高考数学第二轮复习策略与重点
高三数学二轮复习的应对策略
高三数学二轮复习的应对策略高三数学二轮复习必须遵循二轮复习的特点,充分挖掘高考的增长点,寻求急功近利,事半功倍,即时见效的方法和措施,是对知识进行“巩固、完善、综合、提高”的过程,绝不是旧知的简单再现。
巩固,即巩固一轮复习的成果,仍要把夯实三基放在重要位置。
完善,即针对一轮复习时学生中暴露出来的问题进行补救。
综合,即在专题复习和训练中恰当减少单一知识点试题,注重知识间的内在联系,恰当增强问题的综合性和开放性。
提高,即促进学生更深层地认知,领悟数学思想,运用数学方法,提高学生应试的综合素质,如应试心理、审题能力、答题习惯等。
一、夯实三基,巩固一轮复习成果高三一轮复习中暴露出了很多问题,主要原因是基础不扎实。
没有扎实的基础就不可能把知识内化为能力,就不可能在高考中取得好的成绩。
因此,巩固一轮复习成果,进一步夯实三基仍是二轮复习重点解决的问题。
1.提高对知识理解的深刻性和运用数学思想方法的灵活性。
知识的梳理不再是“全、细”的问题,重要的是提升对知识理解的层次性,沟通知识间的内在联系,提炼数学知识中蕴含的数学思想方法,熟悉由课本知识演变出来的常用结论等等。
2.强化运算能力的训练。
不仅要提高数与式运算的速度和准确率,更要有意识地进行运算策略等方面的训练。
3.重视基础题,主攻中档题,突破较难题,强化附加题。
如何落实“20字”方略因校制宜、因生制宜,理科附加题是重要增长点,系列4的复习基于课本题型,防止拓展过度。
4.提高专题复习课的效益(1)用好主资料。
专题复习教学案或以某套高质量的二轮复习资料为主线索,或传承前几届高三的资料,结合本届高三实际情况,对照《高考说明》和《教学要求》改编。
深入研究最近三年江苏省高考数学试题,深入研究教材,善于改编教材例题、习题。
(2)专题以知识性为主。
在深入研究《考试说明》与《教学要求》、考题与样题的基础上,精心选择二轮复习专题,专题应以知识性为主,思想方法篇前移,知识专题篇要一以贯之地渗透数学思想方法,要关注高考的重点与盲点、热点与冷点问题。
高考高三二轮复习计划策略模板(7篇)
高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。
二二轮复习形式内容:以专题的形式,分类进行。
具体而言有以下几大专题。
(1)集合函数与导数。
此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。
(预计5课时)(2)三角函数平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。
平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。
(预计2课时)(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。
数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。
(预计2课时)(4)立体几何。
此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。
(预计3课时)(5)解析几何。
此专题中解析几何是重点,以基本性质基本运算为目标。
直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。
如何抓好高考数学第二轮复习
如何抓好高考数学第二轮复习寒假一过,形势陡然紧张了很多。
考生进入到关键的第二轮复习,对于高三数学第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和把握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经把握的知识转化为实际解题能力;三是要把握各题型的特点和规律,把握解题方法,初步形成应试技巧。
那么如何进行科学而有效的教学呢?一、大处着眼,细心领会两个成功公式1.科学巨匠爱因斯坦的闻名公式是v=x+y+z(v-成功;x-刻苦的精神;y-科学的方法;z-少说废话)。
2.四轮学习方略中,成功=目标+计划+方法+行动。
学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的计划和措施方法,要天天见行动,苦干实干抓落实。
要站在整体的高度,重新熟悉自己所学,总体把握所学的数学知识和方法及应用。
学校的老师和课外班的冲刺有周密的复习计划,你要与老师紧密配合。
须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,才能成为佼佼者。
二、做到对知识和能力要求心中有数,自身优势和不足心中有数1.主干知识八大块①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及应用。
要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。
2.把握四大数学思想方法明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。
四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想3.学习好数学要抓住四个三①内容上要充分领悟三个方面:理论、方法、思维;②解题上要抓好三个字:数,式,形;③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);④学习中要驾驭好三条线:知识(结构)是明线(要清楚);方法(能力)是暗线(要领悟、要提炼);思维(练习)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。
2024届高三数学二轮复习策略课件
1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论
专
1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题
六
4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(
)
A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。
2023届高三年级数学第二轮复习计划及策略
2023届高三年级数学第二轮复习计划及策略一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求。
具体地说,一是要看教师对《考试说明》、《考纲》理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”。
二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展。
三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法。
二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月22——4月27日。
2.第二阶段是进行选择填空解答三种题型的解题方法和技能专项训练,时间为4月28日——4月30日。
3.第三阶段进行二轮复习备考,学生进行模拟训练,时间为5月1日——5月13日。
三、怎样上好第二轮复习课的几点建议:(一)、明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位。
如何做好高三数学第二轮复习
高考对学生而言 : 得易者 , 平心 ; 得 中者 , 守神; 抢 难者 , 突破。 中档考点 的试卷分布主要在选 择题第 6 — 1 0 题, 填 空题第 1 4 、 1 5 题, 解答 题第 1 7 、 1 8 、 1 9 题, 主干知 识包括 : 立 体几何 、 解 析几何 、 三角 函数 、 数 列、 概率统计和函数不等式的应用 问题 。为此 , 后 一 阶段一 要坚持 中档题练习 ,二要进行数 学主干性 知 识专题训练 , 重点突破。
2 . 立 足 中 档考 点 . 谋 求较 大 突破
“ 三讲三不讲” , “ 三讲 ” :容易? 昆淆的知识点要讲 , 重 点题型要讲 ,容易解错和产 生的错 因要讲 。“ 三不 讲” : 学生已经会的不讲 , 学生怎么也学不会 的不讲 , 老师看了答案才勉 强会 的不讲 。抛弃一些学生难 以 掌握的非常规解法 ,将课本 中的通性通法实实在在 地讲好讲透。
0
备 考 方 略
如何做好高三数学第二轮复习
■ 赵 小 强 高三第二轮复习是学 生提分最快 的阶段பைடு நூலகம்,如何 制订行之有效的复习方案 , 显得尤为重要。 那 么如何 做好第二轮复习呢? 第二轮复 习应注意哪些问题呢?
