运筹学单纯形法

合集下载

运筹学单纯形法

运筹学单纯形法
加松弛变量Xs
AX+IXs=b
X≥0
X,Xs≥0
-x1+x2+4x3≤2 (引入松弛变量x4) -x1+x2+4x3+x4=2 松弛变量的意义:未被充分利用(剩余)的资源, 松弛变量的价格系数是0(c4=0)。
(3) -x1+x2+4x3≥2 (引入剩余变量x5) -x1+x2+4x3-x5=2 剩余变量的意义:超用的资源(c5=0)
运筹学
Operations Research
2.2 单纯形法
2.2.1 线性规划模型的标准形式
一、标准型要求:
(1)目标最大化(max) (2)约束是“=”约束 (3)右端项非负 (4)所有变量非负 标准型
二、非标准型化为标准型
(1) min CX
加负号
max(-CX)
min z=2x1+4x2 (令z’=-z) max z’=-2x1-4x2 (2) AX≤b
例2:将下面的线性规-x1,x3=x3’-x3”,增加松弛变量x4, 增加剩余变量x5。
(4) xj≤0
( 令 xj’= -xj )
x j ’≥ 0
(5) xj为自由变量
( 令xj=xj’-xj’’ )
xj’≥0, xj’’≥0
例1:在煤电油例中,其线性规划模型为: maxz = 7x1+12x2 9x1+ 4x2≤360 4x1+ 5x2≤200 s.t. 3x1+10x2≤300 x1,x2≥0 化标准型:增加松弛变量x3、x4、x5 maxz = 7x1+12x2+0x3+0x4+0x5 9x1+ 4x2 +x3 =360 +x4 =200 s.t. 4x1+ 5x2 3x1+10x2 +x5 =300 x1,…,x5≥0

运筹学第5章 单纯形法

运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法

运筹学单纯形法

运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4

3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1

运筹学5-单纯形法

运筹学5-单纯形法

保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

运筹学第2章 单纯形法

运筹学第2章 单纯形法

所有检验数 j 0 ,则这个基本可行解是最优解。
n
z z0 j x j
j m 1
m
j ciaij c j =CTBa j c j
i 1
m
m
z0 c j x j = cibi =CBT b
j 1
i 1
✓对于求目标函数最小值的情况,只需 σj≤0
0
XB
b
x1
-1 x5 0
0
0 x4 3
1
-3 0
0
00
x2
x3
x4
0
-2 0
2
-2 1
0 10
-1 bi/aik
x5
1
0
0
29 2020/3/4
2、无界解
在求目标函数最大值的问题中,所谓无界解是指在约束条件 下目标函数值可以取任意的大。
•存在着一个小于零的检验数,并且该列的系数向量的每个元素 都小于或等于零,则此线性规划问题是无界的,一般地说此类
2x1 x2 x3 x5 2
s.t. x1 2x2
x4
3

x1,
x2 , x3, x4 , x5 0
✓添加人工变量x5来人为的创造一个单位矩阵作为基 ✓M叫做罚因子,任意大的数。 ✓人工变量只能取零值。必须把x5从基变量中换出去,否 则无解。
cj
3
2
00
CB XB
2020/3/4
14
(2)出基变量和主元的确定——最小比值规则
min

