Noncommutative complete intersections and matrix integrals
GSMR接口需求规范
ERTMS/ETCS – Class 1GSM-R InterfacesClass 1 RequirementsREF : SUBSET-093ISSUE : 2.3.0DATE : 10-Oct-2005Company Technical Approval Management approval ALCATELALSTOMANSALDO SIGNALBOMBARDIERINVENSYS RAILSIEMENS1. M ODIFICATION H ISTORYIssue NumberDateSection Number Modification / Description Author0.1.0 (8-Aug-02) Creation based on subset052LK0.1.1 (8-Aug-02) All Minor editorial changes LK0.1.1ec All englishcheck JH0.2.0 (9-Sep-02) 3., 4.2, 4.1, 6.3, 7.2,8.2 Updated after email discussionLK0.3.0 (24-Oct-02) All Updated after FlorencemeetingLK+TS0.4.0 (14-Nov-02) All Updated after LondonmeetingLK0.5.0 (5-Dec-02) 4.2, 5.6.1, 6.2, 7.1,7.3, 9.2 Updated after Berlin meetingLK0.6.0 (12-Dec-02) 3., 6.3., 10.4.3 Email comments included TS+LK2.0.0 (12-Dec-02) Erroneous versionnumber 2.2.0correctedFinal issue LK2.1.0 (28-March-03)3.1.1.1, 6.3.1.3,7.1.1.1, 8.1.1.1 Update acc. to super group commentsLK2.2.0 (28-March-03) - Final version LK2.2.2.31-03-03 Versionnumberchangedfor release to the usersGroupWLH2.2.3 (12-June-03) All Update after Brussels mtg.and GSM-R Op. grp.commentsLK2.2.4 (26-June-03) editorial Draft release to UsersGroupJH2.2.5 - FormalreleaseJH 2.2.5.1 4.2, 6.2, 6.3, new 6.4 Update after Paris mtg. andGSM-R Op. grp. commentsLK2.2.5.2 Various update after further GSM-ROp grp reviewJH2.2.5.3 cleanversion JH 2.2.5.4 6.4 Updated after further GSM-R Op grp requestRB2.2.6 CleanversionRB2.2.6 revA (31-Jan-05) 4.2, 6.3, 6.4, Annex A Proposal for QoS parametervaluesLK2.2.6 revB (14-Feb-05) 6.3, 6.4, Annex A Updated after QoSmeeting#6 BrusselsLK2.2.6 revC (24-Feb-05) 6.3, 6.4, Annex A,Annex B added Updated during BerlinmeetingLK2.2.6 revD (25-Feb-05) 6.2, 6.3.5, 10.3, 10.5.2 Email comments inserted LK2.2.6 revE (6-Apr-05)3.1., 3.2,4.1,5.1,6.3,10.1, 10.3, 10.5, 10.7 Updated after QoSmeeting#7 BrusselsLK2.2.6 revF (25-Apr-05)3.1,4.1,5.1,6.3, 6.4,10.1, 10.3, 10.5, 10.6,10.7Edinburgh meeting TS+LK2.2.6revG (20-May-05)3.1, 5.1, 6.3, 6.4, 8.2 Changes according toBrussels meetingLK2.2.6revH (1-Sep-05) 4.1, 5.1, 6.3, 6.4, 7.2,10.3, 10.4, 10.5 Comments from SG andEEIGLK2.2.6revI (8-Sep-05) 5.1, 6.3, 6.4, 10.4 Zürich meeting PL+LK 2.3.0 (10-Oct-05) update for issue JH2. T ABLE OF C ONTENTS1.M ODIFICATION H ISTORY (2)2.T ABLE OF C ONTENTS (4)3.R EFERENCES (6)3.1Normative Documents (6)3.2Informative Documents (7)4.T ERMS AND DEFINITIONS (8)4.1Abbreviations (8)4.2Definitions (9)5.G ENERAL (10)5.1Scope of this document (10)5.2Introduction (10)6.E ND-TO-END SERVICE REQUIREMENTS TO GSM-R NETWORKS (12)6.1Data bearer service requirements (12)6.2Additional services (12)6.3Quality of Service requirements (13)6.3.1General (13)6.3.2Connection establishment delay (14)6.3.3Connection establishment error ratio (14)6.3.4Transfer delay (15)6.3.5Connection loss rate (15)6.3.6Transmission interference (15)6.3.7GSM-R network registration delay (16)6.4Summary of QoS requirements (16)7.R EQUIREMENTS TO FIXED NETWORK INTERFACE (17)7.1Foreword (17)7.2Interface definition (17)7.3Communication signalling procedures (17)8.R EQUIREMENTS TO MOBILE NETWORK INTERFACE (18)8.1Foreword (18)8.2Interface definition (18)9.A NNEX A(I NFORMATIVE) TRANSMISSION INTERFERENCE AND RECOVERY (19)9.1General (19)9.2Transmission interference in relation to HDLC (19)10.A NNEX B(INFORMATIVE)J USTIFICATION OF Q O S PARAMETER VALUES (22)10.1General (22)10.2Connection establishment delay (22)10.3Connection establishment error ratio (22)10.4Transfer delay (23)10.5Connection loss rate (23)10.5.1QoS targets (23)10.5.2Conclusions (24)10.6Transmission interference (24)10.7Network registration delay (26)3. R EFERENCESDocuments3.1 Normative3.1.1.1 This document list incorporates by dated or undated references, provisions from otherpublications. These normative references are cited at the appropriate place in the textand the publications are listed hereafter. For dated references, subsequentamendments to or revisions of any of these publications apply to this document onlywhen incorporated in it by amendment or revision. For undated references the latestedition of the publication referred to apply.Reference DateTitleU-SRS 02.02 ERTMS/ETCS Class 1; Subset 026; Unisig SRS, version 2.2.2 Subset 037 07.03 ERTMS/ETCS Class 1; Subset 037; EuroRadio FIS; Class1requirements, version 2.2.5EIRENE FRS 10.03 UIC Project EIRENE; Functional Requirements Specification.Version 6.0, CLA111D003EIRENE SRS 10.03 UIC Project EIRENE; System Requirements Specification.Version 14.0, CLA111D004ETS 300011 1992 ISDN; Primary rate user-network interface; Layer 1 specificationand test principlesETS 300102-1 1990 ISDN; User-network interface layer 3; Specification for basiccall controlETS 300125 1991 ISDN; User-network interface data link layer specificationsGSM04.21 12.00 Rate Adaptation on the MS-BSS Interface, v.8.3.0GSM 07.0711.98 ETSI TS 100916; Digital cellular telecommunications system(Phase 2+); AT command set for GSM Mobile Equipment (ME),GSM TS 07.07 version 6.5.0 Release 1997ITU-T V.24 02.00 List of definitions for interchange circuits between data terminalequipment (DTE) and data circuit-terminating equipment (DCE)ITU-T V.25ter 07/97 Serial asynchronous dialling and controlITU-T V.110 02.00 Support of data terminal equipments (DTEs) with V-series typeinterfaces by an integrated services digital network (ISDN) EuroRadio FFFIS 09.03 UIC ERTMS/GSM-R Unisig; Euroradio Interface Group; RadioTransmission FFFIS for Euroradio; A11T6001; version 12O-2475 09.03 UIC ERTMS/GSM-R Operators Group; ERTMS/GSM-R Qualityof Service Test Specification; O-2475; version 1.0Documents3.2 InformativeTitleReference DateEEIG 04E117 12.04 ETCS/GSM-R Quality of Service - Operational Analysis, v0.q(draft)ERQoS 08.04 GSM-R QoS Impact on EuroRadio and ETCS application,Unisig_ALS_ERQoS, v.0104. T ERMS AND DEFINITIONS4.1 AbbreviationsAT ATtention command setATD AT command DialB channel User channel of ISDNB m channel User channel of GSM PLMN on the air interfaceBRI Basic Rate InterfaceByte 1 start bit + 8 data bits + 1 stop bitDCE Data Circuit EquipmentDCD Data Carrier DetectD channel Control channel of ISDND m channel Control channel of GSM PLMN on the air interfaceDTE Data Terminal EquipmenteMLPP enhanced Multi-Level Precedence and Pre-emptionFIS Functional Interface SpecificationGPRS General Packet Radio Service (a phase 2+ GSM service) GSM-R Global System for Mobile communication/RailwayHDLC High level Data Link ControlISDN Integrated Services Digital NetworkMLPP Multi-Level Precedence and Pre-emption (ISDN service) MOC Mobile Originated CallMS Mobile Station (a GSM entity)Termination/Terminated MT MobileMTC Mobile Terminated CallMTBD Mean Time Between DisturbanceUnitOBU On-BoardPLMN Public Land Mobile NetworkPRI Primary Rate InterfaceQoS Quality of ServicesRBC Radio Block CentreT TI Duration of Transmission Interference periodT REC Duration of Recovery periodUDI Unrestricted Digital4.2 Definitions4.2.1.1 Definitions for the purpose of this specification are inserted in the respective sections.5. G ENERAL5.1 Scope of this document5.1.1.1 The scope of this document is to specify the Radio Communication Systemrequirements to the GSM-R network services (including fixed side access) andinterfaces and also the pre-requisites to be fulfilled by GSM-R networks and ETCSinfrastructures. Presently the requirements for high-speed lines are covered,requirements for conventional lines may be included in future versions of thisdocument.5.1.1.2 The