一
、
教 学 策 略
1 . 重视 基 础 . 回 归课 本
后 阶段教学应给予课 本中重要 的定理公式和相 关 的典型例题 以足够关注和思 考 ,再次认真研读考 试说 明 , 把准能力及要求 , 瞄准近三年的高考数学试 题, 应根据学生掌握 的实 际情况 , 有针对性地选择 和 整合教学素材 , 绝不 贪多求全 , 力求讲精讲透 。关 于 “ 课本 回归” 内容 的知识梳理 , 专人负责 , 有序发放 。
(山东专版)高考数学二轮专题复习与策略 第2部分 必考补充专题 技法篇 6招巧解客观题,省时、省力得
必考补充专题技法篇 6招巧解客观题,省时、省力得高分教师用书理必考补充专题中的4个突破点在高考考查中较为简单,题型为选择、填空题,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨] 必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“四小”的形式呈现.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“排列组合、二项式定理”四大角度进行精练,引领考生明确考情,高效备考.技法篇:6招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有75分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.(1)(2016·高考)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)(2015·某某高考)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为______.[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)可以利用向量的坐标运算,通过坐标相等,直接得出参量m ,n 的值. (1)A (2)-3 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6.(2)∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =-3.][变式训练1] (2015·某某高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元)6.27.58.08.59.8根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).] 解法2 等价转化法所谓等价转化法,就是通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果.(1)(2016·某某模拟)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6(2)(2015·某某高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.[解题指导] (1)把向量AM →,NM →用AB →,BC →表示,再求数量积.(2)利用∠AOB =120°,得到圆心到直线的距离,最后用点到直线的距离公式求解.(1)C (2)2 [(1)依题意有AM →=AB →+BM →=AB →+34BC →,NM →=NC →+CM →=13DC →-14BC →=13AB →-14BC →,所以AM →·NM →=⎝⎛⎭⎪⎫AB →+34BC →·⎝ ⎛⎭⎪⎫13AB →-14BC →=13AB →2-316BC →2=9.故选C.(2)如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-42=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.][变式训练2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为( ) 【导学号:67722071】A .2B.32 C .1D.12(2)若直线y =kx +1(k ∈R)与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值X 围是________.(1)D (2)[-1,3] [(1)因为AC →=AD →+DC →,BE →=BC →+CE →=AD →-12DC →,所以AC →·BE →=(AD →+DC →)·⎝ ⎛⎭⎪⎫AD →-12DC →=AD →2+12AD →·DC →-12DC 2,所以1+12|DC →|·cos 60°-12|DC →|2=1,|DC →|=12,故AB 的长为12.(2)直线y =kx +1恒过定点(0,1),则直线与圆恒有交点等价于点(0,1)在圆内或圆上,即02+12-2a ×0+a 2-2a -4≤0,即a 2-2a -3≤0,解得-1≤a ≤3.]解法3 特殊值法在解决选择题和填空题时,可以取一个或一些特殊数值或特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效.(1)(2015·某某高考)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r=12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)(2015·某某高考)“对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)正常来说分析不等式k sin x cos x <x 成立的条件很复杂,也没必要,所以可以尝试在满足条件的情况下对x 取特殊值进行分析,这样既快又准确.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)若对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x 成立,不妨取x =π4,代入可得k <π2,不能推出k <1,所以是非充分条件;因为x ∈⎝⎛⎭⎪⎫0,π2,恒有sin x <x ,若k <1,则k cos x <1,一定有k sin x cos x <x ,所以选B.][变式训练3] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( ) A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)(2016·某某模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45 [(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法4 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规X 图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.(1)(2016·某某模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x+y 的最大值是( )【导学号:67722072】A .-1B .-2C .-5D .1(2)(2015·某某高考)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为______.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)| =2(1+cos x )sin x -2sin x -|ln(x +1)| =2sin x cos x -|ln(x +1)|=sin 2x -|ln(x +1)|. 由f (x )=0,得sin 2x =|ln(x +1)|.设y 1=sin 2x ,y 2=|ln(x +1)|,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.] [变式训练4] (1)(2016·某某模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R)在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).] 