2013年全国中考数学压轴题分类解析汇编专题01_动点问题
2013年全国部分地市中考数学压轴题集(含答案)
2013年全国各地中考压轴试题精选代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x =1对称,AB =4,所以A (-1,0),B (3,0), 由点D (2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a +3b =1.5,即a +b =0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c =1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x =0,得c (0,1.5),所以CD //AB ,令kx -2=1.5,得l 与CD 的交点F (23,27k ),令kx -2=0,得l 与x 轴的交点E (0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE +CF =DF +BE , 即:,511),272()23(272=-+-=+k k k k k 解得(3)由(1)知,2)1(21232122+--=++-=x x x y 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P (0,t ),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO =∠NPO ,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M (x M ,y M )在点N (x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t +2)(x M +x N )=2k x M x N ,……(2) 把y =kx -2(k ≠0)代入221x y -=中,整理得x 2+2kx -4=0, 所以x M +x N =-2k , x M x N =-4,代入(2)得t =2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。
2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题06:双动点问题
编辑一、选择题1. (2013年山东临沂3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F 分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t (s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为【】∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8。
故选B。
2. (2013年山东烟台3分)如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是【 】A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形3. (2013年四川南充3分) 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。
其中正确的结论个数为【 】A. 4B. 3C. 2D. 14. (2013年福建三明4分)如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC 方向匀速运动到终点C.已知P,Q两点同时出发,并同时到达终点,连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是【】二、填空题1. (2013年湖北武汉3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是▲ .2. (2013年浙江杭州4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值▲ (单位:秒)3. (2013年广西河池3分)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF。
2013中考压轴题选讲专题1:动点问题(排版+答案)
2012年广州中考数学压轴题分类专题专题1:动点问题授课教师:黄立宗一、典型例题选讲:例1、(2012吉林长春)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.例题2:(2012湖南湘潭)如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AO,点P在半圆弧AB 上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.例题3:(2012福建漳州)如图,在 OABC 中,点A 在x 轴上,∠AOC=60o,OC=4cm .OA=8cm 动点P 从点O 出发,以1c m /s 的速度沿线段O A →A B 运动;动点Q 同时..从点O 出发,以 a c m /s 的速度沿线段O C →C B 运动,其中一点先到达终点B 时,另一点也随之停止运动. 设运动时间为t 秒.(1)填空:点C 的坐标是(______,______),对角线OB 的长度是_______cm ;(2)当a=1时,设△OPQ 的面积为S ,求S 与t 的函数关系式,并直接写出当t 为何值时,S 的值最大? (3)当点P 在OA 边上,点Q 在CB 边上时,线段PQ 与对角线OB 交于点M.若以O 、M 、P 为顶点的三角形与△OAB 相似,求a 与t 的函数关系式,并直接写出t 的取值范围.备用图例题4:(2012四川南充)如图,⊙C 的内接△AOB 中,AB=AO=4,tan ∠AOB=43,抛物线2y ax bx =+经过点A(4,0)与点(-2,6)(1)求抛物线的函数解析式.(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.巩固练习:1、(2012湖南株洲)如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.2、(2012湖南衡阳)如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A 作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.备用图3、(2012新疆区)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是,请说明理由;(2)如图2,已知D(12,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?4、(2012内蒙古包头)如图,在Rt△ABC中,∠C =900,AC = 4cm , BC = 5 cm,点D 在BC 上,且CD =3 cm ,现有两个动点P,Q 分别从点A 和点B 同时出发,其中点P以1 厘米/秒的速度沿AC 向终点C 运动;点Q 以1 . 25 厘米/秒的速度沿BC 向终点C 运动.过点P作PE∥ BC 交AD 于点E ,连接EQ。
