四边形中的面积最值问题
矩形面积最值问题
矩形面积最值问题问题描述矩形是一个拥有相等对边的四边形。
我们定义矩形的面积为其长度与宽度的乘积。
现在我们要寻找一个矩形,使其面积达到最大值。
解决方案要寻找矩形的面积最值,我们可以通过找到合适的长度和宽度来实现。
下面是一种简单的策略来解决这个问题:1. 假设我们选择一个长度为L和宽度为W的矩形。
2. 计算这个矩形的面积S,即 S = L * W。
3. 考虑不同的长度和宽度取值来找到最大的面积。
4. 我们可以从一个合理的范围内选择长度和宽度的取值。
例如,我们可以假设长度和宽度都是大于等于0并且小于等于一个给定的值。
5. 使用一个循环结构来遍历所有可能的取值组合,并计算每个组合的面积。
6. 在循环过程中,保留最大的面积值和对应的长度和宽度。
7. 最后,输出最大面积以及对应的长度和宽度。
这种方法简单直观,并且可以帮助我们找到矩形的面积最值。
注意:本方法假设长度和宽度为实数值且非负。
如需使用其他条件或限制,请提供更详细的要求。
示例代码下面是使用Python编写的示例代码,用于求解矩形面积最值问题:设置最大面积的初始值为0max_area = 0设置最大面积对应的长度和宽度的初始值max_length = 0max_width = 0循环遍历长度和宽度的取值范围for length in range(1, 11):for width in range(1, 11):计算当前矩形的面积area = length * width判断当前面积是否大于最大面积if area > max_area:更新最大面积及对应的长度和宽度max_area = areamax_length = lengthmax_width = width输出结果print("最大面积:", max_area)print("长度:", max_length)print("宽度:", max_width)可以根据实际需求修改代码中的范围和条件,以及输出方式。
四边形中的最值问题专题
2.三角形任两边之和大 于第三边。
将军饮马视频
P
P
一动两定点 A'B为最小值
两点之间线段最短
例2:如图,菱形ABCD中,AB=2,∠BAD=60°, E是AB的中点,P是对角线AC上的一个动点,则 PE+PB的最小值是______________四边形DMAN是
四边形?
MN=AD
AD⊥BC
利用等面积法求AD BC*AD/2=BA*AC/2
垂线段最短。
例6
垂线段最短。
(D )
C
x 2 勾股定理列方程求边长 x
PQ=2X
例7
垂线段最短。
四边形ABEF的周长: AB+BF+AE+EF
AE=CF
周长转化边长
四边形ABEF的周长最小值由EF决定 当EF⊥AD时,四边形周长最短。
解直角三形求EF
EF 3
四边边ABEF 的周长周 AB + BF + AE + EF 4 3
本节小结
1.将军饮马问题 2.垂线段最短。
P
A
E B
点P在AC上运动,点B、E位置不变
C
2.两定点在AC两侧
做点B(或E)关于AC的对称点D
3.PE+PB=PE+PD
DE为最小值
4.解直角三角形求边长
CC
1.一动两定点
E'
2.两定点在AC两侧 3.E'F为最小值 AP三线合一 E'F=AB=4
例4
() C
CE为最小值
垂线段最短。
例5
() C
专题
四边形中的最值问题
第十八章+平行四边形平行四边形中的最值问题+讲练课件+++2023—2024学年人教版数学八年级下册
如图2,过点O作OM⊥AD于点M,与DE的交点即是
2AP+PD的值最小的点P的位置. 而此时(2AP+PD)的
最小值=2OM,
∵△ADE≌△ODE,AD=2, ∴AD=DO=2.
在Rt△OMD中,∵∠ODA=2∠ADE=60°, ∴∠DOM=30°. ∴DM= 12 DO=1. ∵DM2+OM2=DO2, ∴12+OM2=22. ∴OM= 3 . ∴(2PA+PD)的最小值为2OM=2 3 .
6. 如图,∠MON=90°,长方形ABCD的顶点B,C分别 在边OM,ON上,当点B在边OM上运动时,点C随之 在边ON上运动,若CD=5,BC=24,运动过程中, 点D到点O的最大距离为_2_5__.
利用线段转化求最值 7. 如图,以边长为2的正方形的对角线的交点O为端点,
引两条相互垂直的射线,分别与正方形的边交于A,B 两点,求线段AB的最小值.
∴△AOB是等腰直角三角形. ∴AB= 2 OA. ∴当OA最小时,AB最小. ∵OA⊥CD时,OA最小, ∴A为CD的中点,∴OA= 12CD=1. ∴AB= 2 OA= 2 . ∴线段AB的最小值为 2 .
8. 如图1所示,四边形ABCD是矩形,点O位于对角线BD 上,将△ADE,△CBF分别沿DE,BF翻折,使点A、 点C都恰好落在点O处. (1)求证:∠EDO=∠FBO;平行四边形
专题:平行四边形中的最值问题
利用轴对称求最值
1. 如图,正方形ABCD的边长为3,点E在BC上,且BE =2,点P在对角线BD上,则PE+PC的最小值为 ( B )
2. 如图,菱形ABCD的边长为2,∠DAB=60°,点E为 BC边的中点,点P为对角线AC上一动点,则PB+PE 的最小值为__3__.
【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《 面积的最值问题 》含答案与解析
中考数学压轴大题冲刺专项训练面积的最值问题1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.2.如图,四边形ABCD的两条对角线AC、BD互相垂直,10AC BD,当AC、BD的长是多少时,四边形ABCD的面积最大?3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.4.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .(1)求证:PM PN =;(2)当P ,A 重合时,求MN 的值;(3)若PQM ∆的面积为S ,求S 的取值范围.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短边长n ,且n =2m ﹣4,大正方形的面积为S .(1)求S 关于m 的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x的取值范围;(2)求ABC面积的最大值.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.12.问题提出(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.参考答案与试题解析1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.【解析】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,即212y=1010y,解得y=154,∴PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PN BC =AE AD, ∴PN =65x ,PQ =DE =10﹣x , ∴S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∴当x =5时,S 的最大值为30,∴当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.2.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10ACBD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【解析】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x ,则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.3.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.【解析】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S△FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S△FCG=7-x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤37,∴S△FCG的最小值为7-37,此时DG=37,∴当DG=37时,△FCG的面积最小为(7-37).4.如图,已知点P是∠AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,△MON的形状与面积都随之变化.(1)请在图1中用尺规作出△MON,使得△MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∥OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分△MON的面积;(3)小亮发现:在直线MN旋转过程中,(2)中所作的△MON的面积最小.请利用图2帮助小亮说明理由.【解析】(1)①在OB下方取一点K,②以P为圆心,PK长为半径画弧,与OB交于C、D两点,③分别以C 、D为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .=;(1)求证:PM PN(2)当P,A重合时,求MN的值;∆的面积为S,求S的取值范围.(3)若PQM【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x ,则AN=NC=6-x ,在Rt △ABN 中,AB 2+BN 2=AN 2,即22+x 2=(6-x )2,解得x=83, ∴CN=6-83=103,222226210AC AB BC =+=+=, ∴1102CQ AC ==, ∴222210()(10)310QN CN CQ =-=-=, ∴10223MN QN ==. (3)解:当MN 过点D 时,如图3所示,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为14S S =菱形CMPN =12214⨯⨯=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为11210152102223S=⨯⨯⨯⨯=,∴513S≤≤.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.(1)求S关于m的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.【解析】解:(1)∵小正方形的边长m,直角三角形较短边长n,∴直角三角形较长边长为m+n,∴由勾股定理得:S=(m+n)2+n2,∵n=2m﹣4,∴S=(m+2m﹣4)2+(2m﹣4)2,=13m2﹣40m+32,∵n=2m﹣4>0,∴m>2,∴S关于m的函数关系式为S=13m2﹣40m+32(m>2);(2)∵S=13m2﹣40m+32(2<m≤3),∴S =13(m-2013)2+1613∵m≥2013时,S 随x 的增大而增大, ∴m =3时,S 取最大.∴m =3.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.【解析】解:(1)Rt △OAB 中,tan 3AB AOB OA∠== ∴∠AOB =60° R t △ACD 中,3tan CD CAD AD ∠== ∴∠CAD =30°∴∠OMA =180°-60°-30°=90°即AC ⊥OB(2)Rt △OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒= Rt △OAB 中,OB ′=OB =60OA COS ︒=2, Rt △O B ′M 中,B ′M =2215OB OM -=', BM =OB -OM =32, Rt △B B ′M 中,2222153()()622BB B M BM =++''== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∴1,26AA OA BB OB =='', ∴62AA '=(3)如图,过C 点作CH ⊥于C ′D ′点H ,连结OC ,则CH ≤OC +OD ′只有当D ′在CO 的延长线上时,CH 才最大.又C ′D ′长一定,故此时△CC ′D ′的面积的最大.而2222OC CD OD =+=∴△CC ′D ′的最大面积为1(222)3632+⨯=+ 8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积【解析】解:(1)过点A 作AE ⊥BC ,如图所示:∴12ABCS BC AE=⋅,∵D为BC上一点,∴AD AE≥,∴要使△ABC的面积最大,则需满足AD=AE,∵BC=6,AD=4,∴△ABC的面积最大为:16412 2⨯⨯=;故答案为12;(2)∵四边形ABCD是矩形,∴AB=DC,AD=BC,∵矩形ABCD的周长是12,∴设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:()()226639S x x x x x=-=-+=--+,此函数为二次函数,由10a=-<,二次函数的开口向下,∴当x=3时,矩形ABCD的面积有最大值为:S9=;(3)如图所示:∵四边形PQMN 是矩形,∴QM=PN ,PQ=MN ,∠QMN=∠PNM=90°,∵∠B=∠C=60°,∠QMB=∠PNC=90°,∴△BMQ ≌△CNP ,∴BM=NC ,设BM=NC=x ,则有MN=PQ=80-2x , ∴603QM BM tan x =⋅︒=,∴()()2380223208003PQMN S PQ QM x x x =⋅=⋅-=--+矩形, 此函数关系为二次函数,由230a =-<可得开口向下, ∴当x=20时,矩形PQMN 的面积有最大,即8003PQMN S =矩形. 9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【解析】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得2221AD AC CD h -=-=2222(3)BD BC CD x h =-=--∵BD AB AD =-, 222(3)1x h x h --=-2134-=-h x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭,∴当32x 时,ABC面积最大值的平方为12,∴ABC面积的最大值为22.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.【解析】(1)四边形OMPN为矩形,理由如下:∵四边形POBQ为平行四边形,∴PQ∥OB,PQ=OB.又∵OB=OA,∴PQ=AO.又∵PQ∥OA,∴四边形PQOA为平行四边形,∴P A∥QO,P A=QO.又∵M、N分别为OQ、AP的中点,∴OM=12OQ,PN=12AP,∴OM=PN,∴四边形OMPN为平行四边形.∵OP=OA,N是AP的中点,∴ON⊥AP,即∠ONP=90°,∴四边形OMPN为矩形;(2)①∵四边形OMPN为矩形,∴S矩形OMPN =ON·NP=ON·12AP,即S矩形OMPN=S△AOP.∵△AOP的底AO为定值,∴当P旋转运动90°(运动至最高点)时,△AOP的AO边上的高取得最大值,此时△AOP的面积取得最大值,∴t=90÷15=6秒,∴当t=6秒时,四边形OMPN面积最大.此时,PQ与半圆O相切.理由如下:∵此时∠POB=90°,PQ//OB,∴∠OPQ=90°,∴PQ与半圆O相切;②当点Q在半圆O上时,∵四边形POBQ为平行四边形,且OB=OP,∴四边形POBQ为菱形,∴OB=BQ=OQ=OP=PQ,∴∠POQ=∠BOQ=60°,即:∠BOP=120°,∴此时,t=120°÷15°=8秒,当点P与点A重合时,t=180°÷15°=12秒,综上所述:当8<t<12时,点Q在半圆O内.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.