⑥⑧18.(1)1-;3(2)19.上周星期一至星期五该班一共借书153册;20.点A,B,C表示的数为3-,3,5-或3-,3,1-.。
七年级数学(上)第一章测试题
七年级数学(上)第一章测试题(时间100分钟 分数 100分)一. 选择题1.下列各数中,441212.5,0573---+,,,,其中负分数有( )A.1个B.2个C.3个D.4个2.下列关于0的说法中准确的是( ) A .0是最小的有理数 B. 0的倒数是0C .0的相反数是它自身 D. 绝对值等于自身的数只有0 3. 下列式子不准确的是( )A .-(+5)= -5B .-(-5)=5C .-︱-5 ︱=-5D .+︱-5︱=-5 4. 若两个数的和为正数,那么这两个数( )A .都是正数B .都是负数C .至少有一个正数D .至少有一个负数 5. 下列计算准确的是( )A .- 4 + 5= -9B .0-(-3)=3C .(-3)×(-3)= -6D .(-2)÷0=0 6. 下列各数中,互为相反数的是( )A .3和13B .2.4和-1.6C .3553-和D . 0.6和35-7. 如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A .为负数B .为0C .为正数D .不确定8. 如果a ÷b=-1,那么( )A .a+b=0B .1=baC .a - b=0D .ab=19下列各组数中,相等的共有( )(1)-7 与 |-7|, (2.6)+(-2.6) 与-(+2), (3) –(-50)与50 (4)-(+3)与-|+3| (5) -0.2与-20%A 1对B 2对C 3对D 4对10 下列用不等号连接|-3|,-|-2|, -5的各式中,准确的是( ) A -|-2|<|-3|<-5 B -|-2|<-5<|-3| C -5<|-3|<-|-2| D -5<-|-2|<|-3|二.填空题11 。
-721的相反数是( ),绝对值是( ),到数是( )12.比较大小:-5.7( )0, 2( )-3 ,- 32( )- 4313 。
人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)
第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.3.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.4.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.(2020·湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 m,记为+8 844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.415 mB.-415 mC.±415 mD.-8 844 m6.(2020·北京中考)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3 第6题图C.a>-bD.a<-b7.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.48.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC .若|a |>a ,则a ≤0D .若|a |>|b |,则a >b .9.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为( )A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a10.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是( ) A .[a ]+[﹣a ]=0 B .[a ]+[﹣a ]等于0或﹣1C .[a ]+[﹣a ]≠0D .[a ]+[﹣a ]等于0或1二、填空题(每小题3分,共24分)11.31的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 .14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台. 18. 规定﹡,则(-4)﹡6的值为 . 三、解答题(共66分)19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m 的值. 21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4) (3)(+﹣)×(﹣36) (4)2×(﹣)﹣12÷ (5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨+0.3 +0.1 ﹣﹣+0.2跌0.2 0.5(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.参考答案与解析一、选择题1.A 2.A 3.B 4.A 5.B 6.D 7.B8.B 9.A 10.B二、填空题11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.三、解答题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3 +0.1 ﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)
人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)第一部分:选择题(每小题3分,共30分)1. 下列数中能表示自然数的是()。