data transmission part of the communication protocols is fully described in theEuroRadio FIS [Subset 037].5.1.1.3 The Radio Transmission FFFIS for EuroRadio [EuroRadio FFFIS] specifies thephysical, electrical and functional details related to the interfaces.5.1.1.4 All requirements apply to GSM-R unless indicated otherwise .5.2 Introduction5.2.1.1 The definition of the GSM services and associated physical and communicationsignalling protocols on the air interface are fully standardised in the specificationsproduced by the ETSI GSM Technical Committee for the public GSM implementationas well as for the GSM-R. Additionally, some railway specific services are alsospecified in the EIRENE SRS. However, in both cases, not all are required for ERTMSclass 1 system definition.5.2.1.2 The following ETSI GSM phases 1/2/2+ services are required:a) Transparent data bearer serviceb) Enhanced multi-level precedence and pre-emption (eMLPP).5.2.1.3 Other ETSI GSM phases 1/2/2+ services are not required for Class 1. These are thefollowing :a) GSM supplementary services:• Call forwardingb) General packet radio service (GPRS)5.2.1.4 Other ETSI GSM phases 1/2/2+ services are not required. Examples of these are thefollowing :a) Non-transparent data bearer serviceb) GSM supplementary services:• Line identification•Call waiting and hold• Multiparty•Closed User Group•Advice of charge• Call Barringc) Short message service point to point or cell broadcastd) Voice broadcast servicee) Voice group call service5.2.1.5 The following EIRENE railway specific service [EIRENE SRS] is required:a) Location dependent addressing5.2.1.6 The following EIRENE specific services [EIRENE SRS] are not required :a) Functional addressingb) Enhanced location dependent addressingc) Calling and connected line presentation of functional identitiesd) Emergency callse) Shunting modef) Multiple driver communications6. E ND-TO-END SERVICE REQUIREMENTS TO GSM-RNETWORKS6.1 Data bearer service requirements6.1.1.1 For the transmission of information between OBU and RBC, the EuroRadio protocoluses the bearer services of a GSM-R network. The service provider makes these databearer services available at defined interfaces.6.1.1.2 The data bearer services are described as data access and transfer in the GSMnetwork from Terminal Equipment (TE) on the mobile side (i.e. OBU) to a networkgateway interworking with Public Switched Telephonic Network (PSTN) or IntegratedServices Digital Network (ISDN) on the fixed side (i.e. RBC).6.1.1.3 The following features and attributes of the required bearer service shall be provided:a) Data transfer in circuit switched modeb) Data transfer allowing multiple rate data streams which are rate-adapted[GSM04.21] and [ITU-T V.110]c) Unrestricted Digital Information (UDI) – only supported through ISDN interworking(no analogue modem in the transmission path)d) Radio channel in full ratee) Transfer of data only (no alternate speech/data)f) Transfer in asynchronous transparent modeg) The required data rates are listed in the following table:Bearer service Requirement24. Asynchronous 2.4 kbps T O25. Asynchronous 4.8 kbps T M26. Asynchronous 9.6 kbps T MT: Transparent; M: Mandatory; O: OptionalTable1 GSM-R bearer servicesservices6.2 Additional6.2.1.1 The following supplementary services shall be provided:a) Enhanced multi-level precedence and pre-emption.b) The selection of a particular mobile network shall be possible on-demand.6.2.1.2 The priority value for command control (safety) shall be assigned to according to[EIRENE FRS §10.2] and [EIRENE SRS §10.2].6.2.1.3 The following railway specific service shall be provided by GSM-R networks:a) Location dependent addressing based on the use of short dialling codes inconjunction with cell dependent routing.6.3 Quality of Service requirements6.3.1 General6.3.1.1 As an end-to-end bearer service is used, a restriction of requirements on the servicequality placed on the air interface is not sufficient.6.3.1.2 End-to-end quality of service has to be considered at the service access points.6.3.1.3 The service access points are:•the service access points to the signalling stack for the establishment or release of a physical connection,•the service access points to the data channel.6.3.1.4 The network shall be able to support transparent train-to-trackside and trackside-to-train data communications at speeds up to 500 km/h e.g. in tunnels, cuttings, onelevated structures, at gradients, on bridges and stations.6.3.1.5 The network shall provide a Quality of Service for ETCS data transfer that is at least asgood as listed below1. The parameters are valid for one end-to-end connection for onetrain running under all operational conditions.6.3.1.6 The required QoS parameters shall not depend on network load.6.3.1.7 These performance figures reflect railway operational targets [EEIG 04E117].6.3.1.8 Note: A justification of the performance figures is given by Annex B.6.3.1.9 QoS requirements are specified independently of the method of measurement (refer to[O-2475] for specification of testing).6.3.1.10 Conventional line quality of service requirements may be included in future versions ofthis document. Also the values may not be applied at all locations and times (e.g.discontinuous radio coverage at some locations).6.3.1.11 Given the performance constraints of GSM-R, pre-conditions may be necessary tomeet the railway operational targets of [EEIG 04E117]. If different operational QoStargets are required, then other pre-conditions on ETCS application may be necessary.1 Early experience suggests that GSM-R performance can be better than these parameters suggest, after network optimisation and tuning.Such a case is not covered by this specification and this aspect of ETCS SystemPerformance becomes the responsibility of whoever specifies different operationaltargets.6.3.2 Connection establishment delay6.3.2.1 Connection establishment delay is defined as:Value of elapsed time between the connection establishment request and theindication of successful connection establishment.6.3.2.2 In case of mobile originated calls, the delay is defined between the request bycommand ATD and indication by the later of the two events response CONNECT ortransition of DCD to ON.6.3.2.3 The connection establishment delay of mobile originated calls shall be <8.5s (95%),≤10s (100%).6.3.2.4 Delays>10s shall be evaluated as connection establishment errors.6.3.2.5 The required connection establishment delay shall not depend on user data rate of theasynchronous bearer service.6.3.2.6 The required connection establishment delay is not valid for location dependentaddressing.6.3.3 Connection establishment error ratio6.3.3.1 The Connection establishment error ratio is defined as:Ratio of the number of unsuccessful connection establishment attempts to the totalnumber of connection establishment attempts.6.3.3.2 “Unsuccessful connection establishment attempt” covers all possible types ofconnection establishment errors caused by end-to-end bearer service.6.3.3.3 Connection establishment delays >10s shall be evaluated as connection establishmenterrors.6.3.3.4 The GSM-R networks should be designed in such a way, that at least two consecutiveconnection establishment attempts will be possible (pre-condition on GSM-Rnetworks), e.g. regarding GSM-R radio coverage related to maximal possible trainspeed.6.3.3.5 If the operational QoS targets of [EEIG 04E117] are wanted, then the ETCSinfrastructure should be designed in such a