【解析】解:(1)设线段PQ 所在直线的函数表达式为y =kx +b ,将P (3,4)和Q (6,0)代入得,0306k b k b =+⎧⎨=+⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴线段PQ 所在直线的函数表达式为483y x =-+; (2)①如图1,连接CM 并延长CM 交AB 于点F ,∵∠C =90°,AB =10,BC =8,∴AC 22AB BC -=6,由(1)得BE =()2221624248DEKP S x x x =-+-=--+四边形,∴CE =43x ,∴34DC AC CE BC ==, ∵∠DCE =∠ACB ,∴△DCE ∽△ACB ,∴∠DEC =∠ABC ,∴DE//AB,∵点C和点M关于直线DE对称,∴CM⊥DE,∴CF⊥AB,∵1122ABCS AC BC AB CF==△,∴6×8=10×CF,∴CF=24 5,∵∠C=90°,CD=x,CE=43x,∴DE53x =,∴CM=85x,MF=24855x-,过点M作MG⊥AC于点M,过点M作MH⊥BC于点H,则四边形GCHM为矩形,∵∠GCM+∠BCF=∠BCF+∠ABC=90°,∴∠GCM=∠ABC,∵∠MGC=∠ACB=90°,∴△CGM∽△BCA,∴MG CG CM AC BC AB==,即85 6810x MG CG==,∴MG =2425x ,CG =3225x , ∴MH =3225x , (Ⅰ)若点M 落在∠ACB 的平分线上,则有MG =MH ,即24322525x x =,解得x =0(不合题意舍去), (Ⅱ)若点M 落在∠BAC 的平分线上,则有MG =MF ,即242482555x x =-,解得x =158, (Ⅲ)若点M 落在∠ABC 的平分线上,则有MH =MF ,即322482555x x =-,解得x =53. 综合以上可得,当x =158或x =53时,点M 落在△ABC 的某条角平分线上. ②当0<x ≤3时,点M 不在三角形外,△DME 与△ABC 重叠部分面积为△DME 的面积,∴2142233S x x x ==, 当x =3时,S 的最大值为22363⨯=. 当3<x ≤6时,点M 在三角形外,如图2,由①知CM =2CQ =85x , ∴MT =CM ﹣CF =82455x -, ∵PK//DE ,∴△MPK ∽△MDE ,∴()2222824265545MPKMDE x x S MF S MQ x x ⎛⎫- ⎪-⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭△△ , ∴()2226MPK MDE x S S x -=△△,∵DEKP MDE MPK S S S =-△△四边形,∴()()2222226262113DEKP MDE x x S S x x x ⎡⎤⎡⎤--=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦△四边形, 即:()2221624248DEKP S x x x =-+-=--+四边形,∴当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.综合可得,当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.13.问题提出(1)如图①,已知线段AB ,请以AB 为斜边,在图中画出一个直角三角形;(2)如图②,已知点A 是直线l 外一点,点B 、C 均在直线l 上,AD ⊥l 且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,∠A=45°,∠B=∠D=90°,CB=CD=6m ,点E 、F 分别为AB 、AD 上的点,若保持CE ⊥CF ,那么四边形AECF 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.【解析】解:(1)如图,Rt△ACB即为所求.(2)如图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,则∠BOC=2∠BAC,OA=OB=OC,BE=CE=12 BC,∵∠BAC=60°,∴∠BOC=120°,∠OBC=∠OCB=30°,设OA=OB=OC=r,则OE=12r,3,∵AO+OE≥A D,AD=3,∴r+12r≥3,解得r≥2,∴323∴S△ABC=12BC·AD≥12×33=33∴△ABC 面积的最小值为33.(3)存在;如图,分别延长AB 、DC 交于点M , 则△ADM 、△CBM 均为等腰直角三角形, ∵CB=CD=6m ,∴BM=6m ,CM=62,AD=DM=(6+2m , ∴S 四边形ABCD=S △ADM -S △CBM=12DM 2-12BC 2 =12×(6+622-12×62 =(36+362)m 2.将△CBE 绕点C 顺时针旋转135°得到△CDE′, 则A 、D 、E′三点共线.∴S 四边形AECF =S 四边形ABCD –(S △CBE +S △CDF )=S 四边形ABCD –S △CE ′F ∵S 四边形ABCD 为定值,∴当S △CE ′F 取得最小值时,S 四边形AECF 取得最大值.∵∠E′CF=135°-90°=45°,∴以E′F为斜边作等腰Rt△OE′F,则△CE′F的外接圆是以点O为圆心,OF长为半径的圆,设△CE′F的外接圆半径为rm,∴E′F=2rm,又∵OC+OD≥CD,∴22r+r≥6,∴r≥12-62,当点O在CD上时,E′F最短,此时E′F=2r=(122-12)m,∴S△CE′F最小=12×(122-12)×6=(362-36)m2,∴S四边形AECF最大=S四边形ABCD-S△CE’F最小=36+362-(362-36)=72m2.。
四边形中的最值问题专项训练(30道)(解析版)
专题9.8 四边形中的最值问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择15题,填空15题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!1.(2021春•德阳期末)如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C 到坐标原点O的最大距离为()A.1+√2B.1+√3C.3D.√5【解题思路】取AD的中点E,连接OE,CE,OC,求得CE=√2,OE=1,再根据OC ≤CE+OE=1+√2,即可得到点C到原点O距离的最大值是1+√2.【解答过程】解:如图,取AB的中点E,连接OE,CE,OC,∵∠AOB=90°,∴Rt△AOB中,OE=12AB=1,又∵∠ABC=90°,AE=BE=CB=1,∴Rt△CBE中,CE=√12+12=√2,又∵OC≤CE+OE=1+√2,∴OC的最大值为1+√2,即点C到原点O距离的最大值是1+√2,故选:A.2.(2021春•西岗区期末)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值是()A.2.4B.2C.1.5D.1.2【解题思路】AM=12EF=12AP,所以当AP最小时,AM最小,根据垂线段最短解答.【解答过程】解:由题意知,四边形AFPE是矩形,∵点M是矩形对角线EF的中点,则延长AM应过点P,∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AM有最小值,此时AM=12AP,由勾股定理知BC=√32+42=5,∵S△ABC=12AB•AC=12BC•AP,∴AP=3×45=125,∴AM=12AP=65=1.2,故选:D.3.(2021春•龙口市期末)如图,在边长为6的正方形ABCD中,点P为对角线AC上一动点,PE⊥AB于E,PF⊥BC于F,则EF的最小值为()A.6√2B.3√2C.4D.3【解题思路】连接BP,根据PE⊥AB,PF⊥BC得到四边形PEBF为矩形,得EF=BP,BP最短时即BP⊥AC,即可求解.【解答过程】解:连接BP,如图,,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=6,∵PE⊥AB,PF⊥BC,∴四边形PEBF为矩形,∴EF=BP,当BP⊥AC,BP最短,在Rt△BPC中,BP=PC,BC=6,根据勾股定理可解得BP=3√2,∴EF得最小值为3√2.故选:B.4.(2021春•重庆期末)如图,以边长为4的正方形ABCD的中心O为端点,引两条互相垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值是()A.√2B.2C.√8D.4【解题思路】根据正方形的性质得到∠EAO=∠FDO=45°,AO=DO,证得△AOE≌△DOF,根据全等三角形的性质得到OE=OF,求出OE的范围,借助勾股定理即可解决问题.【解答过程】解:∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,在△AOE 与△DOF 中,{∠EAO =∠FDO AO =DO ∠AOE =∠DOF,∴△AOE ≌△DOF (ASA ),∴OE =OF (设为λ);∴△EOF 是等腰直角三角形,由勾股定理得:EF 2=OE 2+OF 2=2λ2;∴EF =√2OE =√2λ,∵正方形ABCD 的边长是4,∴OA =2√2,O 到AB 的距离等于2(O 到AB 的垂线段的长度), 由题意可得:2≤λ≤2√2,∴2√2≤EF ≤4.所以线段EF 的最小值为2√2.故选:C .5.(2021春•马鞍山期末)如图,在菱形ABCD 中,∠B =45°,BC =2√3,E ,F 分别是边CD ,BC 上的动点,连接AE 和EF ,G ,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为( )A .√3B .√62C .√63D .1 【解题思路】连接AF ,利用三角形中位线定理,可知GH =12AF ,求出AF 的最小值即可解决问题.【解答过程】解:连接AF ,如图所示:∵四边形ABCD 是菱形, ∴AB =BC =2√3,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF =√22AB =√22×2√3=√6,∴GH =√62,即GH 的最小值为√62, 故选:B .6.(2021春•潜山市期末)如图,点E 是边长为8的正方形ABCD 的对角线BD 上的动点,以AE 为边向左侧作正方形AEFG ,点P 为AD 的中点,连接PG ,在点E 运动过程中,线段PG 的最小值是( )A .2B .√2C .2√2D .4√2【解题思路】连接DG ,可证△AGD ≌△AEB ,得到G 点轨迹,利用点到直线的最短距离进行求解.【解答过程】解:连接DG ,如图,,∵四边形ABCD 、四边形AEFG 均为正方形,∴∠DAB =∠GAE =90°,AB =AD ,AG =AE ,∵∠GAD+∠DAE=∠DAE+∠AE,∴∠GAD=∠BAE,∵AB=AD,AG=AE,∴△AEB≌△AGD(SAS),∴∠PDG=∠ABE=45°,∴G点轨迹为线段DH,当PG⊥DH时,PG最短,在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4,设PG=x,则DG=x,由勾股定理得,x2+x2=42,解得x=2√2,故选:C.7.(2021春•蚌埠期末)如图,矩形ABCD中,AB:AD=2:1,点E为AB的中点,点F 为EC上一个动点,点P为DF的中点,连接PB.若PB的最小值为5√2,则AD的值为()A.5B.6C.7D.8【解题思路】F点在运动时,P点轨迹为平行EC的线段,BP最短为点到直线的最短距离.【解答过程】解:当F运动时,P点轨迹为GH,如图,,∵AB:AD=2:1,∴AD=AE=EB=BC,∴∠ADE=∠DEA=∠CEB=∠ECB=45°,∴∠DEC=90°,BP的最距离为BP⊥GH时,此时P点与H点重合,F点与C点重合.∵H为CD中点,∴CH=CB,∠GHB=90°,在Rt△HCB中,BH=5√2,∴CH=CB=5,故选:A.8.(2021春•南安市期末)如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q 在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.20【解题思路】连接BP,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=4,连接PE、CE,则PC+QD=PC+PB=PC+PE≥CE,再根据勾股定理求解即可.【解答过程】解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC=6,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=4,连接PE,则BE=2AB=8,∵P A⊥BE,∴P A是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∴CE=√BE2+BC2=√82+62=10,∴PC+PB的最小值为10,即PC+QD的最小值为10,故选:B .9.(2021春•连云港期末)如图,线段AB 的长为8,点D 在AB 上,△ACD 是边长为3的等边三角形,过点D 作与CD 垂直的射线DP ,过DP 上一动点G (不与D 重合)作矩形CDGH ,记矩形CDGH 的对角线交点为O ,连接OB ,则线段BO 的最小值为( )A .5B .4C .4√3D .5√3【解题思路】连接AO ,根据矩形对角线相等且互相平分得:OC =OD ,再证明△ACO ≌△ADO ,则∠OAB =30°;点O 一定在∠CAB 的平分线上运动,根据垂线段最短得:当OB ⊥AO 时,OB 的长最小,根据直角三角形30度角所对的直角边是斜边的一半得出结论.【解答过程】解:连接AO ,∵四边形CDGH 是矩形,∴CG =DH ,OC =12CG ,OD =12DH ,∴OC =OD ,∵△ACD 是等边三角形,∴AC =AD ,∠CAD =60°,在△ACO 和△ADO 中,{AC =AD AO =AO CO =DO, ∴△ACO ≌△ADO (SSS ),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=12AB=12×8=4,即OB的最小值为4.故选:B.10.(2021春•惠山区期中)如图,平面内三点A、B、C,AB=5,AC=4,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.9C.9√2D.92√2【解题思路】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=5,DA=DM.∠ADM=90°,得出△ADM是等腰直角三角形,推出AD=√22AM,当AM的值最大时,AD的值最大,根据三角形的三边关系求出AM的最大值即可解决问题.【解答过程】解:如图,将△BDA绕点D顺时针旋转90°得到△CDM,由旋转不变性可知:AB=CM=5,DA=DM,∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=√22AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤9,∴AM 的最大值为9, ∴AD 的最大值为9√22.故选:D .11.(2021春•邗江区期末)如图,以边长为4的正方形ABCD 的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于E 、F 两点,则线段EF 的最小值为( )A .2B .4C .√2D .2√2【解题思路】如图,作辅助线;证明△AOE ≌△DOF ,进而得到OE =OF ,此为解决该题的关键性结论;求出OE 的范围,借助勾股定理即可解决问题.【解答过程】解:如图,连接EF ,∵四边形ABCD 为正方形,∴∠EAO =∠FDO =45°,AO =DO ;∵∠EOF =90°,∠AOD =90°,∴∠AOE =∠DOF ;在△AOE 与△DOF 中,{∠EAO =∠FDO AO =DO ∠AOE =∠DOF,∴△AOE ≌△DOF (ASA ),∴OE =OF (设为λ);∴△EOF 是等腰直角三角形,由勾股定理得:EF 2=OE 2+OF 2=2λ2;∴EF =√2OE =√2λ,∵正方形ABCD 的边长是4,∴OA=2√2,O到AB的距离等于2(O到AB的垂线段的长度),由题意可得:2≤λ≤2√2,∴2√2≤EF≤4.