2013中考压轴题解析
2013中考压轴题解析解析:二次函数压轴题必有求解析式的一问,而且第二问大部分都是各种存在性的问题,如果出现了第三问,那么很可能就是拓展内容,当然也可能不是3个小题,但是只要没有拓展类的问题,就不能算是难题了。
(1)抛物线解析式中有两个参数b、c,但是只给了一个坐标点D,所以我们还需要一个点才能解出两个参数,刚好直线CD的解析式给出了,那么可得到点C的坐标(0,2),那么可直接获取c=2,将点D坐标代入抛物线解析式-9+3b+2=7/2b=7/2所以解析式y=-x²+7/2x+2(2)O、C、P、F围成平行四边形,那么已知OC//PF,那么只要令OC=PF即可,根据第一问可知OC=2,所以PF=2,而我们则需要表示出PF的长度,P的坐标可知(m,-m²+7/2m+2),而F的坐标则需要借助CD所在的直线,直线CD:y=1/2x+2则可知F(m,1/2m+2)那么PF的长度怎么表示呢?是P在F上面,还是F在P上面呢?(这一点必须考虑到)题中只说了P是y轴右侧的,所以势必会存在两种情况,因此我们用坐标表示的时候加个绝对值,即PF=|-m²+3m|=2这样得到两个方程m²-3m+2=0和m²-3m-2=0;第二个方程解出的m有一个负值,舍去;那么最终可得到3个m的值;(3)第三小题这种直线夹角问题,初中阶段势必要借助相似,而这一题又是让直接写出结果,所以过程不用说,一定不会少;直接借助题上的图形,假设P就在这个位置上(P在CD上方,当然还可能出现在CD下方);那么∠PCD=45°,有45°角,根据我们平时学的知识,唯有等腰直角三角形最适合,所以我们过P向CD做垂线,来构造等腰直角;如图,可知PG=CG,但是没啥用,因为条件太少,所以仍然不知道如何去解决P的位置,那么观察图形,我们做了PG⊥CD,同时构造了一个Rt△PFG,而这里还出现了个对顶角,∠PFG=∠CFE,如果过C向PE做垂线,垂线长度不仅=m,构造的三角形还能与△PFG相似,如图,利用对应角相等可得△CHF∽△PGF那么CH:PG=FH:FG其中CH=m,FH=m/2,FG=CG-CF=PG-CF而CF在Rt△CHF中,可知CF=m√5/2所以全部代入比例式中,可解出PG长度,而根据相似,或者勾股定理在△PGF中可得PF长度,那么PE=PF+FH+EH,即P的纵坐标可得,将P的横纵坐标代入抛物线解析式可解出m;第二种情况,P在CD下方的时候,如图,根据45°角可知绿色的CP线和第一种情况红色的CP关于CD对称,所以我们可以利用对称性找出绿色CP线的解析式,而不用非得再来一次相似,延长红色PG交绿色CP于K,如图,可知上方的P和绿色的K关于G对称,根据刚才的P的坐标,可以解出G的坐标(在△PGF中,过G向PF做垂线,得到G到x轴和y轴距离可得G坐标)利用中点坐标公式可求出K的坐标结合C和K的坐标获取直线CK的解析式联合抛物线解析式可得绿色P的坐标;(由于分号太多了,所以不提供计算过程)。
中考压轴题十大类型之动点问题
念书破万卷下笔如有神第一讲中考压轴题十大种类之动点问题一、解题策略和解法精讲解决动点问题的要点是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间见解和合情推理。
在动点的运动过程中察看图形的变化情况,理解图形在不同样地址的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”研究题的基本思路 ,这也是动向几何数学问题中最中心的数学本质。
二、精讲精练1.(2011 吉林)如图,梯形 ABCD 中, AD∥BC,∠ BAD=90°, CE⊥ AD 于点E,AD=8cm,BC=4cm,AB=5cm.从初始时辰开始,动点 P,Q 分别从点 A,B 同时出发,运动速度均为 1cm/s,动点 P 沿 A-B-C-E 方向运动,到点 E 停止;动点 Q 沿 B-C-E- D 方向运动,到点 D 停止,设运动时间为x s,△ PAQ 2的面积为 y cm ,(这里规定:线段是面积为0 的三角形)解答以下问题:(1)当x=2s 时, y=_____ cm2;当x =9 s 时, y=_______ cm2.2(2)当5 ≤x ≤14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出y4S 梯形ABCD时x 的值.15(4)直接写出在整个运动过程中,使 PQ 与四边形 ABCE 的对角线平行的所..有 x 的值.2.(2007 河北)如图,在等腰梯形 ABCD 中, AD∥BC,AB=DC=50,AD=75,BC=135.点 P 从点 B 出发沿折线段 BA-AD-DC 以每秒 5 个单位长的速度向点 C 匀速运动;点 Q 从点 C 出发沿线段 CB 方向以每秒 3 个单位长的速度匀速运动,过点 Q 向上作射线 QK⊥BC,交折线段 CD-DA-AB 于点 E.点 P、Q 同时开始运动,当点 P 与点 C 重合时停止运动,点 Q 也随之停止.设点 P、Q 运动的时间是 t 秒( t>0).(1)当点 P 抵达终点 C 时,求 t 的值,并指出此时BQ 的长;(2)当点 P 运动到 AD 上时, t 为何值能使 PQ∥DC ?(3)设射线 QK 扫过梯形 ABCD 的面积为 S,分别求出点 E 运动到 CD、DA 上时, S 与 t 的关系式;(4)△PQE 可否成为直角三角形?若能,写出 t 的取值范围;若不能够,请说明原因.A DK A DP EBQ CBC备用图3.(2008 河北)如图,在Rt△ABC中,∠ C=90°, AB=50,AC=30,D,E,F 分别是 AC,AB,BC 的中点.点 P 从点D出发沿折线 DE-EF-FC-CD 以每秒7 个单位长的速度匀速运动;点Q从点 B 出发沿BA方向以每秒 4 个单位长的速度匀速运动,过点 Q 作射线 QK AB ,交折线BC-CA于点 G .点 P,Q 同时出发,当点 P 绕行一周回到点D时停止运动,点Q也随之停止.设点P, Q 运动的时间是t秒( t 0 ).(1)D,F两点间的距离是;(2)射线QK可否把四边形CDEF分成面积相等的两部分?若能,求出t 的值.若不能够,说明原因;(3)当点 P 运动到折线EF FC 上,且点P又恰巧落在射线 QK 上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出 t 的值...C K CD F D FP GA EQB A E B备用图4(.2011 山西太原)如图,在平面直角坐标系中,四边形 OABC 是平行四边形.直线 l 经过O、C两点.点A的坐标为( 8,0),点B的坐标为( 11,4),动点P在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A出发以每秒 2 个单位的速度沿A→ B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O- C- B 订交于点 M.