bi aik
aik

0


bl alk
确定出基变量的方法:把已确定的入基变量在各约束方程中的正的系数

运筹学---单纯形法

运筹学---单纯形法

运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。

在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。

单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。

单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。

在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。

具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。

新的基变量将替换原来的非基变量,并且目标函数的值将被更新。

关键是如何选择入基变量和出基变量。

为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。

单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。

通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。

一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。

但是,在实际应用中,单纯形法往往比其他算法更快和更有效。

此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。

单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。

它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。

在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。

这些方法可以提供更好的性能和结果。

但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。

在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。

运筹学02-单纯形法

运筹学02-单纯形法

反之,若经过迭代,不能把人工变量都变
为非基变量,则表明原LP问题无可行解。
19
第2章
单纯形法
2.3 人工变量法
2.3.1 大M法
在原问题的目标函数中添上全部人工变量,并令其系数 都为-M,
而M是一个充分大的正数。即
max z = c1x1 + c2x2 + c3x3 + … + cnxn – M( xn+1 + xn+2 +…+ xn+m )
思路:由一个基本可行解转化为另一个基本可行解。 等价改写为 目标方程 max z max z = 3x1+5x2 z -3x1 -5x2 = 0 z -3x1 -5x2 x1 +x3 x1 +x3 = 8 2x2 +x4 2x2 +x4 = 12 s.t. s.t. 3x1+4x2 +x5 3x1 + 4x2 +x5 = 36 x1 , x2 ,x3,x4,x5 x1 , x2 ,x3,x4,x5 ≥ 0
以主列中正值元素为分母,同行右端常数为分子,求比值;
6
第2章
单纯形法
2.1 单纯形法的基本思想
(Ⅰ)
用换基运算 将X0 转化为 另一个基本 可行解 X1。
z- 3x1 -5x2 = 0 0 换基运算—— x1 +x3 = 8 ① 方程组的初等变换 目的是把主列变为 22x2 +x4 = 12 ② 单位向量:主元变 3x1 + 4x2 +x5 = 36 ③ 为1,其余变为0。 X0 = ( 0, 0, 8, 12, 36 )T z0 = 0
⑴ 当前基:m阶排列阵

运筹学-第1章 3-单纯形法

运筹学-第1章 3-单纯形法

解就是原问题的最优解
若变化后的问题中含有非零的人工变量则元问题无可行

7
2.最优性检验和解的判别
x i bi a im 1 x m 1 , ,a in x n i 1, , m代入目标函数 Z
c1 x1 c2 x 2 c n x n c1 (b1 a1m 1 x m 1 a1n x n ) c2 (b2 a 2 m 1 x m 1 a 2 n x n ) cm (bm a mm 1 x m 1 a mn x n ) c m 1 x m 1 c n x n ci bi
(1)因为所有 Xj ≥0,当所有σ j<0 时,则 Z≤Z0,则该基可行解 对应最优解; (2)因为所有 Xj ≥ 0 ,当 σ j≤ 0 且存在 σ j =0 ( j=m+1,„,n) 时,则该线性规划问题有无穷多最优解; ( 3 )对基可行解 X0, 若存在某个 σ k>0, 且所有 aik≤0(Pj≤0), i=1,2,„,m,则该问题无界(无界解); (4)因为所有Xj≥0,当存在σ j>0时,则该基可行解不是最优 解,需要寻找另一个基可行解;
9
3.基变换
• 变换目的:使目标函数Z值得到改善,接近最优解,一次基变换, 是从该顶点到相邻顶点,即一次基变换仅变换一个基变量。 换入变量的确定(入基变量)
σk>0,aik 至少一个大于0,若σk=Max{σj| σj>0},则xk为换入变量。
换出变量的确定(出基变量)
bi bl bi , i 1,, m, min | aik 0 aik aik alk
13
一.求初始基可行解
1.当约束条件为“≤”时,直接在约束不等式左边加上非负的松弛 变量,使约束方程的系数矩阵很容易找到一个单位矩阵,求出一 个初始基可行解。

运筹学单纯形法

运筹学单纯形法

第二步:寻求初始可行基,确定基变量
1 2 1 0 0
1 0 0
A


4 0
0 4
0 0
1 0
10
B P3,
P4 ,
P5



0
0
1 0
0 1
对应的基变量是 x3,x4,x5; 第三步:写出初始基本可行解和相应的
目标函数值
两个关键的基本表达式:
写出用非基变量表示基变量的表达式:
由 x4 3 x1 x2 x3 → x1 3 x2 x3 x4
x5 9 x1 4x2 7x3

x5

6

3x2

6x3

x4
得新的基本可行解 X(1)=(3,0,0,0,6)T
⑤ 写出用非基变量表示目标函数的表达式:
Z 2x1 3x2 3x3 2(3 x2 x3 x4 ) 3x2 3x3 6 x2 x3 x4
可得相应的目标函数值为Z(1)=6
检验数仍有正的, 返回①进行讨论。
三、单纯形法的一般描述:
1、初始可行解的确定
(1)初始可行基的确定 观察法——观察系数矩阵中是否含有现成 的单位阵?
于是,若LP只有唯一最优解,这个最 优解所对应的点一定是可行域的一个顶点; 若LP有多个最优解,那么肯定在可行域的 顶点中可以找到至少一个最优解。
转移条件?
转移结果?
使目标函数值得到改善
得到LP最优解,目标函数达到最优值
2.需要解决的问题:
(1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优——
要求:

运筹学第2章单纯形法

运筹学第2章单纯形法
==8 ==6
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。

单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。

二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。

通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。

2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。

单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。

3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。

如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。

如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。

如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。

4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。

然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。

接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。

最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。

三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。

运筹学

运筹学

运筹学第2章单纯形法 2.1 单纯形法的基本思想该方法简捷、规范,是举世公认的解决LP问,题行之有效单纯形法(Simplex Method)是美国著名运筹学家丹捷格(Dantzig)1947年首先提出的通用方法。