所以线段EF的最小值为2√2.故选:D.12.(2021•宁蒗县模拟)如图,菱形ABCD的的边长为6,∠ABC=60°,对角线BD上有两个动点E、F(点E在点F的左侧),若EF=2,则AE+CF的最小值为()A.2√10B.4√2C.6D.8【解题思路】作AM⊥AC,连接CM交BD于F,根据菱形的性质和等边三角形的判定和性质以及勾股定理解答即可.【解答过程】解:如图,连接AC,作AM⊥AC,使得AM=EF=2,连接CM交BD于F,∵AC,BD是菱形ABCD的对角线,∴BD⊥AC,∵AM⊥AC,∴AM∥BD,∴AM∥EF,∵AM=EF,AM∥EF,∴四边形AEFM是平行四边形,∴AE=FM,∴AE+CF=FM+FC=CM,根据两点之间线段最短可知,此时AE+FC最短,∵四边形ABCD是菱形,AB=6,∠ABC=60°∴BC=AB,∴△ABC是等边三角形,∴AC=AB=6,在Rt△CAM中,CM=√AM2+AC2=√22+62=2√10∴AE+CF的最小值为2√10.故选:A.13.(2021春•宜兴市期中)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE=CF,连接BF、DE,则BF+DE的最小值为()A.√12B.√20C.√48D.√80【解题思路】连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【解答过程】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=√AH2+AD2=√82+42=√80,∴BF+DE最小值为√80.故选:D.14.(2021春•重庆期末)如图,矩形ABCD中,AB=2√3,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC的最小值是()A.4√3+3B.2√21C.2√3+6D.4√5【解题思路】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答过程】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB=ABBC=√33,∴∠ACB=30°,AC=2AB=4√3,∵∠BCE=60°,∴∠ACE=90°,∴AE=√(4√3)2+62=2√21,故选:B.15.(2021•江阴市模拟)如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值等于()A.√5+3B.2√13−2C.2√10−65D.2√2+3【解题思路】过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,根据HL证明Rt△BAF≌Rt△EMG,可得∠ABF=∠MEG,所以再证明∠EPF=90°,由直角三角形斜边上的中线等于斜边的一半可得OI=12BE,由OD﹣OI≤DI,当O、D、I共线时,DI有最小值,即可求DI的最小值.【解答过程】解:如图,过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,∵四边形ABCD是正方形,∴AB=AD,∠A=∠D=∠DME=90°,AB∥CD,∴四边形ADME是矩形,∴EM=AD=AB,∵BF=EG,∴Rt△BAF≌Rt△EMG(HL),∴∠ABF=∠MEG,∠AFB=∠EGM,∵AB∥CD∴∠MGE=∠BEG=∠AFB∵∠ABF+∠AFB=90°∴∠ABF+∠BEG=90°∴∠EIF=90°,∴BF⊥EG;∵△EIB是直角三角形,∴OI=12BE,∵AB=6,AE=2,∴BE=6﹣2=4,OB=OE=2,∵OD﹣OI≤DI,∴当O、D、I共线时,DI有最小值,∵IO=12BE=2,∴OD=√AD2+AO2=2√13,∴ID=2√13−2,即DI的最小值为2√13−2,故选:B.16.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为 4.8.【解题思路】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【解答过程】解:设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=12AC=3,BO=DO=12BD=4,∴BC=√OB2+OC2=√42+32=5,∵S菱形ABCD=12×AC×BD=BC×AP,∴AP=245=4.8,故答案为:4.8.17.(2021春•椒江区期末)如图,矩形ABCD中,AB=8,AD=6,连接BD,E为BD上一动点,P为CE中点,连接P A,则P A的最小值是2√13.【解题思路】P点运动轨迹为△CDB的中位线,即求A点到这条中位线的最短距离.【解答过程】解:当点E运动时,P点轨迹为△CBD中位线GH,如图,,∵点A到直线GH的最短距离为AF,但是E点在运动中,P点轨迹为GH,∴点A到线段GH的最短距离为AG,∵G为CD中点,∴DG=4,在Rt △ADG 中,AD =6,DG =4, ∴AG =√62+42=2√13.故答案为2√13.18.(2021春•宁德期末)如图,在矩形ABCD 中,AB =4,AD =3,点E 是CD 上一个动点,点F ,G 分别是AB ,AE 的中点,则线段FG 的最小值是 32 .【解题思路】连接BE ,可得FG 是△ABE 的中位线,要使线段FG 最小,需BE 最小,当点E 与点C 重合时,BE 最小为3,进而可得线段FG 的最小值.【解答过程】解:如图,连接BE ,∵点F ,G 分别是AB ,AE 的中点,∴FG 是△ABE 的中位线,∴FG =12BE ,要使线段FG 最小,需BE 最小,当点E 与点C 重合时,BE 最小为3,则线段FG 的最小值是32. 故答案为:32. 19.(2021春•东海县期末)如图,在菱形ABCD 中,AC =24,BD =10,对角线交于点O ,点E 在AD 上,且DE =14AD ,点F 是OB 的中点,点G 为对角线AC 上的一动点,则GE ﹣GF 的最大值为 134 .【解题思路】由菱形的性质可得AO =CO =12,BO =DO =5,AC ⊥BD ,在Rt △AOD 中,由勾股定理可求AD 的长,作点F 关于AC 的对称点F ',连接GF ',取AD 中点H ,连接OH ,可得GF =GF ',OF =OF ',则GE ﹣GF =GE ﹣GF '≤EF ',即当点G 在EF '的延长线时,GE ﹣GF 有最大值为EF '的长,由直角三角形的性质和三角形中位线定理可求解.【解答过程】解:∵四边形ABCD 是菱形,∴AO =CO =12,BO =DO =5,AC ⊥BD , ∴AD =√AO 2+DO 2=√144+25=13,如图,作点F 关于AC 的对称点F ',连接GF ',取AD 中点H ,连接OH ,∵AC ⊥BD ,点H 是AD 中点,∴OH =HD =12AD =132,∵点F 与点F '关于AC 对称,∴GF =GF ',OF =OF ',∴GE ﹣GF =GE ﹣GF '≤EF ',∴当点G 在EF '的延长线时,GE ﹣GF 有最大值为EF '的长,∵DE =14AD ,HD =12AD ,∴DE =EH ,∵点F 是OB 的中点,∴OF =12OB =OF '=12DO ,∴EF '=12OH =134,故答案为:134.20.(2021•淄博)两张宽为3cm 的纸条交叉重叠成四边形ABCD ,如图所示.若∠α=30°,则对角线BD 上的动点P 到A ,B ,C 三点距离之和的最小值是 6√2cm .【解题思路】作DE⊥BC于E,解直角三角形求得AB=BC=6cm,把△ABP绕点B逆时针旋转60°得到△A'BP′,由旋转的性质,A′B=AB=6cm,BP′=BP,A'P′=AP,∠P′BP=60°,A'BA=60°,所以△P′BP是等边三角形,根据两点间线段距离最短,可知当P A+PB+PC=A'C时最短,连接A'C,利用勾股定理求出A'C的长度,即求得点P 到A,B,C三点距离之和的最小值.【解答过程】解:如图,作DE⊥BC于E,把△ABP绕点B逆时针旋转60°得到△A'BP′,∵∠α=30°,DE=3cm,∴CD=2DE=6cm,同理:BC=AD=6cm,由旋转的性质,A′B=AB=CD=6m,BP′=BP,A'P′=AP,∠P′BP=60°,∠A'BA =60°,∴△P′BP是等边三角形,∴BP=PP',∴P A+PB+PC=A'P′+PP'+PC,根据两点间线段距离最短,可知当P A+PB+PC=A'C时最短,连接A'C,与BD的交点即为P点,即点P到A,B,C三点距离之和的最小值是A′C.∵∠ABC=∠DCE=∠α=30°,∠A′BA=60°,∴∠A′BC=90°,∴A′C=√A′B2+BC2=√62+62=6√2(cm),因此点P到A,B,C三点距离之和的最小值是6√2cm,故答案为6√2cm.21.(2021春•龙岩期末)如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A运动.连接EP,若AC=10,CF=8.则EP的最小值是4√3+4.【解题思路】过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,然后根据含30度角的直角三角形列式计算即可求出EP的最小值.【解答过程】解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=√33EF,∴8﹣2x =8×√33, ∴x =4−4√33,∴EP =EG +PG =2(8﹣2x )+x =16﹣3x =4√3+4.故答案为:4√3+4.22.(2021春•茅箭区校级期末)如图,已知线段AB =12,点C 在线段AB 上,且△ACD是边长为4的等边三角形,以CD 为边在CD 的右侧作矩形CDEF ,连接DF ,点M 是DF 的中点,连接MB ,则线段MB 的最小值为 6 .【解题思路】连接AM 、CM 、EM ,根据四边形CDEF 是矩形,和△ACD 是等边三角形,证明△ADM ≌△ACM ,从而求出∠CAM =30°,当BM ⊥AM 时,MB 有最小值,然后用含有30°角的直角三角形的性质求出MB .【解答过程】解:连接AM 、CM 、EM ,如图:∵矩形CDEF ,M 是DF 的中点,∴C 、M 、E 共线,∴DM =12DF =12CE =CM ,∵△ACD 是等边三角形,∴∠DAC =60°,AD =AC ,在△ADM 和△ACM 中,{AD =AC DM =CM AM =AM,∴△ADM ≌△ACM (SSS ),∴∠DAM =∠CAM ,∵∠DAC =60°,∴∠CAM =30°,∴当BM ⊥AM 时,MB 有最小值,此时,BM =12AB =12×12=6, 故答案为:6.23.(2021•北仑区二模)如图,△ABC 的边AB =3,AB 边上的中线CM =1,分别以AC ,BC 为边向外作正方形ACGH 与正方形BCDE ,连接GD ,取GD 中点N .则点N 到线段AB 的距离最大值为 52 .【解题思路】当GD ∥AB 时,N 点到AB 的距离最大,则AC =BC ,∴N 、C 、M 三点共线且MN ⊥AB ,通过证明△AMC ≌△GOC ,可以求出AM ,然后再证明出OCNG 是矩形,从而求出MN .【解答过程】解:∵点N 到AB 的距离介于G 、D 到AB 的距离之间,∴当GD ∥AB 时,N 点到AB 的距离最大,则AC =BC ,∴N 、C 、M 三点共线且MN ⊥AB ,过点C 作CP ∥AB ,作GO ⊥CP ,O 为垂足,∵PC ∥AB ,∴∠PCA =∠CAM ,∠PCA +∠OCG =90°,∠OGC +∠OCG =90°,∴∠OGC =∠PCA =∠CAM ,在△AMC 和△GOC 中,{∠AMC =∠GOC ∠CAM =CGO AC =CG,∴△AMC ≌△GOC (AAS ),∴GO =AM =12AB =32,∵GO ⊥PC ,MN ⊥AB ,PC ∥AB ,∴PC ⊥MN ,MN ⊥GD ,∴四边形GDCN 是矩形,∴GO =NC ,MN =CM +CN ,∵CM =1,GO =NC =32,∴MN =1+32=52.故答案为:52. 24.(2021•眉山)如图,在菱形ABCD 中,AB =AC =10,对角线AC 、BD 相交于点O ,点M 在线段AC 上,且AM =3,点P 为线段BD 上的一个动点,则MP +12PB 的最小值是 7√32 .【解题思路】过点P 作PE ⊥BC 于E ,由菱形的性质可得AB =BC =AC =10,∠ABD =∠CBD ,可证△ABC 是等边三角形,可求∠CBD =30°,由直角三角形的性质可得PE =12PB ,则MP +12PB =PM +PE ,即当点M ,点P ,点E 共线且ME ⊥BC 时,PM +PE 有最小值为ME ,由锐角三角函数可求解.【解答过程】解:如图,过点P 作PE ⊥BC 于E ,∵四边形ABCD 是菱形,AB =AC =10,∴AB =BC =AC =10,∠ABD =∠CBD ,∴△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∴∠CBD =30°,∵PE ⊥BC ,∴PE =12PB ,∴MP +12PB =PM +PE ,∴当点M ,点P ,点E 共线且ME ⊥BC 时,PM +PE 有最小值为ME ,∵AM =3,∴MC =7,∵sin ∠ACB =ME MC =√32, ∴ME =7√32,∴MP +12PB 的最小值为7√32, 故答案为7√32. 25.(2021•海安市二模)如图,矩形ABCD 中,AB =2,BC =4,E 在边BC 上运动,M 、N 在对角线BD 上运动,且MN =√5,连接CM 、EN ,则CM +EN 的最小值为 115 .【解题思路】先作C 点关于BD 的对称点F ,然后再把F 左移2个单位,下移1个单位,得到Q ,再过Q 作QE ⊥BC 于E ,交BD 于N ,连接BF ,过F 作FP ⊥BC 于P ,以B 为原点建立平面直角坐标系,求出F 的坐标,再求出Q 的坐标,即可得出答案.【解答过程】解:先作C 点关于BD 的对称点F ,然后再把F 左移2个单位,下移1个单位,得到Q ,再过Q 作QE ⊥BC 于E ,交BD 于N ,连接BF ,过F 作FP ⊥BC 于P ,以B 为原点建立平面直角坐标系,如图所示,∵AB =2=CD ,BC =4,∴C (4,0),BF =BC =4, 由勾股定理得:BD =√BC 2+CD 2=√42+22=2√5,由三角形面积公式得:12×CR ×BD =12×BC ×CD , 即CR =BC×CD BD =2√5=4√55, 即CF =2CR =8√55,由勾股定理得:BF 2﹣BP 2=CF 2﹣CP 2,∴42﹣BP 2=(8√55)2﹣(4﹣BP )2, 解得:BP =125,∴FP =√42−(125)2=165, ∴F 的坐标是(125,165), ∴Q 的坐标是(25,115),即CM +EN 的最小值为115, 故答案为:115.26.(2021•浙江自主招生)如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 2 ,最小值为 √2 .【解题思路】连接AC 、DP ,根据三角形的面积公式得出S △DPC =S △APC =12AP ×CC ′,根据S 正方形ABCD =S △ABP +S △ADP +S △DPC ,推出BB ′+DD ′+CC ′=2AP ,根据已知得出1≤AP ≤√2,代入求出即可.【解答过程】解:连接AC、DP,S正方形ABCD=1×1=1,由勾股定理得:AC=√12+12=√2,∵AB=1,∴1≤AP≤√2,∵△DPC和△APC的边CP上的高DC=AB,∴S△DPC=S△APC=12AP×CC′,1=S正方形ABCD=S△ABP+S△ADP+S△DPC=12AP(BB′+DD′+CC′),BB′+DD′+CC′=2 AP,∵1≤AP≤√2,√2≤BB′+CC′+DD′≤2,故答案为:2,√2.27.(2021•乾县一模)如图,在菱形ABCD中,∠BAD=120°,点E为边AB的中点,点P在对角线BD上且PE+P A=6,则AB长的最大值为4√3.【解题思路】连接PC,CE,AC;由已知条件可以得出PE+PC=PE+P A=6≥CE(当P是AE与DB的交点时取等号),再利用等边三角形的性质得出CE=√32AB,进而求出AB长的最大值.