当 P、 Q 两点中有一点抵达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒 ( t 0 ) ,△ MPQ 的面积为 S.(1)点 C 的坐标为 ________,直线l的剖析式为 __________.(2)试求点 Q 与点 M 相遇前 S 与 t 的函数关系式,并写出相应的 t 的取值范围.(3)试求题 ( 2) 中当 t 为何值时, S 的值最大,并求出S 的最大值.(4)随着 P、Q 两点的运动,当点 M 在线段 CB 上运动时,设 PM 的延长线与直线 l 订交于点N.试试究:当t为何值时,△QMN为等腰三角形?请直接写出 t 的值.ylC BM Qyl C QBMOP AxylC M Q BO P A x5.( 2011四川重庆)如图,矩形ABCD 中,AB=6,BC=2 3,点 O 是 AB 的中点,点 P 在 AB 的延长线上,且 BP= 3.一动点 E 从 O 点出发,以每秒 1 个单位长度的速度沿OA 匀速运动,抵达A 点后,立刻以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1 个单位长度的速度沿射线PA 匀速运动,点E、F 同时出发,当两点相遇时停止运动.在点 E、F 的运动过程中,以 EF 为边作等边△EFG,使△EFG 和矩形 ABCD 在射线 PA 的同侧,设运动的时间为 t 秒(t≥0).(1)当等边△EFG 的边 FG 恰巧经过点 C 时,求运动时间 t 的值;(2)在整个运动过程中,设等边△ EFG 和矩形 ABCD 重叠部分的面积为 S,请直接写出 S与 t 之间的函数关系式和相应的自变量t 的取值范围;(3)设 EG 与矩形 ABCD 的对角线 AC 的交点为 H,可否存在这样的 t,使△AOH 是等腰三角形?若存在,求出对应的 t 的值;若不存在,请说明原因.D C D CEO B F P A E O B F P备用图 1D CAE O BF P备用图 2三、测试提高1. (2011 山东烟台)如图,在直角坐标系中, 梯形 ABCD 的底边 AB 在 x 轴上, 底边 CD 的端点 D 在 y 轴上.直线 CB 的表达式为 y4 x16,点 A 、D3 3的坐标分别为(- 4,0),(0,4).动点 P 自 A 点出发,在 AB 上匀速运动.动点 Q 自点 B 出发,在折线 BCD 上匀速运动,速度均为每秒 1 个单位.当其中一个动点抵达终点时, 它们同时停止运动. 设点 P 运动 t (秒)时,△OPQ 的面积为 S (不能够组成△ OPQ 的动点除外). (1)求出点 B 、C 的坐标; (2)求 S 随 t 变化的函数关系式;(3)当 t 为何值时 S 有最大值?并求出最大值.备用图。
2013年中考数学压轴题全面突破之一:动态几何(含答案)
中考数学压轴题全面突破之一•动态几何题型特点动态几何问题,是在几何知识和具体的几何图形背景下,通过点、线、形的运动,图形的平移、旋转、对称等来探究图形有关性质和图形之间的数量关系、位置关系的问题.常结合图形面积、存在性问题等考查.处理原则①研究基本图形,分析运动状态,确定分段;②画图,表达线段长;③借助几何特征建等式.难点拆解解决动态几何问题需要注意分段和线段长表达.①分段关键是找状态转折点.动点问题状态转折点通常是折线转折处或动点相遇处;图形运动问题状态转折点通常是边与顶点的交点.②线段长表达的方法有:s vt,线段和差、边角关系、勾股定理及相似.对于复杂的动态几何问题,如:起始时刻不同、往返运动、运动过程中速度变化等类型,需注意:表达线段长时找准对应的速度和时间.1.(2011山西太原改编)如图,在平面直角坐标系中,四边形OABC是平行四边形,直线l经过O,C两点,点A的坐标为(8,0),点B的坐标为(11,4).动点P 在线段OA 上从点O 出发以每秒1个单位长度的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位长度的速度沿A →B →C 的方向向点C 运动.过点P 作PM 垂直于x 轴,与折线OC ﹣CB 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)随着P ,Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?lyxC B AQ M PO lyO A BC lyO A BClyO A BC2. (2012重庆)如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.(1)当正方形的顶点F 恰好落在对角线AC 上时,求线段BE 的长. (2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B 'EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B 'EFG 的边EF 与AC 交于点M ,连接B 'D ,B 'M ,DM ,是否存在这样的t ,使△B 'DM 是直角三角形?若存在,求出t 的值;若不存在,说明理由.(3)在(2)问的平移过程中,设正方形B 'EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.DCB A(E )DCB AA B CDDCB A3. (2008河北)如图,在Rt △ABC 中,∠C =90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,BC 的中点.点P 从点D 出发,沿折线DE ﹣EF ﹣FC ﹣CD 以每秒7个单位长度的速度匀速运动;点Q 从点B 出发,沿BA 方向以每秒4个单位长度的速度匀速运动.过点Q 作射线QK ⊥AB ,交折线BC ﹣CA 于点G .点P ,Q 同时出发,当点P 绕行一周回到点D 时,P ,Q 两点都停止运动,设点P ,Q 运动的时间是t 秒(t >0).(1)D ,F 两点间的距离是__________________.(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出相应的t 值;若不能,说明理由.(3)当点P 运动到折线EF -FC 上,且点P 又恰好落在射线QK 上时,求t 的值.(4)连接PG ,当PG ∥AB 时,请直接写出t 的值.QKG FEDC BAPABCDEFABC D EFABC D EFABC D EF4. (2012江苏无锡)如图,菱形ABCD 的边长为2c m ,∠BAD =60°.点P 从点A 出发,以错误!未找到引用源。
2013全国部分地市中考(压轴题)动点型(含答案)
2013全国部分地市中考题(压轴题)动点型问题例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
2013年中考数学压轴题及解析分类汇编(优选.)