A. -3B. 0C. -2D. 22. 判断下列各式的真假()。
① -5 > -10 ② -6 < 3 ③ -2 > -1 ④ 0 > -1A. √√×√B. ×√×√C. ××√×D. √××√3. 若a > b,b > 0,则下列各式中一定成立的是()。
① a^2 > b^2 ② a - b > 0 ③ a^2 - b^2 > 0A. √√√B. √√×C. ×√√D. ××√4. 若x > -2,y < 0,则下列哪个不正确()。
A. x^2 > 4B. xy < 0C. x - y > 0D. x^2 + y < 05. 若a > b,则不正确的是()。
A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 26. 若x > 1,则不等式2x - 3 > 1的解集是()。
A. (0, 2)B. (2, +∞)C. (-∞, 0)D. (1, +∞)7. 若x < 0,y > 2,则不等式3x + 1 < 5y - 7的解集是()。
A. (-∞, -3)B. (3, +∞)C. (-∞, 3)D. (-3, +∞)8. 若x + y > 0,y < 0,则x的取值范围是()。
A. (0, +∞)B. (-∞, 0)C. (0, -∞)D. (-∞, +∞)9. 若a < 0,b < 0,则不等式a^2 - b^2 < 0的解集是()。
北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)
北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)
七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
2023-2024学年人教版版七年级数学上册《第一章-有理数》单元检测卷及答案
2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
数学七年级上册第一章测试卷
数学七年级上册第一章测试卷一、选择题(每题3分,共30分)1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A. -3mB. 3mC. 6mD. -6m.2. 下列各数中,是正数的是()A. -1/2B. 0C. 0.5D. -2.3. 一个数的相反数是3,这个数是()A. -3B. 3C. 1/3D. -1/3.4. -2的绝对值是()A. -2B. 2C. 1/2D. -1/2.5. 计算:1 - (-2) =()A. -1B. 1C. -3D. 3.6. 在-1,0,1,2这四个数中,既不是正数也不是负数的是()A. -1B. 0C. 1D. 2.7. 比 -2大3的数是()A. -5B. -1C. 1D. 5.8. 若x = 5,则x的值为()A. 5B. -5C. ±5D. 0.9. 下列各对数中,互为相反数的是()A. -(-3)和+3B. -(+3)和+(-3)C. -(-3)和-3D. +(-3)和-3。
10. 有理数a、b在数轴上的位置如图所示,下列结论正确的是()(此处应有一个简单的数轴表示a在原点左侧,b在原点右侧,且a离原点的距离比b离原点的距离远)A. a > bB. a = bC. a < bD. 无法确定。
二、填空题(每题3分,共15分)1. 某天的最低气温是 -5℃,最高气温是10℃,则这一天的温差是______℃。
2. 绝对值小于3的整数有______个。
3. 数轴上表示 -3的点到原点的距离是______。
4. 若a与2互为相反数,则a + 3 =______。
5. 比较大小:-4______-5(填“>”或“<”)。
三、解答题(共55分)1. (8分)把下列各数分别填入相应的集合里:-2,0,-0.314,22/7,+1.5,-50%,π,-9.正数集合:{______…};负数集合:{______…};整数集合:{______…};分数集合:{______…}。
人教版数学七年级上册第一章《有理数》检测试试题(含答案)
人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
人教版数学七年级上册第一章有理数综合检测(附答案)
人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。
人教版七年级上册数学第一、二章单元检测(含简单答案)
七年级上册数学第一、二章单元检测班级:____ 姓名:______ 分数:_____一、单选题(每题4分,共40分)1.5-的相反数是( )5.A 51.B 5.-C 51.-D2. 如果水库的水位上升2米记作+2米,那么水库的水位下降1.2米记作( )米2.-A 米2.1.B 米2.1.-C 米2.3.D3.据统计,2023年上海市总人口数约为2400万,将其用科学计数法表示为( )6104.2.⨯A 7104.2.⨯B 81024.⨯C 8104.2.⨯D4.有理数2122--,,的大小关系是( )2122.--<<A 2212.<<--B 2221.<<--C 2122.--<<D 5.下列计算错误的是( )16218.=-÷-)(A 660.=--)(B 2212.2-=⨯-)(C 8)2.(3-=-D 6.绝对值大于1而小于5的所有非正整数的和为( )6.-A7.-B8.-C9.-D7.下列说法正确的是( )是相反数7.-A正数绝对值是它本身的数是.B正数和负数互为相反数.Ca a a D -==时,当0.8.已知n m n m 则,0)2(32=-++的值为( )9.A 9.-B 8.C 6.D9.已知!是一种运算符号,即,,,12344!1233!121,2!11!