【解答过程】解:连接PC,CE,AC,如图所示:∵四边形ABCD是菱形,∴AB=BC,AP=PC,∴PE+PC=PE+P A=6≥CE,∵∠DAB=120°,∴∠ABC =60°,∴△ABC 是等边三角形,∵点E 为线段AB 的中点,∴AE =BE ,∴∠AEC =90°,∠BCE =30°,∴CE =√32BC =√32AB ≤6,所以AB ≤4√3,即AB 长的最大值是4√3,故答案为:4√3.28.(2021•寿光市二模)如图所示,四边形ABCD 中,AC ⊥BD 于点O ,AO =CO =4,BO=DO =3,点P 为线段AC 上的一个动点.过点P 分别作PM ⊥AD 于点M ,作PN ⊥DC 于点N .连接PB ,在点P 运动过程中,PM +PN +PB 的最小值等于 7.8 .【解题思路】证四边形ABCD 是菱形,得CD =AD =5,连接PD ,由三角形面积关系求出PM +PN =4.8,得当PB 最短时,PM +PN +PB 有最小值,则当BP ⊥AC 时,PB 最短,即可得出答案.【解答过程】解:∵AO =CO =4,BO =DO =3,∴AC =8,四边形ABCD 是平行四边形,∵AC ⊥BD 于点O ,∴平行四边形ABCD 是菱形,AD =√AO 2+DO 2=√42+32=5,∴CD =AD =5,连接PD ,如图所示:∵S △ADP +S △CDP =S △ADC ,∴12AD •PM +12DC •PN =12AC •OD ,即12×5×PM +12×5×PN =12×8×3, ∴5×(PM +PN )=8×3,∴PM +PN =4.8,∴当PB 最短时,PM +PN +PB 有最小值,由垂线段最短可知:当BP ⊥AC 时,PB 最短,∴当点P 与点O 重合时,PM +PN +PB 有最小值,最小值=4.8+3=7.8,故答案为:7.8.29.(2021•河西区二模)已知正方形ABCD 的边长为2,EF 分别是边BC ,CD 上的两个动点,且满足BE =CF ,连接AE ,AF ,则AE +AF 的最小值为 2√5 .【解题思路】连接DE ,作点A 关于BC 的对称点A ′,连接BA ′、EA ′,易得AE +AF =AE +DE =A 'E +DE ,当D 、E 、A ′在同一直线时,AE +AF 最小,利用勾股定理求解即可.【解答过程】解:连接DE ,作点A 关于BC 的对称点A ′,连接BA ′、EA ′,∵四边形ABCD 为正方形,∴AD =CD =BC ,∠ADC =∠BCD =90°,∵BE =CF ,∴DF =CE ,在△DCE 与△ADF 中,{DC =AD ∠BCD =∠ADC CE =DF,∴△DCE ≌△ADF (SAS ),∴DE =AF ,∴AE +AF =AE +DE ,作点A 关于BC 的对称点A ′,连接BA ′、EA ′,则AE =A ′E ,即AE +AF =AE +DE =A 'E +DE ,当D 、E 、A ′在同一直线时,AE +AF 最小,AA ′=2AB =4,此时,在Rt △ADA ′中,DA ′=√22+42=2√5, 故AE +AF 的最小值为2√5.故答案为:2√5.30.(2021春•鹿城区校级期中)学习新知:如图1、图2,P 是矩形ABCD 所在平面内任意一点,则有以下重要结论:AP 2+CP 2=BP 2+DP 2.该结论的证明不难,同学们通过勾股定理即可证明.应用新知:如图3,在△ABC 中,CA =4,CB =6,D 是△ABC 内一点,且CD =2,∠ADB =90°,则AB 的最小值为 4√3−2 .【解题思路】以AD 、BD 为边作矩形ADBE ,连接CE 、DE ,由矩形的性质得出AB =DE ,由题意得CD 2+CE 2=CA 2+CB 2,求出CE =4√3,当C 、D 、E 三点共线时,DE 最小,得出AB 的最小值=DE 的最小值=CE ﹣CD =4√3−2.【解答过程】解:以AD 、BD 为边作矩形ADBE ,连接CE 、DE ,如图所示:则AB =DE ,由题意得:CD 2+CE 2=CA 2+CB 2,即22+CE 2=42+62,解得:CE=4√3,当C、D、E三点共线时,DE最小,∴AB的最小值=DE的最小值=CE﹣CD=4√3−2;故答案为:4√3−2.。
初中数学专题《四边形中的最值问题》专项训练30道含答案解析
专题18.8 四边形中的最值问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )A.43+3B.221C.23+6D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是( )2 A.5B.7C.72D.72【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=AM,CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,AM,∴AD=22∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,,∴AD的最大值为722故选:D .3.(2022春•中山市期末)如图,在边长为a 的正方形ABCD 中,E 是对角线BD 上一点,且BE =BC ,点P 是CE 上一动点,则点P 到边BD ,BC 的距离之和PM +PN 的值( )A .有最大值aB .有最小值22a C .是定值a D .是定值22a 【分析】连接BP ,作EF ⊥BC 于点F ,由正方形的性质可知△BEF 为等腰直角三角形,BE =a ,可求EF ,利用面积法得S △BPE +S △BPC =S △BEC ,将面积公式代入即可.【解答】解:如图,连接BP ,作EF ⊥BC 于点F ,则∠EFB =90°,∵正方形的性质可知∠EBF =45°,∴△BEF 为等腰直角三角形,∵正方形的边长为a ,∴BE =BC =a ,∴BF =EF =22BE =22a ,∵PM ⊥BD ,PN ⊥BC ,∴S △BPE +S △BPC =S △BEC ,∴12BE ×PM +12BC ×PN =12BC ×EF ,∵BE =BC ,∴PM +PN =EF =22a .则点P 到边BD ,BC 的距离之和PM +PN 的值是定值22a .故选:D .4.(2022春•三门峡期末)如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.2B.4C.2D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,CE.∴P1P2∥CE且P1P2=12当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P∥CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为( )A.45B.89C.10D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ 的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADC,BP=DQ∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是( )A.2B.1C.5−1D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角AD=1,利用勾股定理列式求出OC,然三角形斜边上的中线等于斜边的一半可得OF=12后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCE,CE=CE∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,AD=1,则OF=DO=12在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO =1AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根2据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,AE,∴AO=PO=12∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC ≥OC ﹣OP ,∴PC 的最小值=OC ﹣OP =OC −12AE ,∵OC =22+(72)2=652,在Rt △ADE 中,AE =42+12=17,∴PC 的最小值为652−172,故④错误,故选:B .8.(2022•南平校级自主招生)如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F .则EF 的最小值为( )A .4B .4.8C .5.2D .6【分析】先由矩形的判定定理推知四边形PEAF 是矩形;连接PA ,则PA =EF ,所以要使EF ,即PA 最短,只需PA ⊥CB 即可;然后根据三角形的等积转换即可求得PA 的值.【解答】解:如图,连接PA .∵在△ABC 中,AB =6,AC =8,BC =10,∴BC 2=AB 2+AC 2,∴∠A =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F .∴∠AEP =∠AFP =90°,∴四边形PEAF 是矩形.∴AP =EF .∴当PA 最小时,EF 也最小,即当AP ⊥CB 时,PA 最小,∵12AB •AC =12BC •AP ,即AP =AB ⋅AC BC =6×810=4.8,∴线段EF 长的最小值为4.8;故选:B .9.(2022春•崇川区期末)如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .2B .3C .5D .6【分析】连接AE ,利用△ABE ≌△BCF 转化线段BF 得到BF +DE =AE +DE ,则通过作A 点关于BC 对称点H ,连接DH 交BC 于E 点,利用勾股定理求出DH 长即可.【解答】解:连接AE ,如图1,∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.又BE =CF ,∴△ABE ≌△BCF (SAS ).∴AE =BF .所以BF +DE 最小值等于AE +DE 最小值.作点A 关于BC 的对称点H 点,如图2,连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点.根据对称性可知AE =HE ,所以AE +DE =DH .在Rt △ADH 中,AD =1,AH =2,∴DH =AH 2+AD 2=5,∴BF +DE 最小值为5.故选:C .10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为( )A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是 3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于的一半可得OE=12第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为 62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A′D2+DC2=102,∴A′E+CG=A′C﹣EG=62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是 55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF 和△ABE 中,AD =AB ∠FAD =∠EAB AF =AE,∴△ADF ≌△ABE (SAS ),∴DF =BE ,作点D 关于AB 的对称点D ′,连接CD ′交AB 于点F ′,连接D ′F ,则DF =D ′F ,∴BE +CF =DF +CF =D ′F +CF ≥CD ′,∴当点F 与点F ′重合时,D ′F +CF 最小,最小值为CD ′的长,在Rt △CDD ′中,根据勾股定理得:CD ′=CD 2+DD′2=52+102=55,∴BE +CF 的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt △ABC 中,∠BAC =90°,且BA =12,AC =16,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 245 .【分析】由勾股定理求出BC 的长,再证明四边形DEAF 是矩形,可得EF =AD ,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD 、EF ,∵∠BAC =90°,且BA =9,AC =12,∴BC =AB 2+AC 2=122+162=20,∵DE ⊥AB ,DF ⊥AC ,∴∠DEA =∠DFA =∠BAC =90°,∴四边形DEAF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时,△ABC 的面积=12AB ×AC =12BC ×AD ,∴12×16=20AD ,∴AD =485∴EF 的最小值为485,∵点G 为四边形DEAF 对角线交点,∴GF =12EF =245;故答案为:245.。
2021中考数学专题复习四边形面积最值问题专题训练(附答案详解)
5.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC, ,且CA∥y轴.
10.如图在锐角 中, ,高 ,两动点 、 分别在 、 上滑动(不包含端点),且 ,以 为边长向下作正方形 ,设 ,正方形 与 公共部分的面积为 .
(1)如图(1),当正方形 的边 恰好落在 边上时,求 的值.
(2)如图(2),当 落 外部时,求出 与 的函数关系式(写出 的取值范围)并求出 为何值时 最大,最大是多少?
(2)如图2, 中, , , ,以点 为圆心的 的半径是 , 是 上一动点,在线段 上确定点 的位置,使 的长最小,并求出其最小值.
(3)如图3,矩形 中, , ,以 为圆心, 为半径作 , 为 上一动点,连接 ,以 为直角边作 , , ,试探究四边形 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.
2021中考数学专题复习四边形面积最值问题专题训练(附答案详解)
1.如图,在 中, , , ,点 、 分别是边 、 上的动点(点 不与 、 重合),且 ,过点 作 ,交 于点 ,连接 ,设 .
(1)是否存在一点 ,使得四边形 为平行四边形,并说明理由;
(2)当 时,求 的值;
(3)当 为何值时,四边形 的面积最大,并求出最大值.
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、 、(4,2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形的面积的最大值.
华师大版八年级数学下册四边形最值问题常见考题(无答案)
华师大版八年级数学下册四边形最值问题常见考题(无答案)
八下四边形最值问题
类型一、将军饮马
1.如图,在正方形ABCD中,点E在BC上,BE=2, EC=1, 点P在BD上,则PE+PC的最小值是.
2.如图,在正方形ABCD中,P是BD上的一个动点,E在BC上,且BE=1,CE=2,则PE+PC 的最小值为。
3.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()
A、6
B、23
C、3
D、26
类型二、点到直线距离垂线段最短
1.在边长为2菱形ABCD中,∠ABC=60°,M、N分别为线段BC和BD上两个动点,则MN+CN 的最小值是。
2.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上
的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最
小值为_________
3.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB
于E,PF⊥AC于F,M为EF中点,则AM的最小值为.