2013年中考数学压轴题及解析分类汇编2013年中考数学压轴题及解析分类汇编2013中考数学压轴:相似三角形问题2013中考数学压轴题函数相似三角形问题(一)2013中考数学压轴题函数相似三角形问题(二)2013中考数学压轴题函数相似三角形问题(三)2013中考数学压轴:等腰三角形问题2013中考数学压轴题函数等腰三角形问题(一)2013中考数学压轴题函数等腰三角形问题(二)2013中考数学压轴题函数等腰三角形问题(三)2013中考数学压轴:直角三角形问题2013中考数学压轴题函数直角三角形问题(一)2013中考数学压轴题函数直角三角形问题(二)2013中考数学压轴题函数直角三角形问题(三)2013中考数学压轴:平行四边形问题2013中考数学压轴题函数平行四边形问题(一)2013中考数学压轴题函数平行四边形问题(二)2013中考数学压轴题函数平行四边形问题(三)2013中考数学压轴:梯形问题2013中考数学压轴题函数梯形问题(一)2013中考数学压轴题函数梯形问题(二)2013中考数学压轴题函数梯形问题(三)2013中考数学压轴:面积问题2013中考数学压轴题函数面积问题(一)2013中考数学压轴题函数面积问题(二)2013中考数学压轴题函数面积问题(三)2013中考数学压轴题:函数相似三角形问题(一) 例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ=90°是解题的前提.4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况:①当3BQ BA =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ ==.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=cos 1∠=①当3BQ BA=时,BQ =. 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.例2Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A 在x 轴上运动,可以体验到,直线AB 保持斜率不变,n 始终等于m 的2倍,双击按钮“面积BDE =2”,可以看到,点E 正好在BD 的垂直平分线上,FD //x 轴.拖动点P 在射线FD 上运动,可以体验到,△AEO 与△EFP 相似存在两种情况.思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况. 满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数k y x=的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m . (2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3). 因为点D (4,1)在反比例函数k y x =的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得34,22.k bk b=+⎧⎨=+⎩解得12k=,1 b=.因此直线AB的函数解析式为112y x=+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当EA EFAO FP=时,255=.解得FP=1.此时点P的坐标为(1,1).②如图4,当EA FPAO EF=时,255=.解得FP=5.此时点P的坐标为(5,1).考点伸展本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为12yx=-,直线AB为172y x=-.第(3)题FD不再与x轴平行,△AEO与△EFP也不可能相似.图52013中考数学压轴题函数相似三角形问题(二) 例3如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4 考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B′(6,0),可得A B′=45.如图2,由AM//CN,可得''''B N B CB M B A=,即2845=.解得'5B C=.所以35AC=.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.①如图3,当''AB B CAC B D=时,535=,解得'3B D=.此时OD=3,点D的坐标为(3,0).②如图4,当''AB B DAC B C=时,355=,解得5'3B D=.此时OD=133,点D的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.2013中考数学压轴题函数相似三角形问题(三) 例5如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.双击按钮“第(3)题”,拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xxx,得0=x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221-=xy.设点D的横坐标为m)41(<<m,那么点D的坐标为)22521,(2-+-mmm,点E的坐标为)221,(-mm.所以)221()22521(2---+-=mmmDE mm2212+-=.因此4)221(212⨯+-=∆mmSDACmm42+-=4)2(2+--=m.当2=m时,△DCA的面积最大,此时点D的坐标为(2,1).图5 图6第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图动感体验请打开几何画板文件名“09闸北25”,拖动点D 可以在射线BA 上运动.双击按钮“第(2)题”,拖动点D 可以体验到两圆可以外切一次,内切两次.双击按钮“第(3)题”,再分别双击按钮“DE 为腰”和“DE 为底边”,可以体验到,△DEF 为等腰三角形.1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310 AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4 在⊙M中,115226Mr BD y x===,在⊙N中,1122Nr CE x==.①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1动感体验请打开几何画板文件名“08杭州24”,拖动点A 在y 轴上运动,可以体验到,AQ 与BC 保持平行,OA ∶OB 与OA ∶OB ′保持3∶2.