单纯形法不仅是解决LP问题的最基本的算法之一,而且成为解决整数规划和非线性规划某些算法的基础。

2、单纯形法的3种形式——方程组形式(代数形式)、表格形式、矩阵形式3、单纯形法的基本思路——基于LP问题的标准形,先设法找到某个基本可行解(称为初始基本可行解);开始实施从这个基本可行解向另一个基本可行解的转换,要求这种转换不仅容易实现,而且能改善(至少保持)目标函数值;继续寻找更优的基本可行解,进一步改进目标函数值。

当某一个基本可行解不能再改善时,该解就是最优解。

(或者是出现无可行解、无最优解、无穷多最优解的情况)2.1.1 方程组形式的单纯形法例1 一个企业需要同一种原材料生产甲、乙两种产品,它们的单位产品所需要的原材料的数量及所耗费的加工时间各不相同,获得的利润也不相同(如下表)。

请问,该企业应如何安排生产计划,才能使获得的利润达到最大?解:该问题的LP模型为:将该问题的LP模型化为标准形⎪⎩⎪⎨⎧≥≤+≤++=,1202410032..4621212121xxxxxxt sxxzm ax函数约束的增广矩阵为:很显然 R (A ) = R (A ,b )= 2 < 5,即该方程组有无穷多组解。

系数矩阵为:决策变量向量为:选取 为基,则 为基变量, 为非基变量令非基变量 ,则可以得到一基本 可行解为: 下面的计算都是以它为初始点逐次实施转换,故将其称为初始基本可行解。

此时,Z=0,其经济含义为:该企业没 有安排甲、乙两种产品的生产,当然也就没有利润可言。

条典☐ 初始基本可行解所对应的可行基是一个m 阶的单位阵; ☐ 目标函数表达式中所有的基变量的系数全部为0。

☐ 这是单纯形法所必需的!!! ☐ 分析目标函数表达式☐ 非基变量的系数都是正数,若将它们转换为基变量,目标函数值则就会可能增加。

运筹学单纯形法

运筹学单纯形法

解:本例中,A

1 2
2 1
1 0
10,A 中的2阶可逆子阵有
1
B 1

0
10,其相应的基向量为P3
,
P 4
,
基变量为x
3
,
x
,X
4
1
x 3 ; x 4
1
B 2

2
21,
其相应的基向量为P 1
,
P 2
,
基变量为x
1
,
x
2
,
X
2
x 1 。 x 2


a21
a22

a2n



am1
am2

amn

的秩为m,用Pj表示A中第j列的列向量,即
由此,矩阵A可表示为A=[P1 P2 … Pn]
(2)基矩阵与基变量
基矩阵(基):设A是m×n阶约束系数矩阵(m≤n),秩 为m。 A=( P1,P2,…,Pn ),则A中m阶可逆子阵 B=( P1,P2,…,Pm )为线性规划的一个基。其余部 分称为非基矩阵,记为N
3. 寻找更好的基可行解(基变换)
由于基可行解与基对应,即寻找一个新的基可行
解,相当于从上一个基B0变换为下一个新的基B1,因
此,本步骤也称为基变换。
进基
基变换的原则
改善:z 可行:B

b
z
0
变换的方法:( P ,, P ,, P ,, P )
出基
进基 保证“改善” 令 0对应的P 进基;
二、单纯形法的步骤
单纯形法是一 种迭代的算法,它 的思想是在可行域 的角点——基本可 行解中寻优。由于 角点是有限个(为 什么?),因此, 算法经有限步可终 止。

运筹学单纯形法讲解

运筹学单纯形法讲解

运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。

设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。

单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。

由单纯形求出的最优解就叫做单纯形的最优解。

在实际应用中,一般用来求最优解的都是单纯形。

二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。

但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。

非线性规划只能得到对象最优解。

三、单纯形法具体步骤和算法介绍1、明确问题的目标。

2、计算出所有解,按确定的先后顺序排列。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

四、单纯形法的误差和精度1、明确问题的目标。

一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。

但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。

2、计算出所有解,按确定的先后顺序排列。

首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。

这种方法称为“穷举法”。

穷举法通常用于没有更好的方法时,常用于工程实际中。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。

5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。

单纯形法的精度可达0.01或0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。

它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。

单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。

在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。

单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。

传统的单纯性法分为有界单纯性和无界单纯性两种情形。

无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。

有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。

单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。

使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。

相关文档
最新文档