1 / 4。
二次函数7-四边形面积最值问题---第七讲
(方法1):连接一条对角线,分成两个三角形面积之和;(方法2):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)。
“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大。
例:如图,抛物线n mx x y ++-=221与x 轴交于B A 、两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知)2,0(),0,1(C A -。
(1)求抛物线的表达式;(2)点E 是线段BC 上的一个动点,过点E 作x 轴的的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标。
如图,在平面直角坐标系中,已知抛物线)0(4232≠++=a x ax y 的对称轴是直线3=x ,与x 轴相交于B A 、两点(点B 在点A 右侧),与y 轴交于点C 。
(1)求该抛物线的解析式及B A 、两点的坐标;(2)若点P 是抛物线上C B 、两点之间的一个动点(不与C B 、重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由。
如图,抛物线c bx ax y ++=2与x 轴交于点A 和点)0,1(-B ,与y 轴交于点)3,0(C ,其对称轴l 为1-=x (1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上。
当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P的坐标.。
四边形面积最值问题解题技巧
四边形面积最值问题解题技巧
解决四边形面积最值问题,可以使用以下技巧:
1. 首先,计算四边形的面积公式。
对于一般的四边形,可以使用海龙公式或狄利克雷公式来计算面积。
如果是特殊的四边形(如矩形、平行四边形等),则可以使用其特定的面积公式。
2. 确定四边形的类型。
不同类型的四边形有不同的性质和限制条件,因此需要根据具体情况采用不同的方法求解。
3. 利用不等式技巧。
对于某些特定的四边形类型,可以运用不等式技巧来求解其最大或最小面积。
例如,对于一个长方形,可以利用不等式“算术平均数大于等于几何平均数”来证明其最大面积出现在正方形时。
4. 画图分析。
通过画图来理解和分析四边形的性质和限制条件,可以更加直观地找到最大或最小面积。
同时,画图也可以帮助我们发现一些规律和特点,为解决问题提供思路和启示。
总之,在解决四边形面积最值问题时,需要结合具体情况选择合适的方法和技巧,充分利用已知条件和性质来求解。
同时,需要多加练习,不断提高自己的数学水平和解题能力。
专题05 面积的最值问题(解析版)2021届中考数学压轴大题专项训练
专题05 面积的最值问题2021届中考数学压轴大题专项训练(解析版)1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.【解析】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∵PN∵BC,∵∵APN∵∵ABC,∵AD∵BC,∵AD∵PN,∵PNBC=AEAD,即212y=1010y,解得y=154,∵PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∵PN∵BC,∵∵APN ∵∵ABC ,∵AD ∵BC ,∵AD ∵PN , ∵PN BC =AE AD, ∵PN =65x ,PQ =DE =10﹣x , ∵S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∵当x =5时,S 的最大值为30,∵当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.2.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【解析】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x , 则:211125(10)(5)2222S AC BD x x x =⋅=-=--+,∵当x=5时,S最大=25 2,所以当AC=BD=5时,四边形ABCD的面积最大.3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求∵FCG的面积;(3)求∵FCG的面积的最小值.【解析】解:(1)∵四边形EFGH为正方形,∵HG=HE,∵EAH=∵D=90°,∵∵DHG+∵AHE=90°,∵DHG+∵DGH=90°,∵∵DGH=∵AHE,∵∵AHE∵∵DGH(AAS),∵DG=AH=2;(2)过F作FM∵DC,交DC延长线于M,连接GE,∵AB∵CD,∵∵AEG=∵MGE,∵HE∵GF,∵∵HEG=∵FGE,∵∵AEH=∵MGF,在∵AHE和∵MFG中,∵A=∵M=90°,HE=FG,∵∵AHE∵∵MFG(AAS),∵FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S∵FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S∵FCG=7-x,在∵AHE中,AE≤AB=7,∵HE2≤53,∵x2+16≤53,∵S∵FCG的最小值为7,此时,∵当时,∵FCG的面积最小为(7).4.如图,已知点P是∵AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,∵MON的形状与面积都随之变化.(1)请在图1中用尺规作出∵MON,使得∵MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∵OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分∵MON的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的∵MON 的面积最小.请利用图2帮助小亮说明理由.【解析】(1)∵在OB 下方取一点K ,∵以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,∵分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ∵作直线PE ,分别与OA 、OB 交于点M 、N ,故∵OMN 就是所求作的三角形;(2)∵CM ∵OB ,∵∵C =∵PON ,在∵PCM 和∵PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵PCM ∵∵PON (ASA ),∵PM =PN ,∵OP 平分∵MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∵OB ,∵∵GMP =∵FNP ,在∵PGM 和∵PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵PGM ∵∵PFN (ASA ),∵S ∵PGM =S ∵PFN∵S 四边形MOFG =S ∵MON .∵S 四边形MOFG <S ∵EOF ,∵S ∵MON <S ∵EOF ,∵当点P 是MN 的中点时S ∵MON 最小.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .=;(1)求证:PM PN(2)当P,A重合时,求MN的值;∆的面积为S,求S的取值范围.(3)若PQM【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∵PM∵CN,∵∵PMN=∵MNC,∵∵MNC=∵PNM,∵∵PMN=∵PNM,∵PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x ,则AN=NC=6-x ,在Rt∵ABN 中,AB 2+BN 2=AN 2,即22+x 2=(6-x )2,解得x=83,∵CN=6-83=103,AC ==∵12CQ AC ==∵QN ===,∵23MN QN ==. (3)解:当MN 过点D 时,如图3所示,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为14S S =菱形CMPN =12214⨯⨯=,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大为11152223S =⨯⨯=, ∵513S ≤≤. 6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短边长n ,且n =2m ﹣4,大正方形的面积为S .(1)求S 关于m 的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.【解析】解:(1)∵小正方形的边长m ,直角三角形较短边长n ,∵直角三角形较长边长为m+n ,∵由勾股定理得:S =(m+n )2+n 2,∵n =2m ﹣4,∵S =(m+2m ﹣4)2+(2m ﹣4)2,=13m 2﹣40m+32,∵n =2m ﹣4>0,∵m >2,∵S 关于m 的函数关系式为S =13m 2﹣40m+32(m >2);(2)∵S =13m 2﹣40m+32(2<m≤3),∵S =13(m -2013)2+1613∵m≥2013时,S 随x 的增大而增大, ∵m =3时,S 取最大.∵m =3.7.如图:已知矩形ABCD 中,AB ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ∵OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中∵CC ′D ′的面积的最大值.【解析】解:(1)Rt ∵OAB 中,tan AB AOB OA∠== ∵∵AOB =60°R t∵ACD 中,tan CD CAD AD ∠== ∵∵CAD =30°∵∵OMA =180°-60°-30°=90°即AC ∵OB(2)Rt ∵OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒= Rt ∵OAB 中,OB ′=OB =60OA COS ︒=2,Rt ∵O B ′M 中,B ′M =, BM =OB -OM =32,Rt ∵B B ′M 中,BB ='== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∵12AA OA BB OB =='',∵2AA '=(3)如图,过C 点作CH ∵于C ′D ′点H ,连结OC ,则CH ≤OC +OD ′只有当D ′在CO 的延长线上时,CH 才最大.又C ′D ′长一定,故此时∵CC ′D ′的面积的最大.而OC ==∵∵CC ′D ′的最大面积为12)2=8.[问题提出] (1)如图∵,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图∵,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图∵,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积【解析】解:(1)过点A作AE∵BC,如图所示:∵12ABCS BC AE=⋅,∵D为BC上一点,∵AD AE≥,∵要使∵ABC的面积最大,则需满足AD=AE,∵BC=6,AD=4,∵∵ABC的面积最大为:16412 2⨯⨯=;故答案为12;(2)∵四边形ABCD是矩形,∵AB=DC,AD=BC,∵矩形ABCD的周长是12,∵设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:()()226639S x x x x x=-=-+=--+,此函数为二次函数,由10a=-<,二次函数的开口向下,∵当x=3时,矩形ABCD的面积有最大值为:S9=;(3)如图所示:∵四边形PQMN 是矩形,∵QM=PN ,PQ=MN ,∵QMN=∵PNM=90°,∵∵B=∵C=60°,∵QMB=∵PNC=90°,∵∵BMQ∵∵CNP ,∵BM=NC ,设BM=NC=x ,则有MN=PQ=80-2x , ∵603QM BM tan x =⋅︒=,∵())280220PQMN S PQ QM x x =⋅=⋅-=--+矩形此函数关系为二次函数,由0a =-<可得开口向下,∵当x=20时,矩形PQMN 的面积有最大,即PQMN S =矩形9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【解析】解:(1)∵4MN =,1MA =,AB x =,∵413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①②解不等式∵得1x >,解不等式∵得2x <,∵x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =BD ==∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=,∵()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∵当32x =时,ABC 面积最大值的平方为12,∵ABC . 10.如图,已知AB 为半圆O 的直径,P 为半圆上的一个动点(不含端点),以OP 、OB 为一组邻边作∵POBQ ,连接OQ 、AP ,设OQ 、AP 的中点分别为M 、N ,连接PM 、ON .(1)试判断四边形OMPN 的形状,并说明理由.(2)若点P 从点B 出发,以每秒15°的速度,绕点O 在半圆上逆时针方向运动,设运动时间为ts . ∵试求:当t 为何值时,四边形OMPN 的面积取得最大值?并判断此时直线PQ 与半圆O 的位置关系(需说明理由);∵是否存在这样的t ,使得点Q 落在半圆O 内?若存在,请直接写出t 的取值范围;若不存在,请说明理由.【解析】(1)四边形OMPN 为矩形,理由如下:∵四边形POBQ 为平行四边形,∵PQ ∵OB ,PQ =OB .又∵OB =OA ,∵PQ =AO .又∵PQ ∵OA ,∵四边形PQOA为平行四边形,∵P A∵QO,P A=QO.又∵M、N分别为OQ、AP的中点,∵OM=12OQ,PN=12AP,∵OM=PN,∵四边形OMPN为平行四边形.∵OP=OA,N是AP的中点,∵ON∵AP,即∵ONP=90°,∵四边形OMPN为矩形;(2)∵∵四边形OMPN为矩形,∵S矩形OMPN=ON·NP=ON·12AP,即S矩形OMPN=S∵AOP.∵∵AOP的底AO为定值,∵当P旋转运动90°(运动至最高点)时,∵AOP的AO边上的高取得最大值,此时∵AOP的面积取得最大值,∵t=90÷15=6秒,∵当t=6秒时,四边形OMPN面积最大.此时,PQ与半圆O相切.理由如下:∵此时∵POB=90°,PQ//OB,∵∵OPQ=90°,∵PQ与半圆O相切;∵当点Q在半圆O上时,∵四边形POBQ为平行四边形,且OB=OP,∵四边形POBQ为菱形,∵OB=BQ=OQ=OP=PQ,∵∵POQ=∵BOQ=60°,即:∵BOP=120°,∵此时,t=120°÷15°=8秒,当点P与点A重合时,t=180°÷15°=12秒,综上所述:当8<t<12时,点Q在半圆O内.11.如图∵,在∵ABC中,∵C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图∵所示.(1)求出图∵中线段PQ所在直线的函数表达式;(2)将∵DCE沿DE翻折,得∵DME.∵点M是否可以落在∵ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;∵直接写出∵DME与∵ABC重叠部分面积的最大值及相应x的值.【解析】解:(1)设线段PQ 所在直线的函数表达式为y =kx +b , 将P (3,4)和Q (6,0)代入得,0306k b k b =+⎧⎨=+⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∵线段PQ 所在直线的函数表达式为483y x =-+; (2)∵如图1,连接CM 并延长CM 交AB 于点F ,∵∵C =90°,AB =10,BC =8,∵AC=6,由(1)得BE =()2221624248DEKP S x x x =-+-=--+四边形,∵CE=43x,∵34 DC ACCE BC==,∵∵DCE=∵ACB,∵∵DCE∵∵ACB,∵∵DEC=∵ABC,∵DE//AB,∵点C和点M关于直线DE对称,∵CM∵DE,∵CF∵AB,∵1122ABCS AC BC AB CF==△,∵6×8=10×CF,∵CF=24 5,∵∵C=90°,CD=x,CE=43x,∵DE53x =,∵CM=85x,MF=24855x-,过点M作MG∵AC于点M,过点M作MH∵BC于点H,则四边形GCHM为矩形,∵∵GCM+∵BCF=∵BCF+∵ABC=90°,∵∵GCM=∵ABC,∵∵MGC =∵ACB =90°,∵∵CGM∵∵BCA , ∵MG CG CM AC BC AB==, 即856810x MG CG ==, ∵MG =2425x ,CG =3225x , ∵MH =3225x , (∵)若点M 落在∵ACB 的平分线上,则有MG =MH ,即24322525x x =,解得x =0(不合题意舍去), (∵)若点M 落在∵BAC 的平分线上,则有MG =MF ,即242482555x x =-,解得x =158, (∵)若点M 落在∵ABC 的平分线上,则有MH =MF ,即322482555x x =-,解得x =53. 综合以上可得,当x =158或x =53时,点M 落在∵ABC 的某条角平分线上. ∵当0<x ≤3时,点M 不在三角形外,∵DME 与∵ABC 重叠部分面积为∵DME 的面积, ∵2142233S x x x ==, 当x =3时,S 的最大值为22363⨯=.当3<x ≤6时,点M 在三角形外,如图2,由∵知CM =2CQ =85x , ∵MT =CM ﹣CF =82455x -, ∵PK//DE , ∵∵MPK∵∵MDE , ∵()2222824265545MPKMDE x x S MF S MQ x x ⎛⎫- ⎪-⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭△△ , ∵()2226MPK MDE x S S x -=△△,∵DEKP MDE MPK S S S =-△△四边形,∵()()2222226262113DEKP MDE x x S S x x x ⎡⎤⎡⎤--=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦△四边形, 即:()2221624248DEKP S x x x =-+-=--+四边形,∵当x =4时,∵DME 与∵ABC 重叠部分面积的最大值为8.综合可得,当x =4时,∵DME 与∵ABC 重叠部分面积的最大值为8.12.问题提出(1)如图∵,已知线段AB ,请以AB 为斜边,在图中画出一个直角三角形;(2)如图∵,已知点A 是直线l 外一点,点B 、C 均在直线l 上,AD∵l 且AD=3,∵BAC=60°,求∵ABC 面积的最小值;问题解决(3)如图∵,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,∵A=45°,∵B=∵D=90°,CB=CD=6m ,点E 、F 分别为AB 、AD 上的点,若保持CE∵CF ,那么四边形AECF 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.【解析】解:(1)如图,Rt∵ACB 即为所求.(2)如图,作∵ABC 的外接圆∵O ,连接OA ,OB ,OC ,过点O 作OE∵BC 于点E , 则∵BOC=2∵BAC ,OA=OB=OC ,BE=CE=12BC , ∵∵BAC=60°,∵∵BOC=120°,∵OBC=∵OCB=30°,设OA=OB=OC=r ,则OE=12r ,, ∵AO+OE≥AD ,AD=3, ∵r+12r≥3, 解得r≥2,r≥∵S ∵ABC =12BC·AD≥12×∵∵ABC 面积的最小值为(3)存在;如图,分别延长AB 、DC 交于点M , 则∵ADM 、∵CBM 均为等腰直角三角形,∵CB=CD=6m ,∵BM=6m,CM=,AD=DM=(6+m , ∵S 四边形ABCD=S ∵ADM -S ∵CBM =12DM 2-12BC 2 =12×(6+2-12×62=(36+)m 2.将∵CBE 绕点C 顺时针旋转135°得到∵CDE′, 则A 、D 、E′三点共线.∵S 四边形AECF =S 四边形ABCD –(S ∵CBE +S ∵CDF )=S 四边形ABCD –S ∵CE ′F ∵S 四边形ABCD 为定值,∵当S ∵CE ′F 取得最小值时,S 四边形AECF 取得最大值. ∵∵E′CF=135°-90°=45°,∵以E′F 为斜边作等腰Rt∵OE′F ,则∵CE′F 的外接圆是以点O 为圆心,OF 长为半径的圆, 设∵CE′F 的外接圆半径为rm ,∵E′F=rm ,又∵OC+OD≥CD ,r+r≥6, ∵r≥12-当点O 在CD 上时,E′F 最短,此时r=(12)m ,∵S ∵CE ′F 最小=12×(12)×6=(36)m 2,∵S 四边形AECF 最大=S 四边形ABCD -S ∵CE’F 最小=36+-(-36)=72m 2.。
四边形中的最值问题专题
.
类型三
构造三角形
【找已有的三角形】
1. 如图,五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD
必定满足(
A. BD<2)Bຫໍສະໝຸດ BD=2C. BD>2
D. 以上情况均有可能
【构造三角形】
2. 如图,在矩形ABCD中,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正
四边形中的最值问题专题
类型一
类型二
类型三
类型四
将军饮马
等线代换
构造三角形
轨迹问题
类型一
将军饮马
【一个动点】
1. 如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存
在一点P,使△PBE的周长最小,则△PBE的周长的最小值为
.
【双动点】
2. 如图4,正方形ABCD的边长为5,∠DAC的平分线交DC于点
半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过
程中,点C到原点O的最大距离为
.
变式 如图,已知□ABCD中,AB=BC,BC=2,∠BCD=60,两顶
点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接
OA,则OA长的最小值是________
【构造特殊四边形】
3. 如图,正方形ABCD边长为3,点E、F是对角线AC上的两个动点(点E
Rt△BAC和Rt△CED,且∠B=30°,∠D=60°,已知BD=6,则线段
AE的最小值为_________.