way, that at least two consecutiveconnection establishment attempts will be possible (Recommended pre-condition forETCS infrastructure).6.3.3.6 The connection establishment error ratio of mobile originated calls shall be <10-2 foreach attempt .6.3.3.7 Note: entry into Level 2 is of particular importance; commonly, a time of 40s may berequired in the case the GSM-R mobile station is already registered with the GSM-Rnetwork (see [ERQoS]).6.3.4 Transfer delay6.3.4.1 The end-to-end transfer delay of a user data block is defined as:Value of elapsed time between the request for transfer of a user data block and theindication of successfully transferred end-to-end user data block6.3.4.2 The delay is defined between the delivery of the first bit of the user data block at theservice access point of transmitting side and the receiving of the last bit of the sameuser data block at the service access point of the receiving side.6.3.4.3 The end-to-end transfer delay of a user data block of 30 bytes shall be ≤0.5s (99%).6.3.5 Connection loss rate6.3.5.1 The Connection loss rate is defined as:Number of connections released unintentionally per accumulated connection time.6.3.5.2 The requirements for connection loss rate varies depending on ETCS system variablessuch as T_NVCONTACT and the possible train reactions after connection loss (seesection 10.5).6.3.5.3 If the operational QoS-targets of [EEIG 04E117] are wanted, then the ETCSinfrastructure should be designed in such a way, that at least the following conditionsare fulfilled (Recommended pre-condition for ETCS infrastructure):• T_NVCONTACT ≥ 41s and• M_NVCONTACT different to train trip and• a new MA reach the OBU before standstill.6.3.5.4 If the connection establishment error ratio is <10-2, then the connection loss rate shallbe <10-2/h.6.3.6 Transmission interference6.3.6.1 A transmission interference period T TI is the period during the data transmission phaseof an existing connection in which, caused by the bearer service, no error-freetransmission of user data units of 30 bytes is possible.6.3.6.2 A transmission interference happens, if the received data units of 30 bytes deviatepartially or completely from the associated transmitted data units.6.3.6.3 The transmission interference period shall be < 0.8s (95%), <1s (99%).6.3.6.4 An error-free period T Rec shall follow every transmission interference period to re-transmit user data units in error (e.g. wrong or lost) and user data units waiting to beserved.6.3.6.5 The error-free period shall be >20s (95%), >7s(99%).6.3.7 GSM-R network registration delay6.3.7.1 The GSM-R network registration delay is defined as:Value of elapsed time from the request for registration to indication of successfulregistration by +CREG response.6.3.7.2 The GSM-R network registration delay shall be ≤30s (95%), ≤35s (99%).6.3.7.3 GSM-R network registration delays > 40 s are evaluated as registration errors.6.4 Summary of QoS requirements6.4.1.1 Table 2 contains the summary of QoS requirements at GSM-R interface.QoS Parameter Value (see 6.3) Connection establishment delay of mobile< 8.5s (95%), ≤10s (100%) originated callsConnection establishment error ratio <10-2≤ 0.5s (99%)Maximum end-to-end transfer delay (of 30 bytedata block)Connection loss rate ≤ 10-2 /hTransmission interference period < 0.8s (95%), <1s (99%)Error-free period >20s (95%), >7s(99%)Network registration delay ≤30s (95%), ≤35s (99%), ≤40s (100%)Table 2 Summary of QoS requirements7. R EQUIREMENTS TO FIXED NETWORK INTERFACE7.1 Foreword7.1.1.1 This part of the specification does not define mandatory requirements forinteroperability. It is a preferred solution, in case interchangeability between tracksideRBC and access point to the fixed network is required for a given implementation.7.1.1.2 This section gives only limited information. [EuroRadio FFFIS] must be used for fullcompliance.7.1.1.3 Note: The requirements to fixed network interface refer to a set of ETSI specifications[ETS 300011, ETS 300125, ETS 300102-1]. This set is the basis of conformancerequirements for network terminations. Instead of these specifications updatedspecifications can be referred, if they state that they are compatible with the followingrequirements.7.2 Interfacedefinition7.2.1.1 The ISDN Primary Rate Interface (PRI) shall be provided as specified by [ETS300011].7.2.1.2 The service access point on the fixed network side corresponds with the S2M interfaceat the T-reference point.7.2.1.3 The Basic Rate interface might also be used as an option in some particular cases likeradio infill unit.7.2.1.4 In addition to these interfaces, the V.110 rate adaptation scheme shall be applied tothe user data channel. The RA2, RA1 and RA0 steps are mandatory.7.2.1.5 End-to-end flow control in layer 1 shall not be used.7.3 Communication signalling procedures7.3.1.1 The signalling protocols shall be provided as specified by:a) Link Access Procedure on the D channel [ETS 300125]b) User-network interface layer 3 using Digital Subscriber Signalling [ETS 300102-1]7.3.1.2 ISDN multi-level precedence and pre-emption (MLPP) supplementary service shall beprovided according to the EIRENE specification [EIRENE SRS].7.3.1.3 The SETUP message contains Information Elements including the bearer capabilityand the low layer compatibility (refer to [EuroRadio FFFIS] specifying the Euroradiodata bearer service requirements.8. R EQUIREMENTS TO MOBILE NETWORK INTERFACE8.1 Foreword8.1.1.1 This part of the specification does not define mandatory requirements forinteroperability. It is a preferred solution, in case interchangeability between OBU andMobile Terminal is required for a given implementation.8.1.1.2 This section gives only limited information. [EuroRadio FFFIS] must be used for fullcompliance.definition8.2 Interface8.2.1.1 If an MT2 interface is used at the mobile side, the service access point at the mobilestation corresponds with the R-reference point of the MT2.8.2.1.2 [GSM 07.07] specifies a profile of AT commands and recommends that this profile beused for controlling Mobile Equipment functions and GSM network services through aTerminal Adapter.8.2.1.3 For the mobile termination type MT2 the signalling over the V interface has to be inaccordance with [GSM 07.07], using the V.25ter command set.8.2.1.4 The online command state shall not be used to guarantee interoperability. To avoiddifferent behaviour, it is recommended to enable/disable this escape sequence usingthe appropriate AT command usually referred as ATS2=<manufacturer defined value>.This particular command shall be sent to the mobile terminal as part of its initialisationstring.8.2.1.5 State control using physical circuits is mandatory.8.2.1.6 The V-interface shall conform to recommendation ITU-T V.24. The signals required arespecified in [EuroRadio FFFIS].8.2.1.7 Note that in the case of class 1 mobile originated calls, it is allowed to set the priorityvalue “command control (safety)” at subscription time.8.2.1.8 The call control commands, interface control commands and responses used on the V-interface at the R reference point are specified in [EuroRadio FFFIS].9. A NNEX A(I NFORMATIVE) TRANSMISSION INTERFERENCEAND RECOVERY9.1 General9.1.1.1 The usual QoS parameter used as measure of accuracy of data transmission viatransparent B/B m channels is the bit error rate.9.1.1.2 The QoS parameter relevant for layer 2 accuracy is the HDLC frame error rate.9.1.1.3 It is not possible to define relationships between both rates. The channel