解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.(1)(2016·某某一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图1,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图1[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解. (2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长.(1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xf ′x -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xf ′x -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.][变式训练5] (1)(2016·某某高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R),则g ′(x )=f ′x e x -f x e xex2=f ′x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=f 0e=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]解法6 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.(1)(2016·北师大附中模拟)函数y =cos 6x2x -2-x 的图象大致为( )【导学号:67722073】A BC D(2)(2015·某某高考)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x [解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案.(2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x -2-x 为增函数,当x →+∞时,2x -2-x →+∞且|cos 6x |≤1,∴y =cos 6x 2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x ·cos 6x 4x -1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x →1,4x -1→0,2x →1,cos 6x →1,∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.] [变式训练6] (1)(2015·某某高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)(2015·高考)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]客观题常用的6种解法已初步掌握,在突破点19~22的训练中一展身手吧!。
高考数学第二轮复习计划
高考数学第二轮复习计划范例
1、章节复习
不管是那门学科都分为大的章节和小的课时,一般当讲完一个章节的所有
课时就会把整个章节串起来在系统的讲一遍,作为复习,我们同样可以这么做,因为既然是一个章节的知识,所有的课时之前一定有联系,因此我们可以找出
它们的共同之处,采用联系记忆法把这些零碎的知识通过线串起来,更方便我
们记忆。
2、考前突击
俗话说的好,临阵磨枪,不快也光,很多学生平时不下功夫,总是在考试
前做突击,虽然这种方法不可取,但是不得不说考前突击的记忆还是非常深刻,尤其是当你看到一个知识点而考试中有考到这个知识点的时候,你对它的记忆
便会更深,虽然不是行之有效的复习方法,但是也有其一定的效果。
3、轮番复习
虽然我们学习的科目不止一项,但是有些学生就喜欢单一的复习,例如语
文不好,就一直在复习语文上下功夫,其他科目一概不问,其实这是个不好的`习惯,当人在长时间重复的做某一件事的时候,难免会出现疲劳,进而产生倦怠,达不到预期的效果,因此我们做复习的时候不要单一复习某一门科目,应
该使它们轮番上阵,看语文看烦了,就换换数学,在烦了就换换英语,这样可
以把单调的复习变为一件有趣的事情,从而提高复习效果。
4、纠错整理法
考试的过程中难免会做错题目,不管你是粗心或者就是不会,都要习惯性
的把这些错题收集起来,每个科目都建立一个独立的错题集,当我们进行考前
复习的时候,它们是重点复习对象,因此你既然错过一次,保不准会错第二次,只有这样你才不会在同样的问题上再次失分。
高三数学二轮复习重点
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高三数学第二轮怎么复习高效方法
高三数学第二轮怎么复习高效方法高三数学第二轮怎么复习一、抄笔记不是“埋头苦干”高考数学试卷中大部分都是基础题,只要把这些基础题做好,分数就不会太低。
听课时可以适当地做些笔记,但前提是不影响听课的效果。
有些学生光顾着抄笔记却忽略了老师对题目的分析和思路的探索,一味埋头苦干,这样就是捡了芝麻丢了西瓜,反而得不偿失。
记笔记,并不是把老师讲的全部记下来,要有筛选地记。
要想取得好成绩,光记是不够的,还要多看,因为笔记的内容是重点、难点、易错点等,是考试常考的和自己掌握不牢的地方,只有反复强化记忆练习,才能把知识学扎实。
值得注意的是,老师在分析题目、探索思路时,为了便于学生理解,往往采用通俗的话语,有些不方便板书,因此,记笔记不能只看黑板上写的,老师口头讲解的部分也要取其精华,形成自己的思路方法。
二、重视订正,理性刷题一张试卷上的错题、难题数量是很有限的,而且通常属于“高风险低回报”,而如果能利用好它们,并认真总结、订正,最终的成绩也不会让人失望。
这里给大家介绍一下错题订正的正确方法:1、仔细分析错误答案中的错误环节,分析原因,注意不要把“粗心”作为借口。
任何一个错误都是事出有因的,即使是计算错误也是由于不够熟练导致的,因此,分析的原因一定是具体的、有针对性的原因。
2、遮住答案,留出题干,在没有任何外界辅助的情况下自己演算一遍。
注意不要跳步,既然错过一次,第二次就要仔仔细细、踏踏实实地重来。
特别是第一次做的时候感觉不确定的地方,订正的时候要放慢速度。
3、核对答案,没有问题后闭上眼睛把刚刚的演算过程在脑中再过一遍,体会推导过程是否合理、自然,下次再遇到类似的问题能否顺理成章地想到。
如果第二次做还是有错误,那就必须重看自己的错误,分析错误环节,并用有颜色的笔着重标出。
4、过了两三天再把错题拿出来看,可以不笔算,只要脑海中能回忆出完整过程,这题就算过关。
如果在不借助外界帮助的情况下还是有问题,那么这道题就是复习时的重点了,过几天还要拿出来再看一遍。
2024年高考数学第二轮复习备考建议及策略
2024年高考数学第二轮复习备考建议及策略2024年高考数学第二轮复习备考建议及策略随着高考的临近,数学第二轮复习也进入了关键阶段。
在这一轮复习中,我们需要把握复习的重点和难点,制定有效的复习策略,提高复习效率。
本文将结合多年高考数学复习经验,为同学们提供一些实用的备考建议和策略。
一、明确复习目标,把握重点难点在第二轮复习阶段,我们需要明确复习目标,了解考试大纲和命题趋势,把握重点和难点。
通过对历年高考数学试题的分析,我们可以总结出以下重点知识点和难点:函数与导数、数列与极限、向量与空间几何、概率与统计、解析几何等。
针对这些重点和难点,我们需要制定有针对性的复习计划。
二、制定复习计划,提高复习效率制定复习计划是提高复习效率的关键。
我们可以按照以下步骤制定复习计划:1、梳理知识点:将重点知识点和难点进行梳理,形成知识框架。
2、制定计划:根据知识框架和复习进度,制定每周的复习计划,包括每天的复习内容和时间安排。
3、分配时间:根据知识点的重要性和难度,合理分配复习时间,确保每个知识点都能得到充分复习。
4、制定个性化复习方案:根据自身情况,制定个性化的复习方案,突破自己的薄弱环节。
三、强化基础训练,巩固基础知识高考数学考试注重基础知识的考查,因此,在第二轮复习中,我们需要强化基础训练,巩固基础知识。
具体方法包括:1、复习课本:回归课本,加强对基本概念、公式、公理、定理等基础知识的理解和记忆。
2、做题训练:选择基础题目进行做题训练,加深对知识点的理解和应用。