【边的转换】
3. 如图,在正方形ABCD中,AB=4,O是对角线AC、BD的交点.过点
2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题
2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-2.如图,在△ABC 中,∠ACB =60°,∠CAB =45°,BC =4,点D 为AB 边上一个动点,连接CD ,以DA 、DC 为一组邻边作平行四边形ADCE ,则对角线DE 的最小值是( )A .2+6B .1+3C .4D .2+23第II 卷(非选择题)二、填空题(共0分)3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.5.如图,平行四边形ABCD 中,AB =2,AD =1,∠ADC =60°,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D 处,折痕交CD 边于点E .若点P 是直线l 上的一个动点,则PD '+PB 的最小值_______.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAB=,6AD=,60=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.9.如图,四边形ABCD中,∠B=∠D=90°,∠C=50°,在BC、CD边上分别找到点M、N,当△AMN 周长最小时,∠AMN+∠ANM的度数为______.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65三、解答题(共0分)13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.15.如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.答案与解析【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( ) A .2 B .232- C .3 D .43- 【答案】C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题. 【解答】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =43在Rt △ACN 中,∵AC =43,∠ACN =∠DAC =30°,∴AN =12AC =23∵AE =EH ,GF =FH ,∴EF =12AG ,∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为43,最小值为23,∴EF 的最大值为23,最小值为3,∴EF的最大值与最小值的差为:3故选C.【点评】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD=90°,属于中考选择题中的压轴题.2.如图,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,点D为AB边上一个动点,连接CD,以DA、DC为一组邻边作平行四边形ADCE,则对角线DE的最小值是()A.2+6B.1+3C.4 D.2+23【答案】ABC=2,AF=BF=3CF 【分析】设DE交AC于O,作BF⊥AC于F,由直角三角形的性质得出CF=12AC=1+3,DO=EO,当OD⊥AB =23,求出AC=CF+AF=2+23,由平行四边形性质得出AO=CO=12时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,即可得出结果.【解答】解:设DE交AC于O,作BF⊥AC于F,如图所示:则∠BFC=∠BF A=90°,∵∠ACB=60°,∠CAB=45°,∴∠CBF=30°,∠ABF=45°=∠CAB,BC=2,AF=BF=3CF=23,∴CF=12∴AC=CF+AF=2+23,∵四边形ADCE是平行四边形,AC=1+3,DO=EO,∴AO=CO=12∴当OD ⊥AB 时,DO 的值最小,即DE 的值最小,则△AOD 是等腰直角三角形,∴OD =22AO =622+, ∴DE =2OD =26+.故选:A .【点评】本题主要考查解直角三角形,平行四边形的性质,掌握平行四边形的性质和特殊角的三角函数值是解题的关键.3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 【答案】4+213【分析】根据题意,可知当DE ⊥AE 时,DE 取得最小值,然后根据题目中的数据,即可得到A D 、CD 的长,从而可以得到当DE 的值最小时,平行四边形ADCE 周长.【解答】解:当DE ⊥AE 时,DE 取得最小值,设此时CD =x ,∵四边形ADCE 是平行四边形,∴CD =AE ,AD =CE ,BC ∥AE ,∵∠B =90°,DE ⊥AE ,∴四边形BAED 是矩形,∴BD =AE ,∴BD =CD =x ,∵BC =BD +CD ,BC =4,∴BD =CD =2,∵AB =3,∠B =90°,∴AD =22222313BD AB +=+=,∴当DE 的值最小时,平行四边形ADCE 周长为:2+13+2+13=4+213,故答案为:4+213.【点评】本题考查平行四边形的性质、矩形的判定与性质、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.【答案】83【分析】根据平行四边形的性质得到EG ,FG ,根据垂线段最短得到EG ⊥CD 时取最小值,过点C 作CH ⊥AB 于点H ,求出CH 的长度,从而得到结果.【解答】解:∵四边形EDGC 是平行四边形,∴EF =FG ,∴当EF ⊥CD 时,EF 最小,此时EG 最小,过点C 作CH ⊥AB 于点H ,则CH =EF ,∵∠B =60°,∴∠BCH =30°,∵BC =8,∴BH =4,∴CH =2284-=43,∴EF 的最小值为43,∴EG 的最小值为83,故答案为:83.【点评】本题考查了平行四边形的性质,垂线段最短,直角三角形的性质,勾股定理,解题的关键是理解题意,找到EG最短时满足的条件.5.如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.【答案】7【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短.【解答】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值为7,故答案为:7.【点评】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAD=,60AB=,6=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG【答案】221【分析】如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.利用全等三角形的性质证明∠GNB=60°,点G的运动轨迹是射线NG,由“SAS”可证△EGN≌△BGN,可得GB=GE,推出GB+GC=GE+GC≥EC,求出EC即可解决问题.【解答】解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H,∵AE=2DE,∴AE=4,DE=2,∵点N是AB的中点,∴AN=NB=4,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°-60°-60°=60°,∴点G的运动轨迹是射线NG,∵BN=EN,∠BNG=∠ENG=60°,NG=NG∴△EGN≌△BGN(SAS),∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,DE=1,EH=3,∴DH=12在Rt△ECH中,EC=22221+=,EH CH∴GB+GC≥221,∴GB+GC的最小值为221,故答案为:221.【点评】本题考查旋转变换,轨迹,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.【答案】17132++【分析】在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,根据勾股定理得到AB,作点A关于直线x=1的对称点A',得到A'、E、D三点共线时,AD+DE最小值为A'E的长,根据勾股定理求出A'E,即可得解;【解答】解:如图,在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,∵B(0,4),A(﹣1,0),∴OB=4,OA=1,∴OE=3,AB=22+=,1417作点A关于直线x=1的对称点A',∴A'(3,0),AD=A'D,∴AD+DE=A'D+DE,即A'、E、D三点共线时,AD+DE最小值为A'E的长,在Rt△A'OE中,由勾股定理得A'E=22+=,3332∴C四边形ABCD最小值=AB+CD+BC+AD=AB+CD+A'E=17+1+32.故答案为:17132++.【点评】本题主要考查了轴对称最短路线问题、勾股定理、位置与坐标,准确分析作图计算是解题的关键.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.【答案】4【分析】根据题意在平行四边形PCQD中,设对角线PQ与DC相交于点O,可得O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH=4,则可得当PQ⊥AB 时,PQ的长最小,即为4.【解答】解:在平行四边形PCQD中,设对角线PQ与DC相交于点O,则O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD ∥BC ,∴∠ADC=∠DCH ,即∠ADP+∠PDC=∠DCQ+∠QCH ,∵PD ∥CQ ,∴∠PDC=∠DCQ ,∴∠ADP=∠QCH ,又∵PD=CQ ,在Rt △ADP 与Rt △HCQ 中,ADP QCH A QHCPD CQ ⎧⎪⎨⎪∠∠⎩∠∠=== ∴Rt △ADP ≌Rt △HCQ (AAS ),∴AD=HC ,∵AD=1,BC=3,∴BH=4,∴当PQ ⊥AB 时,PQ 的长最小,即为4.故答案为:4.【点评】本题考查梯形的中位线的性质,注意掌握梯形的中位线等于两底和的一半且平行于两底.9.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.【答案】100°【分析】根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC和CD 的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN 的周长最小值.∵∠B =∠D =90°,∠C =50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点评】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M ,N 的位置是解题关键.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.【答案】1322【分析】作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,由作图得AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,于是得到∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,根据等腰直角三角形的性质得到AP =DP =22AD ,求得AP =DP =5,根据三角形的中位线的性质得到OQ =12DP =52,BQ =12BP=12(AB−AP )=1,根据勾股定理求出AO =132,然后根据等腰直角三角形的性质即可得到结论. 【解答】解:作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,∴AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,∵∠DAB =45°,∴∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,∴AP =DP =22AD , ∵AD =BC =52,∴AP =DP =5,设OM ⊥AB 于Q ,则OQ ∥DP ,∵OD =OB ,∴OQ =12DP =52,BQ =12BP =12(AB−AP )=1, ∴AQ =6,∴AO =2222513622AQ OQ , ∴AM =AN =AO =132, ∴MN =2AM =1322, ∴△OEF 周长的最小值是1322. 故答案为:1322. 【点评】此题主要考查轴对称−−最短路线问题,平行四边形的性质,等腰直角三角形的性质,勾股定理以及三角形中位线定理等,正确的作出辅助线是解题的关键.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.【答案】13 4【分析】作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,可判断出AP+BN=A″N+BN≥A″B,即此时四边形ABNP的周长最小,求出A″B的表达式,得到与x轴的交点,即为点N,从而可得a值.【解答】解:如图,作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,则此时AP=A′P=A″N,则AP+BN=A″N+BN≥A″B,在四边形ABNP中,PN和AB均为定值,∴此时四边形ABNP的周长最小,设A″B的表达式为y=kx+b,则3361k bk b+=⎧⎨+=-⎩,解得:437kb⎧=-⎪⎨⎪=⎩,∴直线A″B的表达式为473y x=-+,令y=0,则214x=,即此时N(214,0),2124a+=,解得:a=134,故答案为:134. 【点评】本题考查了轴对称-最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65【答案】D【分析】根据勾股定理可求BC 的长,所以要使△PBC 的周长最小,即BP+PC 最短,利用对称性,作点C 关于AD 的对称点E ,即可得出最短路线,从而求解可.【解答】解:过点C 作CG ⊥AB ,由题意可知四边形DAGC 是矩形∴CG=AD=4,BG=AB-AG=AB-CD=2∴在Rt △BCG 中,222425BC =+=作点C 关于AD 的对称点E ,连接BE ,交AD 于点P',连接'CP此时'P BC 的周长为最小值,即''''BP CP BC BP EP BC BE BC ++=++=+过点E 作EF ⊥BA ,交BA 的延长线于点F由题意可知四边形EFAD 为矩形∴EF=AD=4,DE=CD=AF=3∴在Rt △EBF 中,224(35)45BE =++=∴此时'P BC 的周长为:65BE BC +=故选:D .【点评】本题考查勾股定理解直角三角形及应用对称的性质求最短路线,掌握相关性质定理正确添加辅助线进行推理计算是解题关键.13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值. 【答案】(1)证明见解析(2)3【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴DE BC ∥,∴四边形DBCE 为平行四边形,又∵BE DC ⊥,∴四边形DBCE 为菱形.(2)解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,∵DE BC ∥,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB ∠=, ∴3sin 232DH DB DBC =∠=⨯=, ∴PM PN +的最小值为3.【点评】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.【答案】(1)见解析;(2)作图见解析,7得到DAD E'是菱形,作DG BA⊥)将ABCD沿过点A的直线∠=EA,D//DE AD∴∠=DEA∴∠=,DAE EA∴∠'DAD∴四边形=AD ADAB=,2∴=AD AD∴'是菱形;BCED(2)四边形∴与D'D连接BD交CD AB//∴∠=DAGAD=,112AG ∴=,32DG =, 52BG ∴=, 227BD DG BG ∴=+=,PD PB ∴'+的最小值为7.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.。
专题4.4 立体几何中最值问题(解析版)
一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,所以,即:z2+4x﹣4z=0,x=z﹣.当z=2时,x取得最大值为1.|AF|的最大值为1.故选:B.【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A.B.C.D.【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,.故选:A .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .【答案】B 【解析】当小球与三个侧面,,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体1111ABCD A B C D 中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1B C 对称点为N,则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【答案】C 【解析】补全截面EFG 为截面EFGHQR 如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小,∴三角形面积的最小值为,故选:C.【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21D .41 【答案】BABC P -的正视图与俯视图的面积之比的最大值为2;故选B .3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .【答案】C【解析】由三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,,.所以,,.又因为,,所以,故,所以.故选C.类型三体积的最值问题【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. B. C. 18 D. 36 【答案】A2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A. B.16 C.48 D.144 【答案】C 【解析】,,DA DA βααβ⊂⊥∴⊥面.,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆∽PBC ∆.4,8,2AD BC PB PA ==∴=.学科&网过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.则2222PA AM PB BM -=-,即()222246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362S =+⨯=.学科&网136483P ABCD V -∴=⨯=.故C 正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A . B .C .D .【答案】A 【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大, 该三棱锥侧面的斜高为,,,所以三棱锥的表面积为,设三棱锥的内切球半径为, 则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【答案】25【解析】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以cos θ==.2281145y y +=-+,令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号.