双击按钮“t =3”,“t =0.6”,“t =-0.6”,“t =-3”,抛物线正好经过点B (或B ′).思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b)|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2013中考数学压轴题函数等腰三角形问题(一) 例1如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.2.探求△APD是等腰三角形,分三种情况列方程求解.3.猜想点H的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt△OHM的斜边长OM是定值,以OM为直径的圆过点H、C.满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB ===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7, 4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B . 如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.2013中考数学压轴题函数等腰三角形问题(二) 例3如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP 与△MNA的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图像,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图像中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m =,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2013中考数学压轴题函数相似三角形问题(三)例5已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.。
2013中考数学压轴题动态几何题型精选解析
2013中考数学压轴题动态几何题型精选解析(二)例题如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b= 时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b= 时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.思路分析:(1)①当直线经过圆心M(4,2)时,将圆心坐标代入直线解析式,即可求得b的值;②当若直线与⊙M相切,如答图1所示,应有两条符合条件的切线,不要遗漏.欲求此时b的值,可以先求出切点P的坐标,代入解析式即可;欲求切点P的坐标,可以构造相似三角形△PMN∽△BAO,求得PN=2MN,然后在Rt△PMN中利用勾股定理求出MN和PN,最后求出P点坐标;(2)本问关键是弄清直线扫过矩形ABCD的运动过程,可以分为五个阶段,分别求出每一阶段S的表达式,如答图2﹣4所示.解:(1)①直线l:y=﹣2x+b(b≥0)经过圆心M(4,2)时,则有:2=﹣2×4+b,∴b=10;②若直线l:y=﹣2x+b(b≥0)与⊙M相切,如答图1所示,应有两条符合条件的切线.设直线与x轴、y轴交于A、B点,则A(,0)、B(0,b),∴OB=2OA.由题意,可知⊙M与x轴相切,设切点为D,连接MD;设直线与⊙M的一个切点为P,连接MP并延长交x轴于点G;过P点作PN⊥MD于点N,PH ⊥x轴于点H.易证△PMN∽△BAO,∴PN:MN=OB:OA=2:1,∴PN=2MN.在Rt△PMN中,由勾股定理得:PM2=PN2+MN2,解得:MN=,PN=,∴PH=ND=MD﹣MN=2﹣,OH=OD﹣HD=OD﹣PN=4﹣,∴P(4﹣,2﹣),代入直线解析式求得:b=10﹣2;同理,当切线位于另外一侧时,可求得:b=10+2.(2)由题意,可知矩形ABCD顶点D的坐标为(2,2).由一次函数的性质可知,当b由小到大变化时,直线l:y=﹣2x+b(b≥0)向右平移,依次扫过矩形ABCD的不同部分.可得当直线经过A(2,0)时,b=4;当直线经过D(2,2)时,b=6;当直线经过B(6,0)时,b=12;当直线经过C(6,0)时,b=14.①当0≤b≤4时,S=0;②当4<b≤6时,如答图2所示.设直线l:y=﹣2x+b与x轴交于点P,与AD交于点Q.令y=0,可得x=,∴AP=﹣2;令x=2,可得y=b﹣4,∴AQ=b﹣4.∴S=S△APQ=AP•AQ=(﹣2)(b﹣4)=b2﹣2b+4;③当6<b≤12时,如答图3所示.设直线l:y=﹣2x+b与x轴交于点P,与CD交于点Q.令y=0,可得x=,∴AP=﹣2;令y=2,可得x=﹣1,∴DQ=﹣3.S=S梯形APQD=(DQ+AP)•AD=b﹣5;④当12<b≤14时,如答图4所示.设直线l:y=﹣2x+b与BC交于点P,与CD交于点Q.令x=6,可得y=b﹣12,∴BP=b﹣12,CP=14﹣b;令y=2,可得x=﹣1,∴DQ=﹣3,CQ=7﹣.S=S矩形ABCD﹣S△PQC=8﹣CP•CQ=b2+7b﹣41;⑤当b>14时,S=S矩形ABCD=8.综上所述,当b由小到大变化时,S与b的函数关系式为:.。
中考数学压轴题专题解析---直角三角形中的动点问题
中考数学压轴题专题解析---直角三角形中的动点问题这节课我们学什么1.动点直角三角形一线三直角问题2.动点直角三角形SAS问题3.动点直角三角形三角比问题4.动点直角三角形勾股定理问题知识点梳理动点直角三角形问题,一般都需要讨论哪个角是可能构成直角,然后根据题型,运用不同的方法.如下为总结的四种方法:1.先讨论哪个角是直角,然后第一类用一线三直角构造相似求解,分别用未知数的式子表示出一线三直角模型的边长;2.用边角边,即两边对应成比例夹角相等,一般是动点构成的直角三角形与已知的直角三角形相似,需要求出已知直角三角形的边长,以及用未知数的式子求出动点直角三角形的边长,通过对应边成比例建立等式;3.利用三角比来求解,实际上这个和上面一种情况类似,但是动点构成的直角三角形中,某个锐角的三角比已知,这样,直接在动点三角形中运用三角比直接可以建立等式;4.第四种方法就比较简单粗暴了,就是把动点直角三角形三边的长度用未知数的式子,或者直接是数字表示出来,用勾股定理建立等式,求解出未知数.典型例题分析1、动点直角三角形一线三直角问题; 例1.