⨯⨯⨯=⨯⨯=⨯=⨯=则 6!的结果是( )120.A 720.B 240.C 360.D10.已知y x y x y x y x +==--=-则,9,4),(2的值为( )1.-A 7.-B 71.--或C 7.D二. 填空题(每题4分,共24分)11.有理数0,438.1,3--,中,整数是________.12.某商场出售某商品,当降价10元时,记作-10元,则涨价25元时,可记作_______.13.将6548.2精确到百分位,其结果是________.14.数轴上有两个有理数,分别是-5和2,则这两个有理数在数轴上的距离为_______.15.计算=-⨯-23221)()(_______. 16.有下列数⋅⋅⋅⋅⋅⋅---3216,84,2,,按照其中规律,则第7个数是_________.三. 解答题(每题4分,共36分)17.(6分)计算)(1038)1(-++- )(9265)2(---+-18.(8分)完成下列计算)()(513115)1(-⨯-⨯ 22336421)2()()(-÷+⨯-19.(6分)把下列各数填入对应的集合内.115036052.6,674-----,,,,,,π正有理数集合:{ }负有理数集合:{ }整数集合:{ }20.(6分)已知1313-+x x 和互为相反数,求x 的值.21.(8分)以下是某市2023年11月,12月到2024年1月,2月,3月,每一月的最低气温.℃℃,℃,℃,℃,5.26.0231----(1)求该市这5个月最低气温的温差.(2)将这些温度按从小打大的顺序排列.答案一. 选择题1. A2. C3. B4. B5. C6. D7. D8. A9. B10.C二.填空题11.-3,012.+25元. 13.2.65 14.7 15. 21 16.-128。
人教版七年级数学上册《第一章有理数》章节检测卷-带有答案
人教版七年级数学上册《第一章有理数》章节检测卷-带有答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如果某商场盈利5万记作+5万元,那么亏损4万元,应记作()A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.下列有关“0”的叙述中,错误的是( )A.不是正数,也不是负数B.不是有理数,是整数C.是整数,也是有理数D.不是负数,是有理数3.在数0,4,-3,-1.5中,属于负整数的是()A.0 B.4 C.−3D.−1.54.在−2.5 , 100, 0.01,−32四个数中,最小的数是()A.−2.5 B.100 C.0.01 D.−325.如图,数轴上点M所表示的数可能是()A.1.5 B.−1.6C.−2.6D.−3.46.−2024的相反数是()A.2024 B.−12024C.−2024D.120247.若一个数的绝对值等于这个数本身,这个数是()A.正数B.负数C.正数或0 D.负数或08.下列各数中,绝对值大于3的是()A.−5B.−3C.0 D.2二、填空题9.若月球表面的白天平均温度零上180°C,记为+180°C,则月球表面的夜间平均温度零下120°C记为°C.10.大于−2.5而小于3.5的整数共有个;11.在数轴上,到原点的距离等于3.5个单位长度的点所表示的有理数是.12.若a与−12互为相反数,则a的值为.13.如果|m|=4,且m<0,那么m=.三、解答题14.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想±10%的含义是什么?15.写出下列各数的绝对值:-1 23-340 -3 2515.16.把下列各数填入相应的大括号里:﹣7,﹣0.5,-130,﹣98%,8.7,2018,﹣2003.负整数集合:{ };非负数集合:{ };正分数集合:{ };负分数集合:{ }.17.把下列各数和它们的相反数在数轴上表示出来.+3 -1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.A5.C6.A7.C8.A9.−12010.611.±3.512.1213.﹣414.+10%表示比标准高10%,-10%表示比标准价低10%15.解:|-1|=1|23|=23|-34|=34|0|=0|-325|=325|15|=1516.解:﹣7,﹣0.5,﹣13 0,﹣98%,8.7,2018,﹣2003.负整数集合:{﹣7,﹣2003……};非负数集合:{0,8.7,2018,……};正分数集合:{8.7,……};负分数集合:{﹣0.5,﹣13,﹣98%,……}.17.解:+3的相反数为:-3-1.5的相反数为:1.50的相反数为:0−52 的相反数为: 52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
七年级数学第一章有理数检测题
第一章有理数检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.(桂林中考)若海平面以上1045米,记作+1045米,则海平面以下155米,记作BA.-1200米B.-155米C.155米D.1200米2.(鞍山中考)在有理数2,0,-1,-错误!中,最小的是C A.2 B.0 C.-1 D.-错误!3.(南充中考)如果6a=1,那么a的值为BA.6 B.错误!C.-6 D.-错误!4.(呼和浩特中考)如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是A5.(金华中考)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是C星期一二三四最高气温10°C12°C11°C9°C最低气温3°C0°C-2°C-3°CA。