所以2cos 5θ==≤=,当0y =时,取得最大值.C【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.【答案】C2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为;与PQ一定垂直;与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,,,,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q 为的中点时,PQ 的长取得最小值,且长为,故正确.故答案为:.4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.【答案】,3838⎡⎢⎣⎦ 【解析】设P 到平面ABC 的射影为点O ,取BC 中点D ,以O 为原点,在平面ABC 中,以过O 作DB 的平行线为x 轴,以OD 为y 轴,以OP 为z 轴,建立空间直角坐标系,如图,设正四面体P −ABC的棱长为则()()(((0,4,0,,,,A B C P M --,由AN AB λ=,得(),64,0N λ-,∴((),56,NM AC λ=--→-=-,∵异面直线NM 与AC 所成角为α, 1233λ≤≤,∴2NM AC cos NM AC α⋅==⋅,设32t λ-=,则5733t 剟∴222111124626()41t cos t t t tα==-+-⋅+,∵1313375t <剟cos α.∴cos α的取值范围是⎣⎦.三.强化训练一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.【答案】D【解析】设正方形的中心为,当在于球心的连线上时,四棱锥高最高,由于底面面积固定,则高最高时,四棱锥体积取得最大值.设高为,,球的半径为,故,解得.故四棱锥的体积的最大值为.故选D.2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.2【答案】A【解析】解:如图所示,由题意知,平面平面ABCD,设点P到AD的距离为x,当x最大时,四棱锥的高最大,因为,所以点P的轨迹为一个椭圆,由椭圆的性质得,当时,x取得最大值,即该四棱锥的高的最大值为.故选:A.3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12 B.6 C.32 D.24【答案】A【解析】由锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选:A4.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M在俯视图上的对应点为A,三棱锥表面上的点N在左视图上的对应点为B,则线段MN的长度的最大值为A .B .C .D .【答案】D 【解析】由三视图可知,该三棱锥的底面是直角三角形, 一条侧棱与底面垂直(平面),为几何体的直观图如图,在上,重合,当与重合时, 线段的长度的最大值为.故选D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 4 C. 12 D. 23【答案】C 【解析】如图:在矩形中,过点作的垂线交于点,交于点设,6.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .【答案】A 【解析】 设正四面体的棱长为则,解得则正四面体的高为记点到平面、、的距离分别为则因为,所以,则故又,故即实数的取值范围为本题正确选项:二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.【答案】【解析】在这个四棱锥内有一个球,则此球的最大表面积时,对应的球应该是内切球,此时球的半径最大,设内切球的球心为O半径为R,连接球心和ABCD四个点,构成五个小棱锥,根据体积分割得到,五个小棱锥的体积之和即为大棱锥的体积,,根据AB垂直于AD,PD垂直于AB 可得到AB垂直于面PDA,故得到AB垂直于PA,同理得到BC垂直于PC,表面积为:,此时球的表面积为:.故答案为:.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.【答案】【解析】由题该正四面体在铁盒内任意转动,故其能在正方体的内切球内任意转动,内切球半径为6,设正四面体棱长为a, 将此正四面体镶嵌在棱长为x的正方体内,如图所示:则x=,外接球的球心和正方体体心O重合,∴外接球的球半径为:=6,a=4又正四面体的高为∴该正四面体的体积为故答案为11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.【答案】【解析】如图取底面的中心为,连接平面,且球心在上,由条件知,,连接,,则,于是底面的边长为.又,故四棱锥的高是,所以,即,从而,,于是,过的中点的最小截面圆是以点为圆心的截面圆,该截面圆的半径是,故所求面积为.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.【答案】【解析】过球心,又是边长为的等边三角形,,,三角形是等腰直角三角形,,,又因为,在平面内,由线面垂直的判定定理可得平面,即平面,设,,则三棱锥体积,当且仅当,即时取等号,故答案为.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.【答案】【解析】设四棱锥底面边长为a,高为h,底面对角线交于O,由条件四棱锥P-ABCD为正四棱锥,其外接球的球心M在高PO上,设外接球半径为R,在直角三角形MAO中,,又该四棱锥的体积为9,所以所以,,,时,时,所以时R极小即R最小,此时体积最小.故答案为3.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.【答案】【解析】因为平面与对角线垂直,所以平面与对角面平行,作出图象,为六边形,设则,所以,由对称性得平面过对角线中点时截面面积取最大值为,则的最大值为.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.【答案】【解析】如下图,正方体中作出一个正四面体将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:要使得最小,则三点共线,即:,设正四面体的边长为,在三角形中,由余弦定理可得:,解得:,所以正方体的边长为2,正四面体的体积为:,设四正面体内切球的半径为,由等体积法可得:,整理得:,解得:,所以该四面体内切球的体积为.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.。
部编数学八年级下册专题15特殊平行四边形中的最值问题(解析版)含答案
专题15 特殊平行四边形中的最值问题(解析版)类型一特殊四边形中求一条线段的最小值1.(2021春•叶集区期末)如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将△ABE沿AE折叠,使点B落在点B′处,连接CB′,则CB′的最小值是( )A2B2C―3D.1思路引领:由矩形的性质得出∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=2,当A、B'、C三点共线时,CB'的值最小,由勾股定理得出AC=CB'=AC﹣AB'2.解:∵四边形ABCD是矩形,∴∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=2,当A、B'、C三点共线时,CB'的值最小,此时AC∴CB'=AC﹣AB'=2;故选:A.总结提升:本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.类型二特殊四边形中求一条线段的最大值2.(2020•洪山区校级自主招生)如图,在菱形ABCD中,AB=4,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B′始终落在边CD上,则A、E两点之间的最大距离为 .思路引领:作AH ⊥CD 于H ,由B ,B '关于EF 对称,推出BE =EB ',当BE 最小时,AE 最大,根据垂线段最短即可解决问题.解:作AH ⊥CD 于H ,∵四边形ABCD 是菱形,∠BAD =120°,∴AB ∥CD ,∠D =180°﹣∠BAD =60°,∵AD =AB =4,∴AH =AD •sin60°=∵B ,B '关于EF 对称,∴BE =B 'E ,∴当BE 最小时,AE 最大,根据垂线段最短可知,当EB '=AH =BE 的值最小,∴AE 的最大值为4﹣故答案为:4﹣总结提升:本题主要考查图形的翻折,熟练掌握菱形的性质,垂线段最短等知识是解题的关键.类型三 特殊四边形中求线段和的最小值3.(2019•红桥区二模)如图,在矩形ABCD 中,E 为BC 的中点,P 为对角线AC 上的一个动点,若AB =2,BC =PE +PB 的最小值为( )A B .3C .D .6思路引领:作E 关于AC 的对称点E ',连接BE ',则PE +PB 的最小值即为BE '的长;由已知可求E 'C =ECE '=60°;过点E '作E 'G ⊥BC ,在Rt △E 'CG 中,E 'G =32,CG Rt △BE 'G 中,BG =BE '=3;解:作E 关于AC 的对称点E ',连接BE ',则PE +PB 的最小值即为BE '的长;∵AB =2,BC =E 为BC 的中点,∴∠ACB =30°,∴∠ECE '=60°,∵EC =CE ',∴E 'C 过点E '作E 'G ⊥BC ,在Rt △E 'CG 中,E 'G =32,CG =在Rt △BE 'G 中,BG =∴BE '=3;∴PE +PB 的最小值为3;故选:B .总结提升:本题考查矩形的性质,轴对称求最短距离;通过轴对称将PE +PB 转化为线段BE '的长是解题的关键.4.(2018春•铜山区期中)如图,在菱形ABCD 中,AD =2,∠ABC =120°,E 是BC 的中点,P 为对角线AC 上的一个动点,则PE +PB 的最小值为( )A B .2C .1D .5思路引领:连接BD ,DE ,则DE 的长即为PE +PB 的最小值,再根据菱形ABCD 中,∠ABC =120°得出∠BCD 的度数,进而判断出△BCD 是等边三角形,故△CDE 是直角三角形,根据勾股定理即可得出DE 的长.解:连接BD,DE,∵四边形ABCD是菱形,∴B、D关于直线AC对称,∴DE的长即为PE+PB的最小值,∵∠ABC=120°,∴∠BCD=60°,∴△BCD是等边三角形,∵E是BC的中点,∴DE⊥BC,CE=12BC=12×2=1,∴DE故选:A.总结提升:本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及两点之间线段最短是解答此题的关键.5.(2022秋•龙华区期中)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=BD=2,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为 .思路引领:由两点之间线段最短,可得当点P在DE上时,PD+PE的值最小,最小值为DE的长,由菱形的性质可得AO=CO=BO=DO=1,AC⊥BD,AB=AD,由锐角三角函数可求∠ABO=60°,可证△ABD是等边三角形,由等边三角形的性质可得DE⊥AB,即可求解.解:如图,连接DE,交AC于点P,此时PD+PE的最小值为DE的长,∵四边形ABCD 是菱形,∴AO =CO =BO =DO =1,AC ⊥BD ,AB =AD ,∴AO BO ∴∠ABO =60°,∴△ABD 是等边三角形,∵点E 是AB 的中点,∴DE ⊥AB ,∴DE 2=∴DE总结提升:本题考查了轴对称﹣最短路线问题,菱形的性质,两点之间线段最短,等边三角形的判定和性质,锐角三角函数等知识,利用锐角三角函数求出∠ABD 的度数是解题的关键.6.(2022秋•桐柏县期末)如图,在边长为4的正方形ABCD 中,将△ABD 沿射线BD 平移,连接EC 、GC .求EC +GC 的最小值为 .思路引领:如图,连接AC 与BD 交于点O ,过点C 作l ∥BD ,点E 关于l 对称的对称点为M ,连接CM ,GM ,EM ,EM 与l 的交点为N ,与BD 交点为P ,则EM ⊥l ,EM ⊥BD ,CE =CM ,EN =MN ,求出AC ,NP ,GP ,PE ,MN ,PM 的值,当G 、C 、M 三点不共线时,有GC +CM >GM ;当G 、C 、M 三点共线时,有GC +CM =GM ;有EC +GC =GC +CM ≥GM ,可知G 、C 、M 三点共线时,EC +GC 值最小,在Rt △PGM 中,由勾股定理得GM EC +GC =GM 可得EC +GC 的最小值.解:如图,连接AC 与BD 交于点O ,过点C 作l ∥BD ,点E 关于l 对称的对称点为M ,连接CM ,GM ,EM ,EM 与l 的交点为N ,与BD 交点为P则EM ⊥l ,EM ⊥BD ,CE =CM ,EN =MN ,∵AC =AB sin 45°=∴两平行线的距离NP =12AC =∵EM ⊥BD ,∴∠GEP =45°,∴GP =PE =EG ×sin 45°=∴EN =EP +NP =∴MN =EN =∴PM =PN +MN =当G 、C 、M 三点不共线时,有GC +CM >GM ,当G 、C 、M 三点共线时,有GC +CM =GM ,∴EC +GC =GC +CM ≥GM ,∴G 、C 、M 三点共线时,EC +GC 值最小,在Rt △PGM 中,由勾股定理得GM =∴EC +GC 的最小值为故答案为:总结提升:本题考查了正方形的性质,垂直平分线的性质,三角形的三边关系,勾股定理,正弦值等知识,对知识的灵活运用是解题的关键.7.(2022•朝阳区二模)如图,在矩形ABCD 中,AD =2AB ,E 是边AD 的中点,F 是边AB 上的一个动点,连接EF ,过点E 作EG ⊥EF 交BC 于点G .(1)求证:EF =GE ;(2)若AB =1,则AF +EF +CG 的最小值为 .思路引领:(1)过点E作EH⊥BC于点H,可证△AEF≌△EGH,结论可得.(2)根据△AEF≌△EGH可得AF=HG,EF=EG,则CG+AF=CH=1,所以当EG值最小时,AF+EF+CG 值最小.即EG⊥BC时,AF+EF+CG值最小,即可求其值.解:(1)如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴AB∥BC,∠A=90°.∴AB=EH,∠A=∠EHG=∠AEH=90°.∴∠FEH+∠AEF=90°.∵EG⊥EF,∴∠FEH+∠HEG=90°.∴∠AEF=∠HEG.∵AD=2AB,AD=2AE,∴AE=AB.∴AE=HE且∠AEF=∠HEG,∠A=∠EHG∴△AEF≌△HEG.∴EF=GE.(2)∵在矩形ABCD中,AD=2AB,AB=1∴AD=2,∴AE=DE=1∵∠D=∠C=90°,EH⊥BC∴DCHE是矩形∴DE=CH=1∵△AEF≌△EHG∴AF=HG,EF=EG,EH=AE=1∴AF+EF+CG=HG+CG+EG=CH+EG=1+EG由两平行线之间垂线段最短,当EG⊥BC时,AF+EF+CG的值最小即EG=1时,AF+EF+CG的最小值为2总结提升:本题考查的是最短距离问题,全等三角形,矩形的性质,关键是灵活运用各个性质解决问题.类型四特殊四边形中求周长面积的最小值8.(2022•雁塔区校级模拟)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为 .思路引领:由于四边形APQB的周长可表示为AP+BQ+7,则要使其最小,只要AP+BQ最小即可.在AB 边上截取AM=PQ,因为点F是BC的中点,所以点B关于EF的对称点为点C,连接CM,交EF于点Q,则CM即为AP+BQ的最小值.在Rt△BCM中,利用勾股定理可求出MC的值,进而可得出答案.解:∵AB=5,PQ=2,∴四边形APQB的周长为AP+PQ+BQ+AB=AP+BQ+7,则要使四边形APQB的周长最小,只要AP+BQ最小即可.在AB边上截取AM=PQ,∵点F是BC的中点,∴点B关于EF的对称点为点C,连接CM,交EF于点Q,则CM即为AP+BQ的最小值.在Rt△BCM中,MB=AB﹣AM=5﹣2=3,BC=4,∴CM==5,∴四边形APQB的周长最小值为5+7=12.故答案为:12.总结提升:本题考查轴对称﹣最短路线问题、矩形的性质,能够将所求四边形的周长转化为求AP+BQ 的最小值是解题的关键.9.(2022春•姑苏区校级月考)如图,矩形ABCD中,AB=3,BC=6,点E、F、G、H分别在矩形的各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.B.C.D.思路引领:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=3,∵GG′=AD=6,∴E′G=∴C=2(GF+EF)=2E′G=四边形EFGH故选:C.总结提升:本题考查了轴对称中的最短路线问题以及矩形的性质,找出四边形EFGH周长取最小值时点E、F、G之间的位置关系是解题的关键.10.(2022秋•沙坪坝区校级期末)如图,在平面直角坐标系中,点A(﹣2,2),B(﹣5,5)是第二象限角平分线上的两点,点C的纵坐标为2,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,则周长的最小值为 .思路引领:根据平行线的性质得到∠BAC=45°,得到∠C=90°,求得AC=BC=3,作点A关于y轴的对称点A′,连接A′B交y轴于D′,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+A′B,然后根据勾股定理即可得到结论.解:∵点A(﹣2,2),点C的纵坐标为2,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(﹣5,5),∴C(﹣5,2),∴AC=BC=3,如图,作点A关于y轴的对称点A′,连接A′B交y轴于D′,此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+A′B,∵AC=BC=3,AA′=4,∴A′C=3+4=7,∴A′B=∴最小周长的值=AC+BC+A′B=6故答案为:6总结提升:本题考查了轴对称﹣最短路线问题,坐标与图形的性质,勾股定理,正确的作出辅助线是解题的关键.11.(2019春•仙游县期中)菱形ABCD中,∠B=60°,点E,F分别是BC,CD上的两个动点,且始终保持∠AEF=60°(1)试判断△AEF的形状并说明理由;(2)若菱形的边长为2,求△ECF周长的最小值.思路引领:(1)先根据四边形ABCD是菱形判断出△ABC的形状,在AB上截取BG=BE,则△BGE是等边三角形.再由ASA定理得出△AGE≌△ECF,故可得出AE=AF,由此可得出结论;(2)根据垂线段最短可知当AE⊥BC时△ECF周长最小,由直角三角形的性质求出CE的长,故可得出结论.解:(1)△AEF是等边三角形,理由是:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°.∴△ABC是等边三角形,在AB上截取BG=BE,则△BGE是等边三角形∴AG=AB﹣BG=BC﹣BE=EC,∵∠AEC=∠BAE+∠B=∠AEF+∠FEC,又因为∠B=∠AEF=60°∴∠BAE=∠CEF.在△AGE与△ECF中,∠AGE=∠ECF=120°AG=EC.∠GAE=∠CEF∴△AGE≌△ECF(ASA),∴AE=AF.∵∠AEF=60°,∴△AEF是等边三角形.(2)由(1)知△AEF是等边三角形,△AGE≌△ECF∴CF=GE=BE,CF+EC=BC=2(定值)∵垂线段最短,∴当AE⊥BC时,AE=EF最小,此时△ECF周长最小、∵BC=2,∠B=60°,∴AE=∴△ECF周长的最小值=2+总结提升:本题考查的是菱形的性质,熟知四条边都相等的平行四边形是菱形是解答此题的关键.。
初中数学专题《四边形中的最值问题》专项训练30道原卷
点,且 BM=CN,连 AM 和 BN,交于点 P.猜想 AM 与 BN 的位置关系,并证明你的结论. (2)如图②,已知正方形 ABCD 的边长为 4.点 M 和 N 分别从点 B、C 同时出发,以相同的速度沿 BC、CD 方向向终点 C 和 D 运动,连接 AM 和 BN,交于点 P.求△APB 周长的最大值.