已知如图在平面直角坐标系xoy 中,抛物线与轴分别交于点(2,0)A 、点B (点B 在点A 的右侧),与y 轴交于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ABCD 的面积;(3)设抛物线上的点E 在第一象限,BCE ∆是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.【答案:(1)∵当时,,∴(0,3)C在Rt COB ∆中,∵∴∴∴点(6,0)B把(2,0)A (6,0)B 分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点41D -(,) ∴(3)点E 的坐标是108(,)或1635(,)】2、动点直角三角形SAS 问题 例2.已知:如图,抛物线2445y x mx =-++与y 轴交于点C ,与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足4OC OA =.设抛物线的对称轴与x 轴交于点M . (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当QMB ∆与COM ∆相似时,求直线AQ 的解析式.【答案:(1)根据题意:04C (,)∵4OC OA = ∴0A (-1,) 把点A 代入得4045m =--+ 解得∴抛物线的解析式∴(2)根据题意得:3BM =,2tan CMO ∠=,直线CM :4y x =+ (i )当90COM MBQ ∠=∠=︒时,COM QBM ∆∆∽ ∴2BQtan BMQ BM∠== ∴6BQ =即5,6Q -()∴AQ :(ii )当90COM BQM ∠=∠=︒时,COM BQM ∆∆∽ 同理Q () ∴AQ :】例3.如图,在ABC Rt ∆中,︒=∠90C ,5=AB ,43tan =B ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F . (1)求AC 和BC 的长;(2)当EF BC //时,求BE 的长;(3)联结EF ,当DEF ∆和ABC ∆相似时,求BE 的长.【答案:解:(1)在中,∠C ∵43tan ==BC AC B ,∴设k AC 3=,k BC 4= ∴55==k AB ,∴1=k ∴3=AC ,4=BC(2)过点E 作BC EH ⊥,垂足为H .A C易得EHB ACB ∆∆∽设k CF EH 3==,k BH 4=,k BE 5=∵EF BC //∴FDC EFD ∠=∠∵︒=∠=∠90C FDE ∴EFD FDC ∆∆∽ ∴CDFDFD EF =∴CD EF FD ⋅=2 即)44(2492k k -=+化简,得04892=-+k k 解得91324±-=k (负值舍去)∴92013105-==k BE(3)过点E 作BC EH ⊥,垂足为H .易得EHB ACB ∆∆∽ 设k EH 3=,k BE 5=∵︒=∠+∠90HDE HED ︒=∠+∠90HDE FDC ∴FDC HED ∠=∠∵︒=∠=∠90C EHD ∴EHD DCF ∆∆∽∴DFDECD EH =当DEF ∆和ABC ∆相似时,有两种情况:①43==BC AC DF DE ;∴43=CD EH 即4323=k 解得21=k ∴255==k BE②34==AC BC DF DE ;∴34=CD EH 即3423=k 解得98=k∴9405==k BE综合①、②,当DEF ∆和ABC ∆相似时,BE 的长为25或940.】3、动点直角三角形三角比问题例4.已知:如图,在Rt ABC ∆中,90C ∠=︒,2BC =,4AC =,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且EPD A ∠=∠.设A 、P 两点的距离为x ,BEP ∆的面积为y . (1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当BEP ∆与ABC ∆相似时,求BEP ∆的面积.【答案:(1)∵90APD C ∠=∠=︒,A A ∠=∠,∴ADP ABC ∆∆∽.∴21==AC BC AP PD . ∵EPD A ∠=∠,PED AEP ∠=∠,∴EPD EAP ∆∆∽. ∴21==AP PD AE PE . ∴2AE PE =.(2)由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==. 作EHAB ⊥,垂足为点H .∵AP x =,∴x PD 21=.∵PD HE //,∴34==AD AE PD HE .∴x HE 32=. 又∵52=AB ,∴x x y 32)52(21⋅-=,即x x y 352312+-=.定义域是5580<<x .另解:由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==.ABD E∴x x AE 3522534=⨯=.∴12233ABE S x x ∆⋅⨯==.∴AB BP S S ABE BEP =∆∆,即5252352x xy-=.∴x x y 352312+-=.定义域是5580<<x . (3)由PEH BAC ∆∆∽,得AC AB HE PE =,∴x x PE 352532=⋅=.当BEP ∆与ABC ∆相似时,只有两种情形:90BEP C ∠=∠=︒或90EBP C ∠=∠=︒.(i )当90BEP ∠=︒时,AB BC PB PE =,∴515235=-x x.解得453=x . ∴1625453352516931=⨯+⨯⨯-=y . (ii )当90EBP ∠=︒时,同理可得253=x ,45=y .】PGABCDFPGABCD例5.已知ABC ∆为等边三角形,6AB =,P 是AB 上的一个动点(与A 、B 不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC ∆内作正方形DEFG ,其中D 、E 在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP ∆是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.【答案:(1)∵ABC ∆为等边三角形, ∴60B C ∠=∠=︒,6AB BC AC ===. ∵DP AB ⊥,BP x =,∴2BD x = 又∵四边形DEFG 是正方形, ∴EF BC ⊥,EF DE y ==, ∴y EC 33=. ∴6332=++y y x , ∴339)33(-+-=x y .(≤<3)(2)当2BP =时,3392)33(-+⨯-=y 33-=.DEFBC23232-==y CF .