星期一B.星期二C.星期三D.星期四6.(南京中考)计算12+(-18)÷(-6)-(-3)×2的结果是CA.7 B.8 C.21 D.367.下列说法正确的是CA.近似数0。
21与0。
210的精确度相同B.近似数1.3×104精确到十分位C.数2。
9951精确到百分位为3。
00 D.小明的身高为161 cm中的数是准确数8.若m>1,则m,m2,错误!的大小关系是CA.m<m2<错误!B.m2<m<错误!C.错误!〈m〈m2D.错误!〈m2〈m9.有理数a,b在数轴上的位置如图,下列选项正确的是D A.a+b>a-b B.ab>0 C.|b-1|<1 D.|a-b|>110.(日照中考)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=错误!(其中k 是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:错误!错误!错误!错误!错误!错误!错误!……若n=13,则第2018次“F”运算的结果是AA.1 B.4 C.2018 D.42018二、填空题(每小题3分,共15分)11.(南京中考)-2的相反数是2;错误!的倒数是2.12.(益阳中考)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1。
人教版数学七年级上册第一章测试题含答案
人教版数学七年级上册第一章有理数一、选择题(每小题3分, 共30分)1.如果将“收入100元”记作“+100元”, 那么“支出50元”应记作( )A. +50元B. -50元C. +150元D. -150元2.在有理数-4, 0, -1, 3中, 最小的数是( )A. -4B. 0C. -1D. 33.如图, 数轴上有A, B, C, D四个点, 其中表示2的相反数的点是( )A. 点AB. 点BC. 点CD. 点D4.2016年第一季度, 某市“蓝天白云、繁星闪烁”天数持续增加, 获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是( )A. 408×104B. 4.08×104C. 4.08×105D. 4.08×1065. 下列算式正确的是( )A. (-14)-5=-9B. 0-(-3)=3C. (-3)-(-3)=-6D. |5-3|=-(5-3)6.有理数(-1)2, (-1)3, -12, |-1|, -(-1), -中, 化简结果等于1的个数是( )A. 3个B. 4个C. 5个D. 6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm), 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x, 则x的值为( )A. 4.2B. 4.3C. 4.4D. 4.58.有理数a, b在数轴上的位置如图所示, 下列各式成立的是( )A. b>0B. |a|>-bC. a+b>0D. ab<09.若|a|=5, b=-3, 则a-b的值为( )A. 2或8B. -2或8C. 2或-8D. -2或-810.观察下列算式: 21=2, 22=4, 23=8, 24=16, 25=32, 26=64, 27=128, 28=256, …用你所发现的规律得出22016的末位数字是( )A. 2B. 4C. 6D. 8二、填空题(每小题3分, 共24分)11. -3的相反数是________, -2018的倒数是________.12.在数+8.3, -4, -0.8, - , 0, 90, - , -|-24|中, 负数有______________________________, 分数有______________________________.13. 绝对值大于4而小于7的所有整数之和是________.14.点A, B表示数轴上互为相反数的两个数, 且点A向左平移8个单位到达点B, 则这两点所表示的数分别是________和________.15. 如图是一个简单的数值运算程序. 当输入x的值为-1时,则输出的数值为________.输入x―→×(-3)―→-2―→输出16. 太阳的半径为696000千米, 用科学记数法表示为________千米;把210400精确到万位是________.17. 已知(a-3)2与|b-1|互为相反数, 则式子a2+b2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律, 据此规律得出a+b+c=________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来, 并用“>”把这些数连接起来.-1 , 0, 2, -|-3|, -(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎢⎡⎦⎥⎥⎤2-5×⎝ ⎛⎭⎪⎫-122÷⎝ ⎛⎭⎪⎫-14;(3)(-24)×⎝ ⎛⎭⎪⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步, 他从自己家出发, 向东跑了2km 到达小彬家, 继续向东跑了1.5km到达小红家, 然后又向西跑了4.5km 到达学校, 最后又向东, 跑回到自己家.(1)以小明家为原点, 向东为正方向, 用1个单位长度表示1km, 在图中的数轴上, 分别用点A表示出小彬家, 用点B表示出小红家, 用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min, 那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装, 准备以一定的价格出售, 如果每套儿童服装以55元的价格为标准, 超出的记作正数, 不足的记作负数, 记录如下(单位: 元): +2, -3, +2, +1, -2, -1, 0, -2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比, 在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数: 1-;第2个数: 2-;第3个数: 3- .