behaviour isnot known: error bursts and interruptions of data transmission during radio cellhandover can happen.9.1.1.4 Additionally, statistical distributions of values such as error rates do not accurately mapthe requirements from the ETCS point of view. Transfer of user data is requested inbursts; the transfer delay can be critical for the application. It has to be guaranteed forsome application messages that data can be transferred to the train in a defined timeinterval.9.1.1.5 A model of service behaviour is necessary reflecting all relevant features of GSM-Rnetworks.9.1.1.6 This model can be used as a normative reference for acceptance tests and for networkmaintenance during ETCS operation. It enables the ETCS supplier to demonstrate thecorrect operation of ETCS constituents during conformance testing without thevariations of real world GSM-R networks.9.1.1.7 Transmission interference and recovery is a first approximation of such a servicebehaviour model.9.2 Transmission interference in relation to HDLC9.2.1.1 Transmission interference is characterised by a period in the received data streamduring which the received data units deviate partially or completely from those of thetransmitted data stream. The service user cannot see the causes of transmissioninterference.9.2.1.2 The user data units erroneously transmitted or omitted during the transmissioninterference must be corrected by re-transmission. These re-transmissions result in atime delay and in higher load in the B/B m channel. Therefore, after transmissioninterference a period of error-free transmission, called the recovery period, must follow.9.2.1.3 In the normal data transfer phase after recovery, user data units are transmitted toprovide the data throughput requested by application messages.9.2.1.4 Figure 1 shows a simplified relationship of B/B m channel and HDLC errors: because ofthe selected options for the HDLC protocol (e.g. multi selective reject) the recoveryperiod and the normal data transfer phase are not strictly separated.error-free frameHDLC statecorrupted frameerror-freeChannel stateerroneousFigure 1 B/B m channel and HDLC errors9.2.1.5 Some special cases exist in Figure 1:A Beginning of HDLC frame (corrupted by transmission) is earlier than beginning oftransmission interferenceB Error-free time is not sufficient for transfer of HDLC frameC No HDLC frame is ready for transferD End of corrupted HDLC frame is later than end of transmission interference9.2.1.6 Figure 2 shows as an example the HDLC behaviour in case of transmissioninterference.Figure 2 Event "Transmission interference"9.2.1.7 The sender does not receive an acknowledgement in the case of a corrupted last Iframe of a sequence of I frames. The timer T1 expires and a RR (poll bit set) frame willbe sent.9.2.1.8 After receiving an RR frame with an indication of successful transmission of thepreceding I frame, the lost I frame will be re-transmitted.9.2.1.9 Again the sender does not receive an acknowledgement and requests for thesequence number. Eventually, the transmission is successful but the delivery of userdata will be delayed towards the receiver.9.2.1.10 The occurrence of the above defined event represents a QoS event “Transmissioninterference” at the sender side. The beginning and the end of the transmissioninterference are not exactly known. But the second repetition clearly indicates an event“Transmission interference”:a) The transmission interference time was too long orb) The recovery time was too short.。
np问题的字面解释 非确定型多项式完全问题
NP问题的字面解释非确定型多项式完全问题一、背景介绍1. NP问题的概念NP问题是计算机科学和数学领域中一个重要的概念,即“非确定性多项式时间”(Non-deterministic Polynomial time),它代表了一类能在多项式时间内被验证的问题。
这类问题的解决方案虽然不能在多项式时间内被找到,但一旦有了一个解,却能够在多项式时间内被验证。
简而言之,如果一个问题可以在多项式时间内被验证,则它是一个NP问题。
2. 多项式完全问题的概念多项式完全问题是一类特殊的NP问题,它具有以下两个性质:它是一个NP问题;任何一个NP问题都可以在多项式时间内规约到它。
也就是说,如果有一个多项式时间算法能够解决任何一个多项式完全问题,那么就能够解决所有的NP问题。
3. 非确定型多项式完全问题非确定型多项式完全问题是NP问题中最困难的一类问题,它要求在多项式时间内验证一个解的存在,并且这个验证需要非确定性算法。
换言之,虽然这类问题的解可以在多项式时间内被验证,但却无法在多项式时间内被求解。
非确定型多项式完全问题是计算理论中一个极具挑战性的问题。
二、定义和性质1. 非确定型多项式完全问题的定义非确定型多项式完全问题是指一个问题,如果它是一个NP问题,并且任何一个NP问题都可以在多项式时间内归约到它,那么它就是一个非确定型多项式完全问题。
每一个非确定型多项式完全问题都是NP 问题,但不是所有的NP问题都是非确定型多项式完全问题。
2. 非确定型多项式完全问题的性质非确定型多项式完全问题具有以下一些重要性质:(1)困难性:非确定型多项式完全问题是计算上的一类最困难问题,它们无法在多项式时间内被求解。
(2)通用性:任何一个NP问题都可以在多项式时间内归约到非确定型多项式完全问题,因此解决了一个非确定型多项式完全问题就意味着可以解决所有的NP问题。
(3)实际意义:非确定型多项式完全问题在实际生活中具有广泛的应用,例如在计划问题、调度问题、网络设计等方面都有重要的地位。
不含双线性对运算的无证书签密方案
种新的无证 书公钥密码体制 。在无证书密码体制 中,用户
密钥 , 而第 2类攻击者 A, ,已经知道系统主密钥 ,所以他 可以
计算 出每个用户的部分私钥 ,但是不可以替换 用户的公钥 。 在实际应用中 A 模拟的是除 P G之 外的攻 击者 ,A, 拟的 , K , 模 是恶意 P G的非法攻击。本文提出的无证 书签密 方案 ,同样 K 要求体制在第一类 攻击者 A 和第 2类攻击者 下部满足机 ,
[ src ]T leh rbe f lte et ctls in rpinshme nteleaueae ulf m in a p ig nel t uv s Abtat os v e o lm o lh rf ae ss cy t ce s trtr r i o bl er o t p a c i i e g o i h i b tr i ma pn so lpi c re ic
( s t t o fr t nE gn e n ,n o mainE gn e n ies y Z e g h u4 0 0 , h n ) I t ue f no mai n ie r g If r t n ie r gUnv ri , h n z o 5 0 2 C ia ni I o i o i t
wh c e d c t p r to s h s p p r p e e t h r tc n r t a rn — r e c ri c t l s i n r p i n hi s h me i p o a l e u e i h ih n e osl o e a i n ,t i a e r s n s t e f s o c ee p i g fe e t a ee s sg c y to .T s c e s r v b y s c r n t e y i i i f r n o o a l d l r l tv o t e h d e so e dic e e l g rt m o l m n o a d m r c e mo e , e ai e t a n s ft s r t o a ih pr b e a d c mpu ai n lDi i — l a ob e . r s n a rn h r h tto a f e He l n pr l m Ast e i o p i g m he i o e a i n i e n w c e , h ss h me i r o u ai n ly e c e t ha t e s ui r m i n a p i g . p r to n t e s h me t i c e smo ec mp t to a l f i n n o h r l f o b l e rma p n s h i t b t i
离散数学中上下文无关文法详解
离散数学中上下文无关文法详解离散数学是计算机科学的重要基础学科之一,而上下文无关文法(Context-Free Grammar,简称CFG)则是离散数学中一个重要的概念。
本文将对上下文无关文法进行详细解析。
1. 什么是上下文无关文法?上下文无关文法是一种形式语言的描述方法,它用一组产生式(Production Rules)来定义一个语言的结构。
上下文无关文法由四个元素组成,分别是终结符(Terminals)、非终结符(Nonterminals)、开始符号(Start Symbol)和产生式(Productions)。
终结符是语言中的基本符号,一般表示具体的词汇,如字母、数字等。
非终结符则表示语言中的语法结构,可以由一个或多个终结符和非终结符组成。
开始符号表示一个语法结构的起始点,一般为一个非终结符。
产生式则是规定如何将一个符号串替换为另一个符号串,它由一个非终结符和一个符号串组成。
2. 语法推导和派生树在上下文无关文法中,可以通过一系列的推导步骤将一个符号串转换为另一个符号串。
这些推导步骤又称为语法推导,其中每一步的推导都使用一个产生式来替换符号。
通过一系列的推导,可以得到最终的终结符串,也就是语言中的句子。
语法推导可以用派生树来表示,派生树是一种树状结构,其中每个非终结符都对应一个节点,从根节点到叶子节点的路径表示了一个语法推导的过程。
派生树可以帮助我们更直观地理解推导过程,方便对语言结构进行分析。
3. 上下文无关文法的应用上下文无关文法在计算机科学中有广泛的应用,特别是在编译原理、自然语言处理和语法分析等领域。
在编译原理中,上下文无关文法被用来描述编程语言的语法结构。
通过定义符合上下文无关文法的产生式和终结符,可以将源代码转换为抽象语法树,进而进行编译、优化和代码生成等过程。
在自然语言处理中,上下文无关文法可以用来描述自然语言的句子结构。
通过定义合适的产生式和终结符,可以进行句法分析和语义分析等任务。
non-interactive 用法-概述说明以及解释
non-interactive 用法-概述说明以及解释1.引言1.1 概述非交互式用法是指在使用过程中不需要进行实时的交互和反馈的一种应用方式。
在此类应用中,用户通过一次性的设定或输入来完成操作,而无需与系统或其他用户进行实时的沟通和互动。
这种用法强调的是简洁、高效和自动化,能够在一定程度上提升工作效率和用户体验。
非交互式用法在各个领域都有广泛的应用,尤其适用于那些不需要频繁输入和操作的场景。
例如,自动化的批处理任务、数据处理和分析、系统管理和配置等都可以采用非交互式的方式来完成。
这类应用不仅在个人使用中有很大的便利性,而且在企业和组织中也能节省大量的时间和人力。
非交互式用法的特点是高度可靠和可重复性。
由于操作过程是预先设定好的或者通过脚本自动执行的,因此不会受到人为因素的影响,操作结果可以始终如一地保持一致。
与此同时,由于不需要人工的实时干预,这种用法还能够减少操作失误和疏漏的可能性,提高工作的准确性和可靠性。
然而,非交互式用法也存在一些局限性和不足。
首先,由于缺乏实时的交互和反馈,这种用法在某些情况下可能无法满足用户个性化需求和特殊要求。
其次,非交互式用法对于处理复杂、涉及多方协作和互动的任务可能显得不够灵活和有效。
在这种情况下,交互式的应用方式更具优势。
总的来说,非交互式用法作为一种高效、简洁和自动化的应用方式,在各个领域都有广泛的应用。
通过合理地选择和应用非交互式技术,可以提升工作效率、减少人为错误,从而为用户和组织带来更好的体验和价值。
然而,我们也应该充分认识到非交互式用法的局限性,并在实际应用中进行灵活的选择和权衡。
1.2文章结构1.2 文章结构在本篇文章中,我们将围绕着非交互式用法展开讨论,并探究其在不同领域中的应用。
文章主要分为三个部分,分别是引言、正文和结论。
引言部分将对非交互式用法进行概述,介绍其基本定义和特点。
我们将解释什么是非交互式用法,并阐述其背后的理论和原则。
同时,我们还将简要介绍本篇文章的结构,为读者提供一个整体的框架。
一个求解非线性互补问题非单调自适应信赖域方法
桂 林 电 子 科 技 大 学 学 报
J r a ii i e st f El c r n c Te h olg ou n l Gu l Un v r iy o e t o i c n o y of n
V o _ O, I 3 No.3
num e iale e i e s rc xp rm nt .