(3)GDP ∆能成为直角三角形. ①90PGD ∠=︒时,y y x +=-36,61)3)9x x -=⋅+-得到:113630-=x . ②90GPD ∠=︒时,y x x 234+=, ⋅+=234x x ]339)33[(-+-x , 得到:336-=x .∴当GDP ∆为直角三角形时,BP 的长为113630-或者336-=x .】DABCGP EF4. 二动点直角三角形勾股定理问题例6.如图,AOB ∆的顶点A 、B 在二次函数21332y x bx =-++的图像上,又点A 、B 分别在y 轴和x 轴上,tan 1ABO ∠=.(1)求此二次函数的解析式;(2)过点A 作AC BO //交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆相似时,求点P【答案:(1)∵点A 在二次函数23312++-=bx x y 的图像上,)23,0(A 在Rt AOB ∆中,︒=∠90AOB ∵1tan ==∠BO AO ABO ,∵23==AO BO ,∴)0,23(-B ∵点B 在二次函数23312++-=bx x y 的图像上 ∴02323)23(312=+--⨯-b ∴21=b ∴2321312++-=x x y (2)∵AC BO //交上述函数图像于点C ,∴设)23,(x C ∴232321312=++-x x ,解得23,021==x x ∵)23,23(C ∴23==AO AC ,223=OC 设抛物线2321312++-=x x y 与x 轴的另一交点为D 可得,)0,3(D∴223)230()233(22=-+-=CD ,3=OD ∴222OD CD OC =+,∴︒=∠90OCD易得,Rt OCA Rt ABO ∆∆∽,Rt ODC Rt ABO ∆∆∽ ∴)23,0(P 或)0,3(P 】课后练习练1.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C -,点P 是直线BC 下方抛物线上的任意一点;(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P 的坐标.【答案:】练2.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,//OA BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知2OE EB =,3CB =,6OA =,BA =5OD =.(1)求经过点A 、B 、C 三点的抛物线解析式:(2)求证:ODE OBC ∆∆∽:(3)在y 轴上找一点G ,使得OFG ODE ∆∆∽,直接写出点G 的坐标.【答案:(1)2163y x x =-++或者436)23(312+--=x y(2)24E (,),OE =,OB =OE OC OD OB==,DOE BOC ∠=∠ 故得证 (3)05(,)、05-(,)、020(,)、020-(,)】练3.已知:如图,二次函数22416333y x x =--的图像与x 轴交于点A 、B (点A 在点B 的左侧),抛物线的顶点为Q ,直线QB 与y 轴交于点E .(1)求点E 的坐标;(2)在x 轴上方找一点C ,使以点C 、O 、B 为顶点的三角形与BOE ∆相似,请直接写出点C 的坐标.【答案:(1)令0y =,得224160333x x --= 解方程得122,4x x =-=(4,0)B 又22(1)63y x =-- ∴(1,6)Q -设直线BQ :(0)y kx b k =+≠406k b k b +=⎧⎨+=-⎩解得28y x =-(0,8)E ∴-(2)12345616848(0,2),(0,8),(4,2),(4,8),(,),(,)5555C C C C C C 】练4.已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点长,沿PE 翻折BPE ∆得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G .(1)如图,当 1.5BP =时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP x =,DG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE FHG ∆∆∽,求BP 的长.【答案:(1)由题意,得,90,BE EF PFE B BEP FEP =∠=∠=︒∠=∠ ∵点E 为BC 的中点22BE EC EF EC ∴==∴== 又90,EFQ C EQ EQ ∠=∠=︒=∴EFQ ECQ ∆∆≌,90FEQ CEQ BEP CEQ ∴∠=∠∴∠+∠=︒又90BPE BEP BPE CEQ ∠+∠=︒∴∠=∠90B C ∠=∠=︒∴BPE CEQ ∆∆∽ 1.522BP BE EC QC CQ ∴==即83CQ ∴= (2)由(1)知:BPE CEQ ∆∆∽,BP BE EC CQ ∴= 242x CQ CQ x ∴=∴=44DQ x ∴=- ∵QD AP //4,4DG DQ AP x AG y AG AP∴==-=+又 4444y x y x -∴=+-21616(12)4x y x x -∴=<<-(3)由题意知:90C GFH ∠︒∠==①当点G 在线段AD 的延长线上时,由题意知:G CQE ∠∠=∵CQE FQE ∠∠=∴22DQC FQC CQE G ∠∠∠∠===∴90DQG G ∠+∠︒=∴30G ∠︒=∴30BQP CQE G ∠∠∠︒===tan30BP BE ∴=⋅︒=②当点G 在线段DA 的延长线上时,由题意知:G QCE ∠=∠同理可得:30G ∠=︒30BPE G ∴∠=∠=︒cot30BP BE ∴=⋅︒=综上所述,BP 】课后小测验1.如图,二次函数2y x bx c =++图像经过原点和点(2,0)A ,直线AB 与抛物线交于点B ,且45BAO ∠=︒.(1)求二次函数解析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得BCD ∆为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.【答案:(1)(2)由可以知道直线AB 的一次项系数为-1,从而可求得直线AB 的解析式为.当时.根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为;当时.将与联立得求得点B 的坐标为,然后根据待定系数法求得直线BC 的解析式为直线BC 的解析式为,根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为。
2013年北京中考数学复习专题讲座十一:动点型问题(一)(含答案)
A.