(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号, 两端部分必须写详细), 然后推测出结果.参考答案与解析1. B2.A3.A4.D5.B6.B7.C8. D9.B 10.C 11.3 - 12. -4, -0.8, - , - , -|-24| +8.3, -0.8, - , -13. 0 14.4 -4 15.1 16.6.96×105 21万 17.10 18. 110 解析: 找规律可得c =6+3=9, a =6+4=10, b =ac+1=91, ∴a +b +c =110.19.解:数轴表示如图所示, (5分)由数轴可知-(-3.5)>2>0>-1 >-|-3|.(8分)20. 解: (1)原式=-10+4=-6.(4分)(2)原式=⎝⎛⎭⎪⎫2-54×(-4)=-8+5=-3.(8分)(3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分)21. 解: (1)如图所示: (3分)(2)2-(-1)=3(km).答: 小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m, 9000÷250=36(min). 答: 小明跑步一共用了36min.(10分)22. 解: 由题意, 得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元), (5分)所以他卖完这8套儿童服装后是盈利, 盈利37元. (8分)23. 解: (1)a =154-160=-6, b =165-160=+5.(4分) (2)学生F 最高, 学生D 最矮, 最高与最矮学生的身高相差11厘米. (8分)(3)-3+2+(-1)+(-6)+3+5=0, 所以这6名学生的平均身高与全班学生的平均身高相同, 都是160厘米.(12分)24. 解:(1)第1个数: ;第2个数: ;第3个数: .(6分) (2)第2017个数: 2017-…⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34× (40344033)40334034=2017-12=201612.(12分)高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。
七年级上册数学第一章《有理数》测试题(含答案)
七年级数学(上) 【1 】第一章 有理数单元测试题(120分)一.选择题(3分×10=30分) 1.2008的绝对值是( )A.2008B.-2008C.±2008D.200812.下列盘算准确的是()A.-2+1=-3B.-5-2=-3C.-112-=D.1)1(2-=- 3.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与+︱-8︱C.-2222)与(- D.-︱-8︱与+(-8)4.盘算(-1)÷(-5)×51的成果是()A.-1B.1C.251D.-255.两个互为相反数的有理数的乘积为( )A.正数B.负数C.0D.负数或0 6.下列说法中,准确的是()A.有最小的有理数B.有最小的负数C.有绝对值最小的数D.有最小的正数7.小明同窗在一条南北走向的公路上晨练,跑步情形记载如下:(向北为正,单位:m ):500,-400,-700,800 小明同窗跑步的总旅程为()A.800 mB.200 mC.2400 mD.-200 m 8.已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A.5B.-1C.-5或-1D.±19.已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所暗示的数有( )A.1个B.2个C.3个D.4个10.有一张厚度是0.1mm 的纸,将它半数20次后,其厚度可暗示为( )×20)××220×202)mm 二.填空题(5分×3=15)11.妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能暗示什么_____ 12.一个正整数,加上-10,其和小于0,则这个正整数可能是(写出两个即可) 13.绝对值小于2008的所有整数的和是( )14.不雅察下列各数,按纪律在横线上填上恰当的数.2,5,10,17, , . 三.(4分×2=8分) 15.下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分离填入响应的聚集圈内. 正数负数2) 请盘算个中的整数的和与分数积的差. 16.下表是某一天我国部分城市的最低气温:北京 上海 广州 哈尔滨 杭州 宁波 -4℃-1℃6℃-10℃0℃2℃(1)请把表中各数在数轴上.(2)按该气象的最低气温,从低到高分列城市名. 四.(21分) 17.盘算:(1)-40-(-19)+(-24)(2))91()65(45-⨯-(3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2(4)[]4)2(2)4()3(1324÷--+-⨯-+-18.已知p与q互为倒数,r与s互为相反数,∣t∣=1,求t2+ 2009pq +r+s2009的值.(5分)五.