3、总结归纳:将做题过程中遇到的问题和难点进行总结归纳,找出自己的知识盲点和薄弱环节,及时进行弥补。
四、注重解题方法,提高解题能力高考数学考试不仅考查基础知识,还注重考查学生的解题能力和数学思维。
因此,在第二轮复习中,我们需要注重解题方法的学习和提高。
具体方法包括:1、学习解题方法:掌握常见的解题方法和技巧,如分类讨论、数形结合、归纳法、反证法等。
2、做题实践:选择中等难度的题目进行做题实践,锻炼自己的解题能力和数学思维。
高考数学学科二轮备考关键问题指导系列一(解析几何存在问题及应对策略)
福建省2024届高中毕业班数学学科二轮备考关键问题指导系列一解析几何存在问题及应对策略(福建省高三毕业班复习教学指导组余小萍执笔整理)新高考的背景下,解析几何知识板块试题分值高,在全卷中占比高,但整体得分低,得分率最低,对全卷影响重大,新高考解析几何如何提分,值得研究.解析几何高考试题以核心素养为导向,突出了学科素养、关键能力的考查,有以下特点:1.突显解析思想,考查全面解析思想解题主要包含两个方面.其一,在坐标系下,每个几何对象均可被数(坐标、方程等)所完全表达,并通过代数(或向量)方法来解决;其二,特定的代数语言有了几何解释,从而使代数语言有了直观意义,人们能从中得到启发,进而解决问题或提出新的结论.解析几何问题考查模式可以用下图的框架体现:2.突出直观想象,强调算理解析法是通过坐标系实现“点与坐标互化”、“曲线与方程互化”、“几何关系代数化”,从而达到用代数方法解决几何问题,其思维模式可以用下图的框架体现:这是平面解析几何复习教学可以遵循的思维模式,通过它,帮助厘清知识,构建方法体系,回到基础,落实对知识与方法的深刻理解,让解析法升华为一种认识论与方法论.3.突破题型套路,鼓励创新新高考试卷持续推进题型和结构的创新,在解析几何试题的设计上,最大的变化就是突破题型套路,有多选题、多空题和条件开放或结论开放试题,在难度层次上也有所变化,从情境选择、设问方式到解题方法,鼓励创新求解的意识,培养学生探究能力.下面就具体的平面解析几何复习教学的相关问题探讨如下.一、存在的问题及原因分析(一)作图意识薄弱,以形助思待提高规范作图是认识问题、研究问题的基础,将图形特征转化、合理代数化的过程是问题条件的理解与解题思路的探究过程.【例1】过点(0,2)-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.4C.4D. 4【解析】圆22410x y x +--=化简,得22(2)5x y -+=,故圆心(2,0)B,记(0,2)A -,设切点为M ,.N AB =BM =,故AM sinsin MAB 24BM ABα=∠==,coscos M B 2A AM ABα=∠==,sin 2sincos22ααα==B. 【评析】本题考查直线与圆的位置关系、二倍角公式,属于基础题.利用切线构造直角三角形,由三角函数定义求出sin2α,cos2α,再利用二倍角正弦公式即可求解.本题中切线的运用很多学生能想到,但学生不易想到角度关系MAB 2α=∠,究其原因在于作图意识薄弱,对题中的几何关系挖掘不够,缺乏对图形中几何特征与数量关系的细致分析,难以借助图形分析思考问题.【例2】已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,点A 在C 上,点B 在y轴上,11F A F B ⊥,222=3F A F B -,则C 的离心率为__________.【解析】依题意222=3F A F B -,设22||2,||3(0)F A t F B t t ==>,||5.AB t ∴=由对称性知21|||| 3.F B F B t ==又11F A F B ⊥,故1||4F A t =,4cos .5A = 由双曲线的定义知,12||||2F A F A a -=,故.t a =在12F AF 中,22216444cos 2425a a c A a a +-==⋅⋅,解得:29()5c a =,故C 的离心率为5【评析】本题考查双曲线的定义及性质、余弦定理、向量共线的充要条件等,属于中档题. 根据向量的关系设参数t ,得到||AB ,2||F B ,1||F B 的关系,勾股定理得到1||4F A t =.由双曲线的定义得到t a =,在1Rt F AB △和12F AF △中通过对cos A 算两次得到a 与c 的关系.学生若作图潦草,难以发现关键的几何特征信息,导致对图中几何关系的提取错误或者不完整,思路受阻.本题中222=3F A F B -,不仅有数量特征,还具有位置关系.【建议】课堂教学中教师能使用尺规规范作图,起到示范指导,并要求学生当堂作图练习.布置不给图形的解几练习,要求学生通过审题自己作图.教师对图形中几何特征与数量关系进行细致分析,结合图形从整体角度理解题意、寻找解题思路.(二)概念思维淡漠,核心观点需增强定义是数学问题研究的起点.曲线方程的概念蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例3】已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12,过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE △的周长是__________.【解析】由椭圆离心率为12,可得2a c =,则b ==则椭圆C :2222143x y c c +=,)A ,1(,0)F c -,2(,0)F c ,易得ED l :()3y x c =+,由2211||||||2AF AF F F c ===,故过1F 且垂直于2AF 的直线DE 垂直平分2AF ,即2||||EA EF =,2||||DA DF =,又2222143)x y c c y x c =⎧+=⎪⎨+⎪⎪⎪⎩,得22138320x cx c +-=,故28133213D E D Ec x x x c x =⎧+=-⎪⎪⎨-⎪⎪⎩, 213||||6()4278D E D E D E DE x x x x x x c ∴=-=⇒+-=⇒=,所以ADE △的周长2211||||||||||||||4813DA EA DE DF EF DF EF a c ++=+++===.【评析】本题主要考查了直线与椭圆的位置关系的应用、椭圆的定义以及椭圆中的弦长问题,考查了运算求解能力,属于中档题.部分学生不能从离心率、椭圆定义角度去分析几何特征解决问题,而是先求点M 坐标,再求点D 、E 的坐标,利用两点间的距离公式,绕了一大圈才得出周长,没能活用定义轻松得到解题的突破口.究其原因在于没有养成优先站在“定义”的角度探究问题和解决问题意识,未能从圆锥曲线的定义审视几何关系,选择简便的方法实现几何条件代数化.【建议】复习教学中凡涉及圆锥曲线的最值问题,均需先回顾梳理各种方法,结合问题背景比较、优化方法;强调要在大问题(圆锥曲线的定义与几何图形中的位置关系与数量关系)下研究几何性质;加强逻辑严密的课堂推演与条理清晰试题剖析. (三)欠缺条件思辨,代数方法要选择解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化.【例4】写出与圆221x y +=和圆22(3)(4)16x y -+-=都相切的一条直线的方程__________. 【解法一】显然直线的斜率不为0,不妨设直线方程为0x by c ++=,1=化简得221c b =+①,4.=化简得,|34||4|b c c ++=,故344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可) 【解法二】设圆221x y +=的圆心(0,0)O ,半径为11r =, 圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =, 则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意; 又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程;又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =,从而该切线的方程为724250x y --=; 所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可)【评析】本题是一道开放题,代数法设切线方程通过解方程组能解决问题,也可以利用几何特征快速写出公切线10x +=,发现题中两圆的位置关系是快速破题的关键.