BN 于点 E,连接 DE 交 AM 于点 F,连接 CF,若正方形的边长为 2,则线段 CF 的最小值是( )
A.2
B.1
C. 5−1
D. 5−2
7.(2022•龙华区二模)如图,已知四边形 ABCD 是边长为 4 的正方形,E 为 CD 上一点,且 DE=1,F 为
射线 BC 上一动点,过点 E 作 EG⊥AF 于点 P,交直线 AB 于点 G.则下列结论中:①AF=EG;②若∠BAF
25.(2022•宁德)如图,四边形 ABCD 是正方形,△ABE 是等边三角形,M 为对角线 BD(不含 B 点)上 任意一点,将 BM 绕点 B 逆时针旋转 60°得到 BN,连接 EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当 M 点在何处时,AM+CM 的值最小; ②当 M 点在何处时,AM+BM+CM 的值最小,并说明理由; (3)当 AM+BM+CM 的最小值为 3 +1时,求正方形的边长.
=∠PCF,则 PC=PE;③当∠CPF=45°时,BF=1;④PC 的最小值为 13−2.其中正确的有( )
A.1 个
B.2 个
C.3 个
二次函数的实际应用(面积最值问题含答案)
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyO AB M O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.11。
专题 特殊平行四边形中的最值问题(学生版)
专题01特殊平行四边形中的最值问题题型一菱形中的最值问题1.如图,在菱形ABCD 中,10AB AC ==,对角线AC 、BD 相交于点O ,点M 在线段AC 上,且3AM =,点P 为线段BD 上的一个动点,则12MP PB +的最小值是.2.如图,菱形ABCD 的对角线相交于点O ,12AC =,16BD =,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE AC ⊥于E ,PF BD ⊥于F ,连接EF ,则EF 的最小值等于.3.如图,在菱形ABCD 中,45B ∠=︒,BC =,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为.4.如图所示,四边形ABCD 中,AC BD ⊥于点O ,4AO CO ==,3BO DO ==,点P 为线段AC 上的一个动点.过点P 分别作PM AD ⊥于点M ,作PN DC ⊥于点N .连接PB ,在点P 运动过程中,PM PN PB ++的最小值等于.5.已知菱形OABC在平面直角坐标系的位置如图所示,顶点(5,0)A,45OB=,点P是对角线OB上的一个动点,(0,1)D,当CP DP+最短时,点P的坐标为()A.(0,0)B.1(1,)2C.6(5,3)5D.10(7,5)76.如图所示,在菱形ABCD中,4AB=,120BAD∠=︒,AEF∆为正三角形,点E、F分别在菱形的边BC、CD 上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE CF=;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF的面积和CEF∆的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.7.如图,由两个长为8,宽为4的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15B.16C.19D.208.如图所示,在边长为1的菱形ABCD中,60∠=︒,M是AD上不同于A,D两点的一动点,N是CD上DAB一动点,且1+=.AM CN(1)证明:无论M,N怎样移动,BMN∆总是等边三角形;(2)求BMN∆面积的最小值.9.如图,菱形ABCD的对角线相交于点O,12AC=,16BD=,点P为边BC上一点,且P不与B、C重合.过⊥于F,连接EF,则EF的最小值为()P作PE AC⊥于E,PF BDA.4B.4.8C.5D.610.如图,菱形ABCD的两条对角线长分别为6BD=,点P是BC边上的一动点,则AP的最小值为(AC=,8)A.4B.4.8C.5D.5.5题型二矩形中的最值问题1.如图,点P 是Rt ABC ∆中斜边AC (不与A ,C 重合)上一动点,分别作PM AB ⊥于点M ,作PN BC ⊥于点N ,连接BP 、MN ,若6AB =,8BC =,当点P 在斜边AC 上运动时,则MN 的最小值是()A .1.5B .2C .4.8D .2.42.如图,在Rt ABC ∆中,90BAC ∠=︒且3AB =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为()A .125B .52C .3D .43.如图,90MON ∠=︒,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中6AB =,2BC =.运动过程中点D 到点O 的最大距离是.4.如图,在矩形ABCD 中,2AB =,1AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是()A .2B .4C 2D .225.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是()A .22-B .222+C .252-D 22+6.如图,点E 、F 、G 、H 分别是矩形ABCD 边AB 、BC 、CD 、DA 上的点,且HG 与EF 交于点I ,连接HE 、FG ,若6AB =,5BC =,//EF AD ,//HG AB ,则HE FG +的最小值是.7.如图,在ABC ∆中,9AC =,12AB =,15BC =,P 为BC 边上一动点,PG AC ⊥于点G ,PH AB ⊥于点H .(1)求证:四边形AGPH 是矩形;(2)在点P 的运动过程中,GH 的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.8.如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD的对角线BD 上.(1)求证:BG DE=;(2)若3BC=,则菱形EFGH的面积最大值是.AB=,49.如图,在矩形ABCD中,3AE=,P是BC上一动点,连接AP,取APAB=,6AD=,E是AD上一点,1的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是.10.如图,在ABC∠=︒,点D是BC的中点,点E、F分别是AB、AC上的动点,90∠=︒,EDFBAC∆中,90M、N分别是EF、AC的中点,连接AM、MN,若6-的最大值为.AC=,5AB=,则AM MN题型三正方形中的最值问题1.如图,正方形ABCD中,3AB=,点E为对角线AC上的动点,以DE为边作正方形DEFG.点H是CD上一点,且23DH CD=,连接GH,则GH的最小值为.2.如图,在正方形ABCD中,26AB=,E是对角线AC上的动点,以DE为边作正方形DEFG,H是CD的中点,连接GH,则GH的最小值为.3.如图,平面内三点A、B、C,5AB=,4AC=,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.9C.92D.9224.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.52B.2C.351-D.255.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE CF=,连接BF、DE,则BF DE+的最小值为()A12B20C48D806.如图,在ABCBC=,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,AB AC∆中,5==,45连接BE,则BDE∆面积的最大值为.7.如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,4OC=,点D为BC边上一点,OA=,3以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是.8.如图,正方形ABCD 的边长为4cm ,动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AB 、CD 向终点B 、D 移动,当点E 到达点B 时,运动停止,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为cm .9.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是.10.如图,正方形ABCD 边长为4,点O 在对角线DB 上运动(不与点B ,D 重合),连接OA ,作OP OA ⊥,交直线BC 于点P .(1)判断线段OA ,OP 的数量关系,并说明理由.(2)当OD =时,求CP 的长.(3)设线段DO ,OP ,PC ,CD 围成的图形面积为1S ,AOD ∆的面积为2S ,求12S S -的最值.。
专题31 四边形中的最值问题专项训练(30道)
专题5.5 四边形中的最值问题专项训练(30道)1.(2021春•德阳期末)如图,将矩形ABCD 放置在平面直角坐标系的第一象限内,使顶点A ,B 分别在x 轴、y 轴上滑动,矩形的形状保持不变,若AB =2,BC =1,则顶点C 到坐标原点O 的最大距离为( )A .1+√2B .1+√3C .3D .√52.(2021春•西岗区期末)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则AM 的最小值是( )A .2.4B .2C .1.5D .1.23.(2021春•龙口市期末)如图,在边长为6的正方形ABCD 中,点P 为对角线AC 上一动点,PE ⊥AB 于E ,PF ⊥BC 于F ,则EF 的最小值为( )A .6√2B .3√2C .4D .34.(2021春•重庆期末)如图,以边长为4的正方形ABCD 的中心O 为端点,引两条互相垂直的射线,分别与正方形的边交于E 、F 两点,则线段EF 的最小值是( )A .√2B .2C .√8D .4 5.(2021春•马鞍山期末)如图,在菱形ABCD 中,∠B =45°,BC =2√3,E ,F 分别是边CD ,BC 上的动点,连接AE 和EF ,G ,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为( )A .√3B .√62C .√63D .16.(2021春•潜山市期末)如图,点E 是边长为8的正方形ABCD 的对角线BD 上的动点,以AE 为边向左侧作正方形AEFG ,点P 为AD 的中点,连接PG ,在点E 运动过程中,线段PG 的最小值是( )A .2B .√2C .2√2D .4√27.(2021春•蚌埠期末)如图,矩形ABCD 中,AB :AD =2:1,点E 为AB 的中点,点F 为EC 上一个动点,点P 为DF 的中点,连接PB .若PB 的最小值为5√2,则AD 的值为( )A.5B.6C.7D.88.(2021春•南安市期末)如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.209.(2021春•连云港期末)如图,线段AB的长为8,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.5B.4C.4√3D.5√310.(2021春•惠山区期中)如图,平面内三点A、B、C,AB=5,AC=4,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.9C.9√2D.92√211.(2021春•邗江区期末)如图,以边长为4的正方形ABCD的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值为()A.2B.4C.√2D.2√212.(2021•宁蒗县模拟)如图,菱形ABCD的的边长为6,∠ABC=60°,对角线BD上有两个动点E、F(点E 在点F的左侧),若EF=2,则AE+CF的最小值为()A.2√10B.4√2C.6D.813.(2021春•宜兴市期中)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE =CF,连接BF、DE,则BF+DE的最小值为()A.√12B.√20C.√48D.√8014.(2021春•重庆期末)如图,矩形ABCD中,AB=2√3,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4√3+3B.2√21C.2√3+6D.4√515.(2021•江阴市模拟)如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值等于()A.√5+3B.2√13−2C.2√10−65D.2√2+316.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为.17.(2021春•椒江区期末)如图,矩形ABCD中,AB=8,AD=6,连接BD,E为BD上一动点,P为CE中点,连接P A,则P A的最小值是.18.(2021春•宁德期末)如图,在矩形ABCD中,AB=4,AD=3,点E是CD上一个动点,点F,G分别是AB,AE的中点,则线段FG的最小值是.19.(2021春•东海县期末)如图,在菱形ABCD中,AC=24,BD=10,对角线交于点O,点E在AD上,且DE= 14AD,点F是OB的中点,点G为对角线AC上的一动点,则GE﹣GF的最大值为.20.(2021•淄博)两张宽为3cm的纸条交叉重叠成四边形ABCD,如图所示.若∠α=30°,则对角线BD上的动点P到A,B,C三点距离之和的最小值是.21.(2021春•龙岩期末)如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C 向A运动.连接EP,若AC=10,CF=8.则EP的最小值是.22.(2021春•茅箭区校级期末)如图,已知线段AB=12,点C在线段AB上,且△ACD是边长为4的等边三角形,以CD为边在CD的右侧作矩形CDEF,连接DF,点M是DF的中点,连接MB,则线段MB的最小值为.23.(2021•北仑区二模)如图,△ABC的边AB=3,AB边上的中线CM=1,分别以AC,BC为边向外作正方形ACGH与正方形BCDE,连接GD,取GD中点N.则点N到线段AB的距离最大值为.24.(2021•眉山)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是.25.(2021•海安市二模)如图,矩形ABCD中,AB=2,BC=4,E在边BC上运动,M、N在对角线BD上运动,且MN=√5,连接CM、EN,则CM+EN的最小值为.26.(2021•浙江自主招生)如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.27.(2021•乾县一模)如图,在菱形ABCD中,∠BAD=120°,点E为边AB的中点,点P在对角线BD上且PE+P A =6,则AB长的最大值为.28.(2021•寿光市二模)如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB 的最小值等于.29.(2021•河西区二模)已知正方形ABCD的边长为2,EF分别是边BC,CD上的两个动点,且满足BE=CF,连接AE,AF,则AE+AF的最小值为.30.(2021春•鹿城区校级期中)学习新知:如图1、图2,P是矩形ABCD所在平面内任意一点,则有以下重要结论:AP2+CP2=BP2+DP2.该结论的证明不难,同学们通过勾股定理即可证明.应用新知:如图3,在△ABC中,CA=4,CB=6,D是△ABC内一点,且CD=2,∠ADB=90°,则AB的最小值为.。