(6分×2=12分)19.小颖.小丽.小虎三位同窗的身高如下表所示.(1)以小丽身高为尺度,记作0㎝,用有理数暗示出小颖和小虎的身高.(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作若干㎝.℃,现测得山脚的温度是4℃.(1)求离山脚1200m高的地方的温度.(2)若山上某处气温为-5℃,求此处距山脚的高度.六.(6分)21.甲.乙两商场上半年经营情形如下(“+”暗示盈利,“-”暗示赔本,以百万为单位)(1)三月份乙商场比甲商场多吃亏若干元?(2)六月份甲商场比乙商场多盈利若干元?(3)甲.乙两商场上半年平均每月分离盈利或吃亏若干元?七(8分)22.如图所示,一个点从数轴上的原点开端,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点暗示是-3,已知A.B是数轴上的点,请参照下图并思虑,完成下列各题.(1)假如点A暗示的数-1,将点A向右移动4个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(2)假如点A暗示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(3)假如点A暗示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜测终点B暗示的数是.A.B两点间的距离是 .八.(10分)23.一辆货车从超市动身,向东走了3km,到达小彬家,持续走了1.5km到达小颖家,又向西走了9.5km到达小明家,然后回到超市.(1)以超市为原点,以向东的偏向为正偏向,用1个单位长度暗示1km,你能在数轴上暗示出小明家.小彬家和小颖家的地位吗?(2)小明家距小彬家多远?(3)货车一共行驶了若干km?九.盘算题(10分)∣x∣=2,y2=36,求x+y的值.(5分)∣m-5∣+(n+6)2=0,求(m+n)2008+m3的值.(5分)。
第1章 有理数 人教版七年级数学上册单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为 .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是 . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。
人教版数学七年级上册第一章测试题
七年级上数学测试题(一)班级_______ 姓名____________ 学号_______ 评价________一、选择题(共20分)2.一个数加上-12得-5, 则这个数是()A. B. C. D.3.下列算式正确的是()A.(-14)-5=-.......B.0-(-3)=3C.(-3)-(-3)=-......D.|5-3|=-(5-3)5.5.绝对值大于或等于1, 而小于4的所有的正整数的和是()A....B....C....D.58、绝对值大于2且小于5的所有整数的和是()A......B.-......C.......D.59、一个数的绝对值是, 则这个数可以是()A.......B.-....C. 或者-...D.二、填空(本题共20分)1.-6的相反数是_______, -6的绝对值是______, 绝对值等于2的数是______。
8、绝对值小于5的整数有______个;绝对值小于6的负整数有_______个9、若a<0,b>0, | a|>|b|, 则a,b,-a,-b的大小顺序是10、观察下列数据, 按某种规律在横线上填上适当的数:1, 的相反数是_______三、把下列各数填在相应的大括号里: (12分)+, -6, 0.54, 7, 0, 3.14, 200%, 3万, -, 3.4365, -, -2.543。
正整数集合{ …}, 负整数集合{ …},分数集合{ …}, 自然数集合{ …},负数集合{ …}, 正数集合{ …}。
四、计算题(24分)(1)(-0.6)+1.7+(+0.6 )+(-1.7 )+(-9 ) (2)-3-4+19-11+2(3) 8+(-1)-5-(-0.25)(4)0-29.8-17.5+16.5-2.2+7.54五、(12分)把表示下列各数的点画在数轴上, 再按从小到大的顺序, 用“<”号把数连接起来。
3.5, -3, , 5.4, 0, -2六、(14分)某食品厂从生产的袋装食品中抽出样品20袋, 检测每袋的质量是否符合标准, 超过或不足的部分分别用正、负数来表示, 记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克, 则抽样检测的总质量是多少?七、(18分)检修小组乘一辆汽车沿公路检修线路, 约定向东为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)数学第一章检测
班级 姓名
一、判断题(10分)
1.有最小的自然数,也有最小的整数;( )
2.没有最小的正数,但有最小的正整数;( )
3.0是有理数中最小的数;( )
4.所有的有理数都可以用数轴上的点表示;( )
5.在数轴上表示-3和2的两点的距离是5;( )
6.一个数的绝对值一定是正数;( )
7.一个数的相反数的绝对值与这个数的绝对值的相反数相等;( )
8.若两个数不相等,那么它们的绝对值也不相等;( )
9.数轴上原点两旁的数是相反数;( )
10.两个数比较,绝对值大的反而小;( )
二.填空题(30分)
1. 如果向东运动5米记作+5米,那么向西运动3米记作: ;
2. 如果+3表示前进了3米,那么--4表示 ;
3. 在数轴上距原点3个单位的点所表示的数是 和 。
4.大于-5小于3.3的整数是 。
5. 绝对值小于3的负整数分别是
6. -3的相反数是 ,绝对值是 .