本题若改为写出所有公切线方程学生失分率将更高,两种方法计算量也相差无几,代数法中方程组的求解是学生的失分点,其中直线方程的设法涉及简便、减少运算量,几何法通过先求直线OC 与直线10x +=的交点,再求过该点且与圆221x y +=相切的直线即可得到公切线724250x y --=也是利用几何特征简便、减少运算量.【例5】已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴y 轴分别相交于M ,N 两点,且||||MA NB =,||MN =l 的方程为__________.【解析】取AB 的中点为E ,因为||||MA NB =,所以||||ME NE =,设11(,)A x y ,22(,)B x y 可得1212121212y y y y x x x x +-⨯=-+-,即1.2OE AB k k =-⋅ 设直线:AB y kx m =+,0k <,0m >,则(0,)M m ,(,0)mN k-, 所以(,)22m m E k -,所以212m k k m k⨯=-=--,k =又||MN =22212m m +=,故2m =,所以直线:22AB y x =-+,即0.x -= 【评析】本题考查椭圆的中点弦问题,属于偏难题.条件 ||||MA NB = 的转化应用是解本题快速与否的关键,取AB 的中点为E ,将中点E 纵横坐标比转化为中点与原点连线的斜率,利用点差法及点坐标就能快速找到一个,k m 的关系式.学生若能依题构图,结合图形联想第三定义推论,就能将条件 ||||MA NB = 转化为简洁的代数形式,从而达到解决问题的目的.【建议】复习教学中重视引导学生依题构图,结合圆锥曲线的性质从题意与图形中抽象出关键的几何特征,并以简洁的代数形式加以呈现,从而转化为待求目标关系式进行变形演算.(四)缺乏算法算理,运算求解须考究解析几何问题常常都有计算量大的特点,如何进行有效运算、简便运算,寻找化简方向是我们必须重视的环节,包括如何设元、如何设方程,回归定义,以简驭繁;设而不求,整体运算;充分运用图形几何性质,简化计算;利用根与系数关系化繁为简;选用方程适当形式,减少运算量等,这些方法一定要结合具体问题进行训练.【例6】已知O 为坐标原点,抛物线2:2(0)C y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥.若||6FQ =,则C 的准线方程为 .【解法一】解直角三角形法:如图,依题意得,2p P p ⎛⎫ ⎪⎝⎭且OPF PQF ∠=∠,所以tan tan OPF PQF ∠=∠,所以2,6pOF PF p PF FQ p =∴=,解得3p =,所以C 的准线方程为32x =-.【解法二】射影定理应用法依题意得,2p P p ⎛⎫⎪⎝⎭,所以2,PF OF FQ =⋅262p p ∴=⨯,解得3p =或0p =(舍去),所以C 的准线方程为32x =-.【解法三】由题意,不妨设P 在第一象限,则(2p P ,)p ,所以直线OP 的斜率22OP pk p ==,因为PQ OP ⊥,所以12PQ k =-,所以PQ 的方程为1()22p y p x -=--,即524px y =-+.令0y =时,52p x =,因为||6FQ =,所以5622p p -=,解得3p =,所以C 的准线方程为32x =-. 【解法四】由题意,不妨设P 在第一象限,则(2p P ,)p ,(6,0)2pQ +,所以(6,)PQ p =-, 因为PQ OP ⊥,所以0PQ OP ⋅=,所以602pPQ p p =⨯-⨯=,所以()30p p -=,因为0p >,所以3p =,所以C 的准线方程为32x =-.【评析】破解本题的关键是对PQ OP ⊥进行转化,可以从解直角三角形的角度,也可以从斜率角度,还可以从向量的角度,甚至可以利用射影定理的角度去进行转化,显见不同的思路其解题的长度不一样.因此,需强化的解题训练形成套路化、模式化,就能根据问题特点灵活处理.【例7】在平面直角坐标系xOy中,已知点1(F,2F ,12||||2MF MF -=,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 两条直线分别交C 于A ,B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)因为12122MF MF F F -=<=C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥. (2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+=⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【评析】TA TB ⋅与TP TQ ⋅从弦长公式到韦达定理代入化简是破解本题的关键,从设直线方程到联立消元再到弦长公式的应用,有明晰的解题方向,形成套路化、模式化的解题训练有助于学生根据问题特点灵活处理.【建议】课堂教学时不能只是谈思路方法,应合理利用几何特征设参,分析算式结构,合理消参、降次,通过课堂师生共同演算的体验,增加实践经验,进行算法算理的指导.在涉及求有关过一点的两条斜率不同的直线的交点坐标或弦长问题时,往往只需计算其中的一类交点坐标或弦长,另一类只需等价代换的结果中的参数即可.(五)只求题型模仿,解析思想欠领悟高中解析几何既是一种重要的数学思想,也是一种重要的数学方法,其核心是“数形结合”的思想方法.由于解析几何内容的综合性,在解决问题的过程中,充满着探究性、创新性,对能力有较高的要求.解题中必然要用到思想方法引领,如函数与方程、特殊与一般、分类与整合的思想,以及待定系数法、换元法等等.【例8】已知点和抛物线,过的焦点且斜率为的直线与交于,点.若,则________.【解析】设弦AB 的中点为P ,综合题目的几何特征,直观猜测,PM 平行于x 轴,故由点差法可得124=2k y y =+,快速地给出答案为2. 【评析】本题是典型的直线与抛物线的位置关系问题,常规的解法是设方程、联立方程、用韦达定理求解套路,这势必费力费时且会算错.由于问题的特殊性,焦点弦张角为直角,借助数形结合,动中求不变解析思考,斜率为k 的平行弦的不变性,以及焦点弦张角的不变性,就能抓住问题的本质,既解决了问题,又提升了对抛物线的认识.【例9】已知A 、B 分别为椭圆E :2221x y a+=(a >1)左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G ,∴(),1AG a =,(),1GB a =-, ∴218AG GB a ⋅=-=,∴29a =,∴椭圆方程为:2219x y +=.()11M -,24C y x =:C k C A B 90AMB =︒∠k =的的(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+,联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+,将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+, 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭, ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭, 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭,故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【评析】解决本题的关键是借助数形结合,由椭圆的对称性可知定点应在x 轴上,明晰计算化简的方向.【建议】教学中要让学生意识到变化是理解解析几何问题的切入点,不变是解决解析几何问题的落脚点,对于它的探究过程主要集中在数学观察、联想、类比、猜测、抽象、概括等思维过程.解决解几具体问题时常常需要用到“数形结合”的思想方法.在解决问题的过程中,针对具体问题具体分析,跳出套路,数形结合找到解题方向.二、解决问题的思考与对策(一)回归基础,揭示本质,返璞归真解析几何思想的数学结构是由核心概念、基本方法、数学原理3个层次构成.核心概念是曲线与方程,基本方法是几何问题代数化和代数问题几何化,数学原理是映射原理(或化归原则),其中几何问题代数化的途径是坐标法,是笛卡尔“方法论”的观念表现.【例10】若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,_____.