B.
C.
D.
考点二:动态几何型压轴题 点动、线动、形动构成的问题称之为动态几何问题 . 它主要以几何图形为载体,运动
变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高, 它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与 特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊 位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三 角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 (一)点动问题.
=
∴
.
5
点评: 本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然 不是很多但难度较大. 对应训练
3.(2012•桂林)如图,在边长为 4 的正方形 ABCD 中,动点 P 从 A 点出发,以每秒 1 个单
位长度的速度沿 AB 向 B 点运动,同时动点 Q 从 B 点出发,以每秒 2 个单位长度的速度沿 BC→CD 方向运动,当 P 运动到 B 点时,P、Q 两点同时停止运动.设 P 点运动的时间为 t, △APQ 的面积为 S,则 S 与 t 的函数关系的图象是( )
1
则当 0≤x<a 时,y=x,
当 a≤x<(1+ )a 时,y=
,
当 a(1+ )≤x<a(2+ )时,y=
,
当 a(2+ )≤x≤a(2+2 )时,y=a(2+2 )﹣x, 结合函数解析式可以得出第 2,3 段函数解析式不同,得出 A 选项一定错误, 根据当 a≤x<(1+ )a 时,函数图象被 P 在 BD 中点时,分为对称的两部分,故 B 选项 错误, 再利用第 4 段函数为一次函数得出,故 C 选项一定错误, 故只有 D 符合要求, 故选:D. 点评: 此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的 函数关系式是解决本题的关键. 对应训练
中考数学压轴题二次函数动点问题一
二次函数压轴题1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点.(1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.3.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
⑴求抛物线的解析式;⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。
4.已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标;(2)求此抛物线的表达式;(3)求△ABC 的面积;(4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.5.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.6、如图,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OA =OB .(1)求b +c 的值;(2)若点C 在抛物线上,且四边形OABC 是平行四边形,求抛物线的解析式;(3)在(2)条件下,点P (不与A 、C 重合)是抛物线上的一点,点M 是y 轴上一点,当△BPM 是等腰直角三角形时,求点M 的坐标. 7、如图,已知抛物线y =ax 2+bx +c (a ≠0)与x点C ,顶点D (1,- 92). (1)求抛物线对应的函数关系式;(2)求四边形ACDB 的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴...仅有两个交点,请直接写出一个平移后的抛物线的关系式.]8、如图a ,在平面直角坐标系中,A (0,6),B (4,0).(1)按要求画图:在图a 中,以原点O 为位似中心,按比例尺1:2,将△AOB 缩小,得到△DOC ,使△AOB 与△DOC 在原点O 的两侧;并写出点A 的对应点D 的坐标为 ,点B 的对应点C 的坐标为 ;(2)已知某抛物线经过B 、C 、D 三点,求该抛物线的函数关系式,并画出大致图象;(3)连接DB ,若点P 在CB 上,从点C 向点B 以每秒1个单位运动,点Q 在BD 上,从点B 向点D 以每秒1个单位运动,若P 、Q 两点同时分别从点C 、点B 点出发,经过t 秒,当t 为何值时,△BPQ 是等腰三角形?9、(2013k x +-2的图象与y 轴相交于点B (0,M 恰好经过顶点A .(1)求k 3t ,且点P 在该抛物线的对称轴l 试探索:①当S 1<S <S 2时,求t 的取值范围 (其中:S 为△PAB 的面积,S 1为△OAB 的面积,S 2为四边形OACB 的面积);②当t 取何值时,点P 在⊙M 上.(写出t 的值即可)10 如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.11 如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.12 如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于备用图图a点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.13 .如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M 时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.14. 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国中考数学压轴题分类解析汇编(十专题)
专题1:动点问题
1. (2012上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
11【答案】解:(1)∵点O是圆心,OD⊥BC,BC=1,∴BD=BC=。
22
又∵OB=2,∴??。
(2)存在,DE是不变的。
如图,连接AB,则?
1∵D和E是中点,∴DE=。
2
(3)∵BD=x,∴OD?。
∵∠1=∠2,∠3=∠4,∠AOB=90。
∴∠2+∠3=45°。
过D作DF⊥OE,垂足为点F0。
由△BOD∽△EDF,得BDOD=,即 EFDF
x,解得。
EF第 1 页共 44 页。