Ke r s n n i e rc mp e n a i r be n n n t n u o tcd t r i a i n t u t e i n me h d; l b l y wo d : o l a o l me t rt p o l m n y o mo o o ea t ma i e e m n t r s g o t o g o a o r
Ab ta t B s n Fic e — r it r f n t n ( u c i n) we c n r f r u a e t e n n i e r c mp e n a iy s r c : a e o s h r Bu me s e u c i o FB f n t o a e o m l t h o l a o l me t rt n
2 S h o fMah maisa d C mp t rS in e uin No ma ie st . c o l t e t n o u e ce c ,F j r l o c a Unv ri y,F z o 5 0 7, h n ) u h u 3 0 0 C ia
摘
要 : 于Fsh rB r i e 基 i e— ume tr函数 ( 称 F 函数 ) 将 非 线 性 互 补 问 题 转 化 等 价 的 无 约 束 问题 求 解 。 信 赖 域 与 c s 简 B 可 在
TD信息元素详解
信息元素功能性定义作者:李欣目录目录 (1)信息元素功能性定义 (11)1 核心网信息元素 (11)1.1 CN Information elements (11)1.2 CN Domain System Information (11)1.3 CN Information info (11)1.4 IMEI (11)1.5 IMSI (GSM-MAP) (11)1.6 Intra Domain NAS Node Selector (11)1.7 Location Area Identification (12)1.8 NAS message (12)1.9 NAS system information (GSM-MAP) (12)1.10 Paging record type identifier (12)1.11 PLMN identity (12)1.12 PLMN Type (12)1.13 P-TMSI (GSM-MAP) (12)1.14 RAB identity (12)1.15 Routing Area Code (12)1.16 Routing Area Identification (13)1.17 TMSI (GSM-MAP) (13)2 UTRAN 移动信息元素 (13)2.1 Cell Access Restriction (13)2.2 Cell identity (13)2.3 Cell selection and re-selection info for SIB3/4 (13)2.4 Cell selection and re-selection info for SIB11/12 (13)2.5 Mapping Info (14)2.6 URA identity (14)3 UE 信息元素 (14)3.1 Activation time (14)3.2 Capability Update Requirement (14)3.3 Cell update cause (15)3.4 Ciphering Algorithm (15)3.5 Ciphering mode info (15)3.6 CN domain specific DRX cycle length coefficient (15)3.7 CPCH Parameters (15)3.8 C-RNTI (15)3.9 DRAC system information (15)3.10 Void (16)3.11 Establishment cause (16)3.12 Expiration Time Factor (16)3.13 Failure cause (16)3.14 Failure cause and error information (16)3.15 Initial UE identity (16)3.16 Integrity check info (16)3.17 Integrity protection activation info (17)3.18 Integrity protection Algorithm (17)3.19 Integrity protection mode info (17)3.20 Maximum bit rate (17)3.21 Measurement capability (17)3.22 Paging cause (17)3.23 Paging record (17)3.24 PDCP capability (17)3.25 Physical channel capability (18)3.26 Protocol error cause (18)3.27 Protocol error indicator (18)3.28 RB timer indicator (18)3.29 Redirection info (18)3.30 Re-establishment timer (18)3.31 Rejection cause (18)3.32 Release cause (18)3.33 RF capability FDD (19)3.34 RLC capability (19)3.35 RLC re-establish indicator (19)3.36 RRC transaction identifier (19)3.37 Security capability (19)3.38 START (19)3.39 Transmission probability (19)3.40 Transport channel capability (20)3.41 UE multi-mode/multi-RAT capability (20)3.42 UE radio access capability (20)3.43 UE Timers and Constants in connected mode (21)3.44 UE Timers and Constants in idle mode (21)3.45 UE positioning capability (21)3.46 URA update cause (21)3.47 U-RNTI (21)3.48 U-RNTI Short (21)3.49 UTRAN DRX cycle length coefficient (21)3.50 Wait time (21)3.51 UE Specific Behavior Information 1 idle (21)3.52 UE Specific Behavior Information 1 interRAT (22)4 无线承载信息元素 (22)4.0 Default configuration identity (22)4.1 Downlink RLC STATUS info (22)4.2 PDCP info (22)4.3 PDCP SN info (22)4.4 Polling info (22)4.5 Predefined configuration identity (23)4.6 Predefined configuration value tag (23)4.7 Predefined RB configuration (23)4.8 RAB info (23)4.9 RAB info Post (23)4.10 RAB information for setup (23)4.11 RAB information to reconfigure (24)4.12 NAS Synchronization indicator (24)4.13 RB activation time info (24)4.14 RB COUNT-C MSB information (24)4.15 RB COUNT-C information (24)4.16 RB identity (24)4.17 RB information to be affected (24)4.18 RB information to reconfigure (25)4.19 RB information to release (25)4.20 RB information to setup (25)4.21 RB mapping info (25)4.22 RB with PDCP information (25)4.23 RLC info (25)4.24 Signaling RB information to setup (26)4.25 Transmission RLC Discard (26)5 传输信道信息元素 (26)5.1 Added or Reconfigured DL TrCH information (26)5.2 Added or Reconfigured UL TrCH information (27)5.3 CPCH set ID (27)5.4 Deleted DL TrCH information (27)5.5 Deleted UL TrCH information (27)5.6 DL Transport channel information common for all transport channels (27)5.7 DRAC Static Information (27)5.8 Power Offset Information (28)5.9 Predefined TrCH configuration (28)5.10 Quality Target (28)5.11 Semi-static Transport Format Information (28)5.12 TFCI Field 2 Information (28)5.13 TFCS Explicit Configuration (28)5.14 TFCS Information for DSCH (TFCI range method) (29)5.15 TFCS Reconfiguration/Addition Information (29)5.16 TFCS Removal Information (29)5.17 Void (29)5.18 Transport channel identity (29)5.19 Transport Format Combination (TFC) (29)5.20 Transport Format Combination Set (29)5.21 Transport Format Combination Set Identity (29)5.22 Transport Format Combination Subset (29)5.23 Transport Format Set (29)5.24 UL Transport channel information common for all transport channels (30)6 物理信道信息元素 (30)6.1 AC-to-ASC mapping (30)6.2 AICH Info (30)6.3 AICH Power offset (30)6.4 Allocation period info (30)6.5 Alpha (30)6.6 ASC Setting (30)6.7 Void (31)6.8 CCTrCH power control info (31)6.9 Cell parameters Id (31)6.10 Common timeslot info (31)6.11 Constant value (31)6.12 CPCH persistence levels (31)6.13 CPCH set info (31)6.14 CPCH Status Indication mode (31)6.15 CSICH Power offset (32)6.16 Default DPCH Offset Value (32)6.17 Downlink channelisation codes (32)6.18 Downlink DPCH info common for all RL (32)6.19 Downlink DPCH info common for all RL Post (32)6.20 Downlink DPCH info common for all RL Pre (32)6.21 Downlink DPCH info for each RL (32)6.22 Downlink DPCH info for each RL Post (33)6.23 Downlink DPCH power control information (33)6.24 Downlink information common for all radio links (33)6.25 Downlink information common for all radio links Post (33)6.26 Downlink information common for all radio links Pre (33)6.27 Downlink information for each radio link (33)6.28 Downlink information for each radio link Post (33)6.29 Void (33)6.30 Downlink PDSCH information (33)6.31 Downlink rate matching restriction information (34)6.32 Downlink Timeslots and Codes (34)6.33 DPCH compressed mode info (34)6.34 DPCH Compressed Mode Status Info (34)6.35 Dynamic persistence level (34)6.36 Frequency info (34)6.37 Individual timeslot info (35)6.38 Individual Timeslot interference (35)6.39 Maximum allowed UL TX power (35)6.40 Void (35)6.41 Midamble shift and burst type (35)6.42 PDSCH Capacity Allocation info (35)6.43 PDSCH code mapping (36)6.44 PDSCH info (36)6.45 PDSCH Power Control info (36)6.46 PDSCH system information (36)6.47 PDSCH with SHO DCH Info (36)6.48 Persistence scaling factors (36)6.49 PICH Info (36)6.50 PICH Power offset (37)6.51 PRACH Channelisation Code List (37)6.52 PRACH info (for RACH) (37)6.53 PRACH partitioning (37)6.54 PRACH power offset (37)6.55 PRACH system information list (37)6.56 Predefined PhyCH configuration (38)6.57 Primary CCPCH info (38)6.58 Primary CCPCH info post (38)6.59 Primary CCPCH TX Power (38)6.60 Primary CPICH info (38)6.61 Primary CPICH Tx power (38)6.62 Primary CPICH usage for channel estimation (38)6.63 PUSCH info (38)6.64 PUSCH Capacity Allocation info (38)6.65 PUSCH power control info (39)6.66 PUSCH system information (39)6.67 RACH transmission parameters (39)6.68 Radio link addition information (39)6.69 Radio link removal information (39)6.70 SCCPCH Information for FACH (39)6.71 Secondary CCPCH info (39)6.72 Secondary CCPCH system information (40)6.73 Secondary CPICH info (40)6.74 Secondary scrambling code (40)6.75 SFN Time info (40)6.76 SSDT cell identity (40)6.77 SSDT information (40)6.78 STTD indicator (40)6.79 TDD open loop power control (41)6.80 TFC Control duration (41)6.81 TFCI Combining Indicator (41)6.82 TGPSI (41)6.83 Time info (41)6.84 Timeslot number (41)6.85 TPC combination index (41)6.86 TSTD indicator (41)6.87 TX Diversity Mode (41)6.88 Uplink DPCH info (41)6.89 Uplink DPCH info Post (42)6.90 Uplink DPCH info Pre (42)6.91 Uplink DPCH power control info (42)6.92 Uplink DPCH power control info Post (42)6.93 Uplink DPCH power control info Pre (42)6.94 Uplink Timeslots and Codes (42)6.95 Uplink Timing Advance (42)6.96 Uplink Timing Advance Control (43)7 测量信息元素 (43)7.1 Additional measurements list (43)7.2 Cell info (43)7.3 Cell measured results (43)7.4 Cell measurement event results (44)7.5 Cell reporting quantities (44)7.6 Cell synchronization information (44)7.7 Event results (44)7.8 FACH measurement occasion info (45)7.9 Filter coefficient (45)7.10 HCS Cell re-selection information (45)7.11 HCS neighboring cell information (45)7.12 HCS Serving cell information (45)7.13 Inter-frequency cell info list (46)7.14 Inter-frequency event identity (46)7.15 Inter-frequency measured results list (46)7.16 Inter-frequency measurement (46)7.17 Inter-frequency measurement event results (47)7.18 Inter-frequency measurement quantity (47)7.19 Inter-frequency measurement reporting criteria (47)7.20 Inter-frequency measurement system information (47)7.21 Inter-frequency reporting quantity (47)7.22 Inter-frequency SET UPDATE (48)7.23 Inter-RAT cell info list (48)7.24 Inter-RAT event identity (48)7.25 Inter-RAT info (48)7.26 Inter-RAT measured results list (48)7.27 Inter-RAT measurement (49)7.28 Inter-RAT measurement event results (49)7.29 Inter-RAT measurement quantity (49)7.30 Inter-RAT measurement reporting criteria (49)7.31 Inter-RAT measurement system information (50)7.32 Inter-RAT reporting quantity (50)7.33 Intra-frequency cell info list (50)7.34 Intra-frequency event identity (50)7.35 Intra-frequency measured results list (50)7.36 Intra-frequency measurement (50)7.37 Intra-frequency measurement event results (51)7.38 Intra-frequency measurement quantity (51)7.39 Intra-frequency measurement reporting criteria (51)7.40 Intra-frequency measurement system information (51)7.41 Intra-frequency reporting quantity (52)7.42 Intra-frequency reporting quantity for RACH reporting (52)7.43 Maximum number of reported cells on RACH (52)7.44 Measured results (52)7.45 Measured results on RACH (52)7.46 Measurement Command (52)7.47 Measurement control system information (53)7.48 Measurement Identity (53)7.49 Measurement reporting mode (53)7.50 Measurement Type (53)7.51 Measurement validity (53)7.52 Observed time difference to GSM cell (53)7.53 Periodical reporting criteria (53)7.54 Primary CCPCH RSCP info (54)7.55 Quality measured results list (54)7.56 Quality measurement (54)7.57 Quality measurement event results (54)7.58 Quality measurement reporting criteria (54)7.59 Quality reporting quantity (54)7.60 Reference time difference to cell (54)7.61 Reporting Cell Status (55)7.62 Reporting information for state CELL_DCH (55)7.63 SFN-SFN observed time difference (55)7.64 Time to trigger (55)7.65 Timeslot ISCP info (55)7.66 Traffic volume event identity (55)7.67 Traffic volume measured results list (55)7.68 Traffic volume measurement (55)7.69 Traffic volume measurement event results (56)7.70 Traffic volume measurement object (56)7.71 Traffic volume measurement quantity (56)7.72 Traffic volume measurement reporting criteria (56)7.73 Traffic volume measurement system information (56)7.74 Traffic volume reporting quantity (56)7.75 UE internal event identity (56)7.76 UE internal measured results (57)7.77 UE internal measurement (57)7.78 UE internal measurement event results (57)7.79 UE internal measurement quantity (57)7.80 UE internal measurement reporting criteria (57)7.81 Void (58)7.82 UE Internal reporting quantity (58)7.83 UE Rx-Tx time difference type 1 (58)7.84 UE Rx-Tx time difference type 2 (58)7.85 UE Transmitted Power info (58)7.86 UE positioning Ciphering info (58)7.87 UE positioning Error (58)7.88 UE positioning GPS acquisition assistance (59)7.89 UE positioning GPS almanac (59)7.90 UE positioning GPS assistance data (59)7.91 UE positioning GPS DGPS corrections (59)7.92 UE positioning GPS ionospheric model (59)7.93 UE positioning GPS measured results (59)7.94 UE positioning GPS navigation model (60)7.95 UE positioning GPS real-time integrity (60)7.96 UE positioning GPS reference time (60)7.97 UE positioning GPS UTC model (61)7.98 UE positioning IPDL parameters (61)7.99 UE positioning measured results (61)7.100 UE positioning measurement (61)7.101 UE positioning measurement event results (61)7.102 Void (62)7.103 UE positioning OTDOA assistance data for UE-assisted (62)7.104 Void (62)7.105 UE positioning OTDOA measured results (62)7.106 UE positioning OTDOA neighbor cell info (62)7.107 UE positioning OTDOA quality (63)7.108 UE positioning OTDOA reference cell info (63)7.109 UE positioning position estimate info (64)7.110 UE positioning reporting criteria (64)7.111 UE positioning reporting quantity (64)7.112 T ADV info (65)8 其它信息元素 (65)8.1 BCCH modification info (65)8.2 BSIC (65)8.3 CBS DRX Level 1 information (65)8.4 Cell Value tag (65)8.5 Inter-RAT change failure (65)8.6 Inter-RAT handover failure (66)8.7 Inter-RAT UE radio access capability (66)8.8 Void (66)8.9 MIB Value tag (66)8.10 PLMN Value tag (66)8.11 Predefined configuration identity and value tag (66)8.12 Protocol error information (66)8.13 References to other system information blocks (66)8.14 References to other system information blocks and scheduling blocks (67)8.15 Rplmn information (67)8.16 Scheduling information (67)8.17 SEG COUNT (67)8.18 Segment index (67)8.19 SIB data fixed (67)8.20 SIB data variable (67)8.21 SIB type (67)8.22 SIB type SIBs only (67)9 ANSI-41 Information elements (68)10 Multiplicity values and type constraint values (68)信息元素功能性定义消息是由多个信息元素组合而成,信息元素根据其功能的不同划分为:核心网域信息元素、UTRAN 移动信息元素、UE 信息元素、无线承载信息元素、传输信道信息元素、物理信道信息元素和测量信息元素。
2025年软件资格考试数据库系统工程师(中级)(基础知识、应用技术)合卷试卷及答案指导
2025年软件资格考试数据库系统工程师(基础知识、应用技术)合卷(中级)模拟试卷(答案在后面)一、基础知识(客观选择题,75题,每题1分,共75分)1、数据库系统工程师在数据库设计过程中,以下哪个阶段是确定数据库中数据模型和概念模型的阶段?A、需求分析阶段B、概念结构设计阶段C、逻辑结构设计阶段D、物理结构设计阶段2、在关系数据库中,以下哪种数据类型可以存储固定长度的字符串?A、VARCHARB、CHARC、TEXTD、BLOB3、在数据库系统中,为了确保数据的一致性,在执行事务时必须遵循ACID属性。
以下哪个选项不是ACID属性的一部分?A. 原子性B. 一致性C. 隔离性D. 可用性4、下列关于关系数据库规范化理论的描述中,哪一项是不正确的?A. 第一范式要求每个属性都应该是不可再分的基本项。
B. 满足第二范式的前提是先满足第一范式,并且所有非主属性完全依赖于整个候选键。
C. 第三范式消除了传递依赖。
D. BCNF(Boyce-Codd范式)比第三范式更严格,它不允许任何属性部分依赖或传递依赖于候选键。
5、在数据库系统中,以下哪一项不是关系模型的三要素?A. 属性B. 关系C. 范式D. 约束6、在SQL语言中,用于删除表的命令是:A. DROP TABLEB. DELETE FROMC. TRUNCATE TABLED. DELETE7、在数据库系统中,什么是数据模型?请简述其作用。
8、什么是数据库规范化理论?请简述其目的。
(1)第一范式(1NF):要求每个属性都是不可分割的最小数据单位。
(2)第二范式(2NF):在满足1NF的基础上,要求非主属性完全依赖于主键。
(3)第三范式(3NF):在满足2NF的基础上,要求非主属性不传递依赖于主键。
(4)巴斯-科德范式(BCNF):在满足3NF的基础上,要求每个非平凡函数依赖都由主键决定。
通过规范化理论,可以优化数据库设计,提高数据库的质量和性能。
无对运算的无证书隐式认证及密钥协商协议
和会话密钥 S =H ( A/ .R,Bk) K / , ,a , 。 D o R
3当 A 收到来 自 B 的消息 (d , , ) ,计算 k ) 1B 时 i = (X ) 和会话密钥 S a =H , , , , 。 K ( ) 协议每 一次运行 的会话 I D是 ( aI sR , 。 / , , R ) D D 本文的密钥 协商是一次典型的 D feH l a i i el n密钥交换 — m 过程 ,但 由于本文方案实现 了实体身份 的隐式认证 ,因此避
Ad a tg () P [’ v na e 足 rb =纠 一12I /
g ・ ’ Q) ( ) ( g ・g “
・
她 ・g nY S ) (X nQ ++ s
( ) +s ( 竹 ^ tg d・g Q) ( 如 ) ) =k B
( X^
数运算和 2 次散列运算 ,可避免复杂 的双 线性对运算 。在随机预言机模型下的分析 结果表 明,该协议具有强安全性 , 算开销低于 同类型 计
的其他协议 。
关健诃 :无证书 ;双线性对 ;离散对数问题 ;隐式认证 ; 钥协商 密
Ce t c t l s m p i i Au h n i a i n a d Ke r e e t o o o r i a ee sI i f l t c t e tc to n yAg e m n Pr t c l
l g r h po lm n h mp t o a D f eHel nC o a tm rb e a d te Co u a n l i i— l i i t ma ( DH)a s mpin e urs o l r e t s e p n nit n n WO t s h s su t ,rq i ny t e i x o e t i s a d t i ah o e h me ao me