【解析】正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图直角坐标系, 设对角线OB 所在直线的倾斜角为θ,则tan 2θ=,由正方形性质可知,直线OA 的倾斜角为45θ-︒,直线OB 的倾斜角为45θ+︒,故()tan tan 45211tan 451tan tan 45123OA k θθθ-︒-=-︒===+︒+,()tan tan 4521tan 4531tan tan 4512OB k θθθ+︒+=+︒===--︒-.故答案为:13;3-.【评析】本题以简单的多空形式呈现,以正方形、直线与直线的位置关系为载体,考查坐标法的基本 应用.考点虽然稍冷,却有着浓浓的解析味.解决问题的关键在于,合理建立坐标系,恰当地表征几何对象,如倾斜角的引进,以及与斜率的互化,体现了基础性、综合性和应用性.【例11】已知曲线22:1C mx ny +=.( ) A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线 【解析】ACD【评析】曲线方程的特征及区别是求解的关键,是解析几何的基本工具,一定要熟知.【例12】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F .(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213xy +=;(2)由(1)得,曲线为221(0)x y x +=>, 当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx t kt =+<即0kx y t -+=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,所以221t k =+,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩可得()222136330k x ktx t +++-=, 所以2121222633,1313kt t x x x x k k-+=-⋅=++,所以MN ==213k=+= 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN =【评析】问题归结——利用椭圆焦距的定义和椭圆离心率的定义;策略突破——利用椭圆焦距的定义和椭圆离心率的定义,构建方程,转化为求2,2a c 的值或齐次方程,从而求椭圆的方程.【建议】教学中要回归基础,即是回到知识的联系、回到思想方法、回到定义和基本性质中去.对于圆锥曲线而言,即是回到定义、方程、性质去,也是解决问题的认知基础.归纳:1.定义是事物本质属性的概括和反映,圆锥曲线许多性质都是由定义派生出来的.对某些圆锥曲线问题,采用“回归定义”的策略,把定量的计算和定性的分析有机地结合起来,则往往能获得题目所固有的本质属性,达到准确判断、合理运算、灵活解题的目的.2.求圆锥曲线方程常用的方法有直接法、定义法、待定系数法、参数法等.用待定系数法求圆锥曲线的标准方程时,要“先定型,后计算”.所谓“定型”,是指确定类型,也就是确定椭圆、双曲线的焦点所在的坐标轴是x 轴还是y 轴,抛物线的焦点是在x 轴的正半轴、负半轴,还是y 轴的正半轴、负半轴,从而设出相应的标准方程的形式;“计算”就是指运用方程思想、利用待定系数法求出方程中的a 2、b 2、p 的值(基本量法),最后代入椭圆、双曲线、抛物线的标准方程.3.求椭圆或双曲线的离心率时,应该寻求三角形中的边角之间的关系,从而建立a 、c 的齐次方程(求值)或者齐次不等式(求范围).4.证明充要条件的问题,不要只证明充分性,或只证明必要性,需注意:既要证明其充分性,又要证明其必要性.(二)弄清几何问题,选择代数方法,合理转化解析几何就是用代数方法来研究几何问题,即:几何问题→代数问题→代数结论→几何结论.所以,它的两大任务是:(1)把几何问题转化为代数问题,(2)研究代数问题,得出代数结论.【例13】设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程; (2) 设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由已知得(1,0)F ,l 的方程为1x =.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-+2y x = (2)本题目标要研究的几何对象为角,这需要在图形中挖掘这两个角的几何特征或这个角的等价几何关系.特例情况当l 与x 轴重合时.①0OMA OMB ∠=∠=︒;②当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,将OMA OMB ∠=∠代数化,即角相等的证明可以有两个思路,即从 数量关系或几何关系来思考.为此,不妨设1221(,),(,)A y x y x B .思路1:从图形中直线的倾斜角直接切入,由位置特征,可以将问题转化为0MA MB k k +=; 思路2:从数量关系角度看,通过向量运算去获取,淡化几何特征,直接采取坐标运算,即证;思路3:从几何角度看,问题可以转化为运用角平分线定理,现坐标化,即证11AF y AM BFy BM==;思路4:从几何角度看,在坐标几何中,构造直角三角形相似来证. 思路5:从几何角度看,视为角平分线,用点到两边的距离进行代数化. 思路6:角平分线具有对称性,故可证明点A 关于x 轴的对称点在直线BM 上. 这么多的思路,如何代数化,要不要求坐标?程序化(算术化):即设直线方程,遵循不断求出的思路进行运算,求出点A ,B 坐标,后再计算; 结构化(关系化):即设直线方程,找出A ,B 坐标关系(这里的策略就是通常所说的“设而不求”, 再对要证的结构关系进行推演.事实上,程序化和结构化的代数思维没有特别的优劣,它都是代数思维的重要特征,它是一个不断螺旋上升的过程,只是大家目前都喜欢用结构化的思维,忽视程序化的思维,这是不对的,对结构化思维的形成与培养也不利.另外,即便用结构化思维进行推演,在设方程上也有此许的差别,如设l 的方程为(1)y k x =-或设x my t =+,还是有讲究的.【评析】解析法的过程,充满着概念与思辩,需要大家细细品味!绝不是机械模仿能达到的. 【建议】课堂中怎样将几何问题转化为代数问题?(1)要主动去理解几何对象的本质特征;(2)善于将几何条件、几何性质用代数的形式表达出来;(3)恰当选择代数化的形式,这点是关键:一要研究具体的几何对象具有什么样的几何特征(如果几何特征不清楚,就不可能准确将其代数化),这就要在审题上下功夫;二是选择最简洁的代数形式(方便后续的代数研究),这需要大局观;(4)注意等价转化.(三)增强几何意识,配合解析工具,巧妙转化解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,结合平面几何知识,这往往能减少计算量.数学试题中很多图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解.【例14】在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则PQ 的取值范围为.分析:问题归结——定直线上的动点与圆上一点距离问题;策略突破——首先要明确目标PQ 垂径定理,在等腰PCQ △与Rt PCB △中,PC 形,问题溯源,选定较为直观的几何变量AC ,构建PQ 式:2PQ PB PCA ==∠==围,计算求解,又3AC ≥,所以21109AC <≤,因此PQ 的取值范围为. 【建议】直线与圆的三种位置关系:相切,相交,相离.解决直线与圆的问题时,一方面,要运用解析几何的一般方法,即代数化方法,把它转化为代数问题;另一方面,由于直线与圆和平面几何联系非常紧密,因此,准确地作出图形,挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.提高学生等价转化的能力——实现复杂问题简单化,陌生问题熟悉化.例如:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,“设”:设什么?坐标、方程、角、斜率、截距?“列”:列的前提是找等量关系,“解”:解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.