7. 相反数等于它本身的数是
8. 数轴上一个点到-3所表示的点的距离是7,那么这个点在数轴上所表示的数是
9. 如果将中午12:00定为0,12:00以后为正,单位是小时,那么上午8:00应表示 为 下午4:30应表示为
10.比较大小 -3 -4, 54- 4
3-, 5- 100- 三 选择题(16分)
1、东湖中学初一年级共有15个班,这里的“15”属于 ………………………( )
A .记数
B .测量结果
C .标号
D .排序
2、在有理数中,存在 …………………………………………………… ( )
A .最小的有理数
B .最小的整数
C .最大的负数
D .绝对值最小的数
3.比3的相反数小3的数是 ……………………………………………… ( )
A. -6 B . 6 C. ±6 D. 0 .
4.仔细思考以下各对量:
①胜二局与负三局; ②气温上升30 C 与气温下降30 C ;
③盈利5万元与支出5万元; ④增加10%与减少20%。
其中具有相反意义的量有……………………………………………………… ( )
A. 1 对
B. 2 对
C. 3 对
D.4对
5.计算11()623-⨯的结果是…………………………………………………… ( )
A .1.
B .2.
C .3.
D .4.
6、下列表述正确的是……………………………………………… ( )
A. –3一定表示下降3米或后退3米,
B. 若一个数是分数,则它一定是有理数,
C . 有理数可分为正有理数、负有理数两大类, D. 0不是整数
7、绝对值等于它本身的数是( )
A. 零
B. 正数
C. 负数或零
D. 正数或零
8、下列各对数中,互为相反数是( )
A 、2和
21 B 、0.5和21 C 、2-和2 D 、21-和21- 四、解答题
1、把下列各数填入相应的括号内:(12分) -2.5, 10, 0.22, 0, -1312, -20, +9.78, +68, 0.45, +7
4. 正整数{ }
负整数{ }
正分数{ }
负分数{ }
正有理数{ }
负有理数{ }
2.计算下列各式:(8分)
(1)|21||10||9|;-+-++ (2)19|3|||;320+⨯-
(3)
312;845+÷ (4)326.5.55⨯-
3、数轴,在数轴上表示数5, 0, -3, -1,并比较它们的大小,将它们按从小到大的顺序用“﹤”号连接。
(6分)
4.观察下面一列数,探求其规律:(6分) 111111,,,,,,23456
---
(1)请问第7个,第8个,第9个数分别是什么数?
(2)第2004个数是什么?如果这列数无限排列下去,与哪个数越来越接近?
5、(6分)在数轴上,一只蚂蚁从原点O出发,它先向右爬了4个单位长度到达点A,再向
右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C。
(1)写出A、B、C三点表示的数;
(2)根据C点在数轴上的位置,可以看作是蚂蚁从原点出发,向哪个方向爬行了几个单位长度得到的?
6、(6分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。
如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17.
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?。