非交互 零知识 区间证明协议
非交互零知识区间证明协议一、引言在当今信息社会中,隐私保护和数据安全已经变得越来越重要。
人们在进行在线交易、进行个人隐私查询等操作时,往往需要提供一些敏感数据,如年龄、收入、信用记录等。
然而,由于参与者之间的信任问题以及第三方机构的不可信性,如何在不泄露敏感数据的前提下证明其合法性成为了一个非常重要的问题。
区间证明协议是一种常用的隐私保护手段,旨在证明某一数据(如年龄、财产)处于指定的范围内,同时不泄露该数据的具体值。
非交互零知识区间证明协议则是在保护隐私的基础上,能够在不进行交互的情况下完成证明。
本文将详细介绍非交互零知识区间证明协议的概念、原理和应用领域,并比较分析现有的相关技术,最后展望未来的发展趋势。
二、概述非交互零知识区间证明协议(Non-Interactive Zero-Knowledge Range Proof Protocol)是一种密码学协议,主要用于证明某一数据位于指定范围内,同时保护数据的隐私性。
该协议旨在满足以下几个基本要求:1.非交互性:参与者只需发送一次证明消息,并能够确保其合法性,无需与第三方或其他参与者进行进一步的交互;2.零知识性:证明消息不泄露被证明数据的具体值,只能证明其位于指定范围内;3.可验证性:其他参与者或验证者能够验证证明消息的合法性,确保被证明数据的可信度。
三、原理与流程非交互零知识区间证明协议基于零知识证明(ZKP)和Fiat-Shamir转换(Fiat-Shamir transform)技术实现,主要包括以下几个步骤:1.参数设置:选择合适的安全参数、加密算法和哈希函数等;2.系统初始化:生成证明系统的公共参数,包括生成器(generator)、模数(modulus)等;3.证明者证明:– 3.1 证明者选择要证明的数据,并将其转换为对应的二进制形式;– 3.2 证明者生成一系列随机数,并计算生成证据;– 3.3 证明者通过哈希函数将证据转换为挑战(challenge),并发送给验证者;4.验证者验证:– 4.1 验证者接收到挑战,并计算生成响应(response);– 4.2 验证者通过哈希函数将响应转换为挑战的哈希值;– 4.3 验证者比较两个哈希值是否相等,以验证证明的合法性;5.结果验证:其他参与者或验证者可通过公布的协议参数和验证过程验证证明消息的合法性。
3GPP 5G基站(BS)R16版本一致性测试英文原版(3GPP TS 38.141-1)
4.2.2
BS type 1-H.................................................................................................................................................. 26
4.3
Base station classes............................................................................................................................................27
1 Scope.......................................................................................................................................................13
All rights reserved. UMTS™ is a Trade Mark of ETSI registered for the benefit of its members 3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association
无双线性对的无证书两方认证密钥协商协议
Abs r t Be a s ft ih c mpu aina o t t ac : c u e o he hg o t to lc s ,biie rp iig in’ q lt b l o ln a a rn s te ua o mo ie c mmuncain e vr nme t. Thi i to n io n s
第2 9卷 第 6期
21 0 2年 6月
计 算 机 应 用 研 究
Ap lc t n Re e r h o o u e s p i ai s a c f C mp tr o
Vo . 9 No 6 12 .
Jn 2 1 u . 02
无 双 线 性 对 的无证 书 两 方认 证 密 钥 协 商协 议
中图分类 号 :T 3 9 P 0 文献标 志码 :A 文章编 号 :10 —6 5 2 1 ) 6 2 4 —3 0 1 3 9 ( 0 2 0 —2 0 0
di1 . 9 9 ji n 10 —6 5 2 1 .6 0 3 o :0 3 6 /.s . 0 13 9 .0 2 0 . 6 s
式化 分析 , 助 Po ei 工具验证 了协议 的安 全性 和 认证 性 。与 其他 两方 密钥 协 商协 议相 比 , 方案 具 有 更好 借 rV r f 新
的安 全性 和效 率。
非极大值一致 nms的工作流程英语
非极大值一致 nms的工作流程英语Non-Maximum Suppression (NMS)。
Non-maximum suppression (NMS) is a technique used in object detection to remove redundant bounding boxes that overlap with each other. It aims to retain only the most confident bounding boxes that are likely to contain the object of interest.Workflow of Non-Maximum Suppression.The workflow of NMS involves the following steps:1. Input: NMS takes as input a set of bounding boxes and their corresponding confidence scores.2. Sort Confidence Scores: The bounding boxes are sorted in descending order of their confidence scores.3. Iterate Over Bounding Boxes: The algorithm iteratesover the bounding boxes in descending order of their confidence scores.4. Select Best Bounding Box: The bounding box with the highest confidence score is selected as the best bounding box.5. Calculate Overlap: For each subsequent bounding box in the iteration, the algorithm calculates the overlap between it and the best bounding box.6. Suppress Overlapping Boxes: If the overlap between a subsequent bounding box and the best bounding box exceeds a predefined threshold, the subsequent bounding box is suppressed and removed from the list of bounding boxes.7. Repeat Until No Overlap: Steps 5 and 6 are repeated until there are no more overlapping bounding boxes.8. Output: The output of NMS is a set of non-overlapping bounding boxes that represent the most confident object detections.Threshold Selection.The threshold used for overlap calculation is crucialfor the effectiveness of NMS. A low threshold can result in excessive suppression, while a high threshold may lead to missed detections. The optimal threshold value depends on the specific object detection task and the size of the bounding boxes.Variations of Non-Maximum Suppression.There are several variations of the basic NMS algorithm, including:Soft NMS: This variation allows for partialsuppression of overlapping bounding boxes, preserving bounding boxes with lower confidence scores but higher overlap.Adaptive NMS: This variation adjusts the suppression threshold based on the size of the bounding boxes toaccommodate scale variations.Weighted NMS: This variation assigns weights to the bounding boxes based on their confidence scores and spatial locations to prioritize suppression of less important bounding boxes.Applications of Non-Maximum Suppression.NMS is widely used in object detection and computer vision applications, such as:Object localization.Image classification.Facial detection.Pedestrian detection.Vehicle detection.Scene understanding.Additional Notes:NMS is a greedy algorithm, meaning it makes locally optimal decisions at each step without considering thelong-term impact on the result.NMS can be computationally expensive for large sets of bounding boxes.Alternative approaches to NMS for removing redundant bounding boxes include grouping and clustering techniques.。
无双线性对的无证书两方密钥协商方案
t c t e s w a y e geme t c e i a ls t o r yare n h me( L K i f e p tk s C — A)a dp ee e s e ui r e i .T e e h m a c r n n r n di c r y o r e h w s e ew s e uea l g s ts tp p ts n c s so
Absr c t a t: A e o e tfc t ls y a r e n c e sh v e n prpo e nr c n e r fw fc ri aee ske g e me ts h me a e b e o s d i e e ty as,alo h m e ii g o r — i l fte ne d parn pe a to s,wha ’ r mo to h m r ul rbl o t e ke o in t S mo e, s ft e a e v nea e t h y c mprmie i o s mpe s n to atc n e itnc o la a e o — r o ai n ta k a d r ssa e t e k g f e ph me a e s Th r v by s c r e t c tl s y a r e e r tc lwa r p s d byLi o d i 0 e rlk y . e p o a l e u ec ri a ee ske g e m ntp oo o sp o o e pp l n 2 09,bu h i r t o i f tt e rp ooc l s fe e r m o utto r e uf r d fo c mp a in bu d n. I r rt ov he a o e me to e r b e ,h sp pe r po e w arn —r e c r n o de o s le t b v — n in d p o lm t i a rp o s d a ne p ii g fe e —
C8051F060_07中文资料
• Programmable hysteresis/response time - Voltage Reference - Precision VDD Monitor/Brown-Out Detector On-Chip JTAG Debug & Boundary Scan - On-chip debug circuitry facilitates full-speed, nonintrusive in-circuit/in-system debugging Provides breakpoints, single-stepping, watchpoints, stack monitor; inspect/modify memory and registers Superior performance to emulation systems using ICE-chips, target pods, and sockets IEEE1149.1 compliant boundary scan Complete development kit
Clock Sources - Internal calibrated precision oscillator: 24.5 MHz - External oscillator: Crystal, RC, C, or clock Supply Voltage .......................... 2.7 to 3.6 V - Multiple power saving sleep and shutdown modes 100-Pin and 64-Pin TQFP Packages Available Temperature Range: -40 to +85 °C
无双线性对的无证书隐式认证及密钥协商
p ii a t e t a i n a d k y a r e e t r t c l t o t i n a ar g a d p o e t e u i er n o o a l t u h n i t n e g e m n o o o h u l e r i n , n r v si s c rt i t a d m r — c c o p wi b i p i s y n h ce mo e . h e p o o o sb s d o e e l t u v o u a i n l f e Hel n a s mp i n r q i so l l d 1 T en w r t c l a e n t l p i c r e c mp t t a i — l i h i c o Di ma s u t , e u r n y o e
C m u r n i ei d p lai sa o p t gn r g n A pi tn ¥ 算机 工程 与应用 eE e na c o f
无双线性 对 的无证 书隐式认证 及密钥协 商
唐 洋, 常友渠 , 徐 倩
T ANGY n , HA a g C NGY u u XU Q a oq, in 重庆 电力高等专科学校 , 重庆 40 5 0 03
BACnet对象说明