【例15】如图所示,过点(1,0)的直线与抛物线2y x =交于A 、B 线OA 和OB 分别和圆22(2)4x y -+=交于D 、E 两点,若OABODES S λ∆∆=,则λ等于A .12B .13C .14D .15【解析】设11(,)A x y 、22(,)B x y ,由2,(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又11222,y x ⎪⎨=⎪⎩所以12120x x y y ⋅+⋅=,即OA OB ⊥.设直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21,y x y k x ⎧=⎪⎨=⎪⎩得21111(,)A k k ,同理22211(,)B k k .由221(2)4,x y y k x ⎧-+=⎪⎨=⎪⎩得1221144(,)11k D k k ++,同理2222244(,)11k E k k ++. 所以OA =OB =OD =,OE . x所以221122*********(1)(1)2(1)(1)12116161642OAB ODEk k OA OBS k k k k S OD OE ∆∆++++++====≥.【建议】1.解析几何研究的对象是几何图形,善用巧用几何图形的特征,把几何特征转化为代数表示,从而缩短思维链条,简化运算过程;2.在几何图形中,利用解三角形和三角形相似等知识,转化为边角之间的关系解决解析几何问题.其中,解三角形的画图用图,体现数形结合的思想;利用角或边的关系消角(边),体现了消元的思想;用正弦、余弦定理列方程组求三角函数值,体现了方程思想.(四)重视平面解析几何中代数方法的思维训练代数的思维特征,可以概括为程序化:即有点类似于解应用题的算术思维,遵循不断求出的计算,即便引进参数,也当成假设已知,参与运算;构造性的:即有点类似于解应用题的方程思维,注重寻找关系,“设而不求”,推演求解.复习教学中,要通过恰当的事例,训练学生的代数思维,这使得解析几何的代数方法不是一招一式的技巧,而是有着行动指南的思维模式.【例16】已知抛物线2:2(0)C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =. (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=.由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=. 由韦达定理可得1202x x x +=,1204x x y =,所以,AB===点P到直线AB的距离为d=,所以,()3220011422PABS AB d x y=⋅==-△,()()2222000000041441215621x y y y y y y-=-+-=---=-++,由已知可得53y-≤≤-,所以,当5y=-时,PAB△的面积取最大值321202⨯=.【评析】运算繁杂是解析几何最突出的特点.首先,解题中要指导学生克服只重视思路、轻视动手运算的缺点.运算能力差是学生普遍存在的问题,不仅在解析几何问题中要加强训练,在其它板块中也要加强训练,只有把提高学生的运算能力贯彻于教学的过程之中,才能收到较好的效果.其次,要培养学生运算的求简意识,充分发挥圆锥曲线的定义和利用平面几何知识化难为易、化繁为简的作用.【例17】过抛物线24y x=的焦点F的直线交抛物线于A、B两点,分别过A、B两点作准线的垂线,垂足分别为1A,1B两点,以线段1A1B为直径的圆C过点(2,3)-,则圆C的方程为A.22(1)(2)2x y++-=B.22(1)(1)5x y++-=C.22(1)(1)17x y+++=D.22(1)(2)26x y+++=分析一:问题归结——确定圆的方程的基本要素:过焦点的直线AB的方程及与抛物线的交点坐标()()1122,,,A x yB x y;策略突破——圆的两个关键量的代数形式:圆心和半径,确定参变量,引入关联变量——斜率的倒数t,可设直线AB:1x ty=+;;求解过程分析:联立方程组21,4,x tyy x=+⎧⎨=⎩消元得到2440y ty--=;由韦达定理得12124,4y y t y y+==-,则()1,2C t-,直径()()2221112161A B y y t=-=+;求半径()2212-3MC t=+,由22114A B MC=得方程()()()22161412-3t t+=+,则1=2t.回归圆:圆心(1,1)C-,半径的平方25MC=,答案选B.。
2024年高考数学二轮复习建议和计划
2024年高考数学二轮复习建议和计划一、制定复习计划在开始二轮复习之前,建议考生先为自己制定一个详细的复习计划。
根据自身情况,合理安排每天的学习时间和内容,做到有的放矢。
复习计划要注重全面性,兼顾各章节内容,不要遗漏重点知识点。
同时,要根据考试时间合理安排模拟考试和解题训练。
二、巩固基础知识数学二轮复习的重点之一是巩固基础知识。
考生应再次梳理高中数学的所有知识点,特别是数学概念、公式和定理等。
要确保对这些基础知识的理解和记忆准确无误。
在复习过程中,可以采用多种方法,如制作知识卡片、归纳总结等,加深对基础知识的掌握。
三、突破重点难点数学二轮复习中,考生还需要针对自己的薄弱环节进行重点突破。
对于一些难以理解的知识点或题型,要深入剖析,多做练习。
可以借助一些教辅书籍或参加辅导班,寻求老师和同学的帮助,共同解决问题。
只有突破了这些难点,才能在考试中取得更好的成绩。
四、提高解题技巧数学考试不仅考查基础知识的掌握程度,还要求考生具备一定的解题技巧。
在二轮复习中,考生应注重提高自己的解题能力。
通过大量练习,熟练掌握各种题型的解题方法和技巧。
同时,要注重解题速度和准确率的平衡,提高应试能力。
五、强化模拟考试模拟考试是检验考生复习效果的有效手段。
在数学二轮复习中,考生应参加一些模拟考试,如学校组织的模拟考试、辅导班的模拟考试等。
通过模拟考试,可以发现自己的不足之处,及时调整复习策略。
同时,也能熟悉考试流程和时间限制,提高应试心理素质。
六、注重错题解析错题是考生复习过程中的一大宝贵资源。
通过错题解析,可以深入剖析自己的知识盲点和思维误区。
在二轮复习中,建议考生建立错题本,将每次练习和模拟考试中的错题记录下来,并认真分析原因。
错题本不仅能帮助考生查漏补缺,还能为最后冲刺复习提供方向。
七、拓展数学思维高考数学不仅考查考生的知识储备和解题能力,还要求考生具备一定的数学思维能力。
在二轮复习中,考生应注重拓展自己的数学思维。
二轮复习策略
1、复习内容
经过我们全体高三数学备课组的认真讨论和研究,结 合我们学校本届高三学生的实际,确定我们学校2013届 高三数学二轮复习的形式和内容如下: (1)集合与常用逻辑用语、函数与导数。此专题函数 和导数、应用导数知识解决函数问题是重点,特别要注 重交汇问题的训练。 (2)三角函数、平面向量和解三角形、复数。此专题 中平面向量和三角函数的图像与性质,恒等变换是重点。 (3)数列、不等式、推理与证明、算法初步。此专题 中数列、不等式是重点,同时也要注意数列与其他知识 交汇问题的训练与整合。
3.克服高原现象。第二轮复习“大考”、 “小考”不断,次数多,难度大,成绩不理想; 形成了心理障碍;或量大题不难,学生忙于应 付,被动做题,兴趣下降,思维呆滞。 4.克服试卷讲评随意、对答案式的讲评。对 答案式的讲评是影响讲评课效益的大敌。评讲 的较好做法应该为,讲评前认真阅卷,讲评时 将归类、纠错、变式、辩论等方式相结合,抓 错误点、失分点、模糊点,剖析根源,使试卷 讲评真正起到实效,彻底矫正。
3)忌“眼高、手低忘基础”。 同学们总认为基础的东西,简单,没有必要进 行研究,又进入第二轮数学复习,再抓基础就是浪 费时间,甚至是放弃“理想中的大学”的认识。更 有一些同学对自己的考大学定位较高,总是高挂自 己。似乎有“泰山顶看小山”的感觉。俗话说得好, 最深刻的道理,往往存在于最简单的事实之中。同 学们可以仔细、认真地分析老师讲的课、做过的数 学题,无论是多难的题目,最后都归结到数学课本 上的知识点。重视双基,就是搞好第二轮数学复习 的关键,更是一种态度,“态度决定一切”。
“二轮看水平”概括了第二轮复习的思路,目 标和要求.具体地说,一是要看教师对《考试说 明》、《考题》理解是否深透,研究是否深入, 把握是否到位,明确高考数学考什么?考过什么? 要考什么?我们学过什么?对照考试大纲中的知 识点,问同学们都会了吗?特别是要求掌握的知 识点,同学们都学习透彻了吗?二是看教师讲解、 学生练习是否体现阶段性、层次性和渐进性,做 到减少重复,重点突出,让大部分学生学有新意, 学有收获,学有发展.