BACNET对象说明目录1 Analog Input---模拟输入对象 (2)2AnalogOutput--模拟输出对象 (8)3 AnalogValue--模拟值对象 (13)4 Binary Input--二进制输入对象 (17)5 Binary Output 二进制输出对象 (23)6 Binary Value--二进制值对象 (29)7. Calendar(日期表)对象 (34)8. Command(命令)对象 (36)9.Device(设备)对象 (38)10. Event Enrollment(事件登录)对象 (42)11 File(文件)对象 (46)12 Group(组)对象 (47)13 Loop(控制环)对象 (49)14 Multi-State Input(多态输入)对象 (53)15 Multi-State Output(多态输出)对象 (56)16 Notification Class(通告类)对象 (58)17 Program(程序)对象 (60)18 Schedule(时间安排)对象 (63)1 Analog Input---模拟输入对象例子:读取AI对象的Present_Value属性。
----------------------------------MSTP---LPDU--------------------------------------- 55 FF --前导码02 --帧类型64 --目标地址EE --源地址00 16 --帧数据部分长度(22个byte)2E --帧头CRC校验高位在先--------------------------------------NPDU------------------------------------------------------PCI01---BACnet协议版本号04 ---00000100 bit7:表示传输的是APDU报文Bit5:0 和Bit3:0 表示DNET,DLEN,HopCount,SNET,SLEN,SARD都不存在。
无对运算的无证书隐式认证及密钥协商协议
无对运算的无证书隐式认证及密钥协商协议杨路【期刊名称】《计算机工程》【年(卷),期】2012(038)002【摘要】提出一种不含对运算的无证书隐式认证及密钥协商协议.该协议基于离散对数问题和可计算Diffie-Hellman假设,仅需要3次指数运算和2次散列运算,可避免复杂的双线性对运算.在随机预言机模型下的分析结果表明,该协议具有强安全性,计算开销低于同类型的其他协议.%Due to the large amount of computing cost in bilinear pairing, this paper proposes a certificateless implicit authentication and key agreement protocol without pairing operation, and proves its security in the random oracle model. The new protocol is based on the discrete logarithm problem and the Computational Diffie-Hellman(CDH) assumption, requires only three times exponentiations and two times hash functions. The computing costs of this protocol lower than costs of the other ones that are the same type with the one in this paper.【总页数】3页(P138-140)【作者】杨路【作者单位】江南大学物联网工程学院,扛苏无锡214122【正文语种】中文【中图分类】TP309【相关文献】1.无双线性对的无证书隐式认证及密钥协商 [J], 唐洋;常友渠;徐倩2.前向安全的无配对运算认证密钥协商协议 [J], 孟梦;陈性元;徐国愚;杜学绘3.基于自签名隐式证书的认证密钥协商协议研究 [J], 赵敏;江凌云;李占军4.面向云服务的安全高效无证书聚合签名车联网认证密钥协商协议 [J], 张文芳;雷丽婷;王小敏;王宇5.两个安全的无证书三方认证密钥协商协议 [J], 许盛伟;任雄鹏因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Introduction 1.1. In this paper we work with finitely generated unital associative algebras over C. Such an algebra F is said to be smooth if Ker [F ⊗ F → F ], the kernel of the multiplication map, is a projective F -bimodule. Fix a smooth algebra F , for instance a free algebra F = C x1 , . . . , xd . Let J be a two-sided finitely generated ideal in F. Definition 1.1.1. The algebra A = F/J (or the pair J ⊂ F ) is called a noncommutative complete intersection (NCCI) if J/J 2 is a projective A-bimodule. This is equivalent to the condition that A has a projective A-bimodule resolution of length ≤ 2, cf. Theorem 3.1.1. NCCI algebras have been considered, under various different names, by a number of authors, see e.g. [AH], [An], [GS], [Go], [Pi]. In the present paper, we are interested in the case of graded NCCI algebras. Specifically, fix a finite set I and write R for the algebra of functions I → C, with pointwise multiplication. Let Q be a finite quiver with vertex set I , and assign to each edge a ∈ Q an arbitrary positive grade degree d(a) > 0. This makes the path algebra of Q a free graded R-algebra; moreover, any free graded R-algebra F may be obtained in this way.
Abstract. We introduce a class of noncommutatative algebras called representation complete intersections (RCI). A graded associative algebra A is said to be RCI provided there exist arbitrarily large positive integers n such that the scheme Repn A, of n-dimensional representations of A, is a complete intersection. We discuss examples of RCI algebras, including those arising from quivers. There is another interesting class of associative algebras called noncommutative complete intersections (NCCI). We prove that any graded RCI algebra is NCCI. We also obtain explicit formulas for the Hilbert series of each nonvanishing cyclic and Hochschild homology group of an RCI algebra. The proof involves a noncommutative cyclic Koszul q A, and a matrix integral similar to the one arising in quiver gauge theory. complex, K cyc
arXiv:math/0603272v3 [math.AG] 23 Jan 2007
NONCOMMUTATIVE COMPLETE INTERSECTIONS AND MATRIXGINZBURG
To Bob MacPherson on the occasion of his 60th birthday
Table of Contents
1. 2. 3. 4. 5. 6. Introduction Representation functor and matrix integrals Noncommutative complete intersections The trace map Additional results and examples Preprojective algebras and quiver varieties
1
We study algebras of the form A = F/J, where J is a graded two-sided ideal in the path algebra F such that J/J 2 is a projective finitely generated A-bimodule. Thus, A = r ≥0 A[r ] is a graded algebra such that A[0] = R. The grading on A induces a natural grading on each Hochschild homology group HH k (A). Our main results (Theorem 2.2.7 and Theorem 3.7.7) give explicit formulas for the Hilbert series of each Hochschild homology group of A for a class of algebras A that we call asymptotic representation complete intersections (see below). For k = 0, for instance, Hochschild homology reduces to the commutator quotient space, HH 0 (A) = A/[A, A], where [A, A] denotes the C-linear subspace of A spanned by the commutators ab − ba, a, b ∈ A. The grading on A clearly descends to the commutator quotient. Our result yields a formula, in terms of an infinite product of determinants, for the Hilbert series of the graded algebra Here, A+ = r>0 A[r ], so A+ /[A, A] is the positive degree part of A/[A, A]. We remark that the symmetric algebra in (1.1.2) is equipped with the total grading that comes from the grading on A+ /[A, A] (this grading should not be confused with the standard grading Sym = k≥0 Symk , on the Symmetric algebra of a vector space). 1.2. The main idea of our approach is based on the notion of representation functor and may be outlined as follows. Let A be any graded finitely presented algebra. For each positive dimension d, one has an affine scheme Repd A of d-dimensional representations of A, cf. §2.1. Heuristically, one expects that the collection of representation schemes Repd A provides, as d → ∞, a ‘good approximation’ of the algebra A (this is not true for nongraded algebras which may have no finite dimensional representations at all). In particular, one should be able to read off a lot of information about A from some geometric information about the corresponding representation schemes. In more detail, for each d, the general linear group GLd acts naturally on the scheme Repd A by base change transformations of the underlying vector space of the d-dimensional representation. We consider the algebra C[Repd A]GLd , of GLd -invariant polynomial functions on Repd A. We show that, in some sense, the commutative algebra O(A), in (1.1.2), is a limit of the algebras C[Repd A]GLd as d goes to infinity. A precise version of this statement will be proved in §4. The statement implies, in particular, that the Hilbert series of O(A) may be obtained as a limit of Hilbert series of the algebras C[Repd A]GLd as d goes to infinity. Observe further that the presentation A = F/J makes Repd A a closed subscheme in Repd F , the latter being a vector space. We introduce a noncommutative cyclic Koszul complex, K cyc q A to the GLd q A, such that each of the functors Repd , d ∈ ZI , sends K cyc fixed part of the standard Koszul complex of the subscheme Repd A ⊂ Repd F . Moreover, we prove that the two complexes become ‘asymptotically isomorphic’ as d → ∞. To be able to exploit usefully the ‘asymptotic isomorphisms’ above we introduce the notion of representation complete intersection (RCI) algebra, and a weaker (but more useful) notion of asymptotic RCI algebra. The algebra A = F/J is called RCI provided there exist arbitrarily large positive dimensions d such that the scheme Repd A is a complete