高三数学二轮复习计划及策略
清河中学2023届高三数学第二轮复习策略与计划(一)夯重基础,加深理解与应用基础永远是高考的重点。
对基础的复习,不是对课本内容的简单重复,而是对知识点的解析梳理,对概念、公式等的准确理解、牢固掌握,是学生理解能力的升华。
加强对常考知识点、重难点的融会、贯通,把握每个知识点背后的潜在的出题规律,要通过对基础题的系统训练和规范讲解,从不同的角度把握每一个知识点的内涵与外延以及与其它知识点的联系。
“一体四层四翼”是高考的评价体系,从国家层面设计上回答了“为什么考”“考什么”“怎么考”等关键性问题。
一体:高考评价体系,通过确立“立德树人,服务选拔,导向教学”这一核心立场,回答了“为什么考”的问题。
四层:通过明确“必考知识、关键能力、学科素养、核心价值”四层考查目标,回答了“考什么”的问题。
四翼:通过明确“基础性、综合性、应用性、创新性”四个考查要求,回答了“怎么考”的问题。
复习策略上以基础、中档题为主,抓住问题的本质,知识间的相互联系,总结出通性通法,注意最优(技巧性)解法的优越性。
(二)注重数学思想方法,培养数学核心素养高考数学试题十分重视对数学思想的考查,着重考查如下七种数学思想:函数与方程思想,数形结合思想,转化与化归思想,分类与整合思想,特殊与一般思想,有限与无限思想,或然与必然思想,数学思想蕴含在数学基础知识之中,是架设在数学知识与能力之间的一座桥梁。
数学的思想与方法,是宏观与微观的关系,在数学思想的指导下,灵活运用数学方法解决具体问题,没有思想的方法是肤浅的,没有方法的思想是空洞的,只有二者完美的结合才是数学教学的最高境界。
高中数学核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
对学生核心素养的培养,对于发展学生的理性思维、培养学生的学科能力,具有决定性的作用。
(三)重视数学文化传承,注重创新意识发展中科院院士、王梓坤教授曾指出:“数学文化具有比数学知识体系更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”,武汉大学齐民友教授站在影响人类文化的兴衰、民族生存发展的高度,在《数学与文化》一书中写到:“一种没有相当发达的数学文化是注定要衰落的,一个不掌握数学作为一种文化的民族也是注定要衰落的.” 阐明了数学文化的价值.由于数学文化是对数学知识、技能、能力和素质等概念的高度概括,其价值对于人类文明乃至民族的存亡有着重大的意义.近年来,每年都对中华优秀传统文化知识进行考查,对传统文化知识的考查是对高层次数学思维的考查;每年的数学试题中总有4~5道新颖题型,体现创新意识,以便选拔优秀的学生.每年创新题型肯定会出现,这样的题型包括新定义型、归纳猜想型、类比推理型、探索发现型、研究设计型、开放发散型问题等,但整体试卷难度不会大起大落,以平稳为主。
2025年高考数学二轮复习计划
2025年高考数学二轮复习计划随着2025年高考的日益临近,数学作为高考中的重点学科,其复习策略的制定与执行对学生来说至关重要。
二轮复习作为提升数学成绩的关键阶段,旨在深化理解、强化训练、掌握高效解题技巧,并通过模拟考试检验学习效果。
以下是一份2025年高考数学二轮复习计划:1. 明确复习目标目标设定:在二轮复习开始之前,学生应明确自己的数学水平,设定切实可行的复习目标。
这些目标应包括但不限于提高解题速度、加深对重点难点的理解、提升综合应用能力以及达到或超越预期的高考数学成绩。
分析考纲:仔细研读最新高考数学考试大纲,明确考试范围、题型分布及难度要求,确保复习方向正确无误。
2. 专题训练分模块复习:将高中数学内容划分为若干专题,如函数与导数、数列与不等式、立体几何、解析几何、概率统计等,逐一进行深度复习。
精选习题:针对每个专题,选择具有代表性的经典例题和历年高考真题进行练习,加深对知识点的理解和记忆。
3. 强化解题技巧总结方法:在解题过程中,注重总结各类题型的解题方法和技巧,形成自己的解题套路。
限时训练:进行限时解题训练,提高解题速度和准确性,适应高考紧张的考试环境。
4. 模拟考试全真模拟:定期参加全真模拟考试,严格按照高考时间和要求进行,检验自己的复习效果。
试卷分析:每次模拟考试后,认真分析试卷,找出错题原因,总结得失,为后续的复习提供参考。
5. 查漏补缺错题整理:将模拟考试和日常练习中的错题整理成册,定期进行回顾和重做,确保彻底掌握。
弱点突破:针对自己在数学上的薄弱环节,制定针对性的强化训练计划,力求在短时间内取得突破。
6. 策略指导时间管理:合理安排答题顺序,优先解决自己擅长且分值高的题目,确保在有限的时间内得到最多的分数。
心理调适:保持积极乐观的心态,遇到难题时保持冷静,不轻易放弃,相信自己的能力和努力。
应试技巧:学习并掌握一些实用的应试技巧,如快速审题、准确计算、规范书写等,以提高答题效率和得分率。
谈高三数学二轮复习策略
标 原 点 , B 为 抛 物 线 y 一2 A、 x上 的 点 , A 交 设 B 轴 于 P(,) ̄AO £O , B= 0三 角形 A B 的 面 积 为 S, , O 且 S aO ( 求 k 厂 ; 1 求 当 k取 得 最 =ktn。 I) 一 () (I) 小 值 时 , 佃 的最 大 值 。 t a 分 析 : 题 只 要 做 出第 一 问 , 二 问 便 不 攻 自 本 第 破, 因此 第 一 问 是 本 题 的 关 键 。从 我 们 的 学 生 解 答 情 况 来 看 , 大 多 数 学 生 都 是 设 出 A、 两 点 坐 标 , 绝 B 找 出 O O 的 斜 率 , 后 用 O O 的斜 率 表 示 出 A、 B 然 A、 B tn , 致 费 了很 大劲 也没 能 做 出 , 质 是 学 生 的 解 aO导 实 题 方 向 出现 偏 离 。本 题 给 出 S kaO 而 要 求 k 显 = tn , , 然 , 应 去 寻找 tn , 应 去 寻 找 面 积 S, 为 已 知 不 aO 而 因 是将 面 积 用 0的 三 角 函 数 表 示 , 马 上 联 想 S— 应 a s c因此 本 题 应 选 择 S— I A }・l B Ii : bi n O s O O n kaO  ̄ = iA l O s= O ・ B= ( 1 + tn- k O ・} BI O c o A O 2 y y ) 下面将思如泉涌 。再如南师附中某 次测试题 z, 第 2 2题 : 知 : 图 , A 的 已 如 圆 \ 半 径 为 2AB= 2P 为 圆 上 任 ——— — , , 点 , B 的 中 垂 线 z交 P P A ‘ 于 M , M 点 轨 道 方 程 。本题 大 多数 学 生 采 用 的 是 求 交 轨 法 , l 程 , 出 P 方 程 二 者联 应 解 出 M 坐 设 方 求 A 标 , 后 消 参 , 种 想 法 很 自然 , 实 施起 来很 困难 , 然 这 但 用此种方法的 同学基本 上半途 而废 。若学生能根据 条 件 认 真 审 题 会 发 现 M 是 l与 PA 交 点 , 么 NP 那 I —MB, 马上 想到 MB+MA—AP一2 定值 ) 点 M ( , 的轨 迹 是 椭 圆 , 时 问 题 迎 刃 而 解 , 生 之 所 以 没 能 此 学 想 到 这 种 解 法 的 原 因 就 是 它们 不 能正 确 预 测 解 题 方 向 、 择恰 当方 法 , 选 在解 题 上 体 现 了一 定 的 盲 目性 与 随意 性 。 因此 在 平 时 的解 题 教 学 中 , 师 要 身 体 力 教 行 , 意识 地 引 导 学 生 预 测 解 题 方 向 , 择 恰 当 方 有 造 法 , 对提 高 学 生 试 题 分 析 能 力 , 强 解 题 的 条 理 这 增 性、 逻辑 性 大有 裨 益 。 四 、 好试 卷 的 批 阅与 评 讲 做 学生 的每份试卷要认 真批 阅 , 必要时采取 面批 , 认真分析 , 每次 试 卷 各 题 的得 分 率 、 误 的类 型 及 错 错 误 的范 畴 是 属 于 知 识 上 错误 , 是 规 范 上 错误 , 予 还 给 归纳整理 。对于典型错误 展示给全 体学 生 , 生共 师 同 寻找 错 误 的 原 因 。通 过 辨 析 、 错 , 结 经 验 教 纠 总 训 , 强诊 断功能 。同时要求学 生将错 题记入错题 加 集、 定期 复习、 讲评要有针 对性 、 针对重 点题型典 型 错 误 不 但 要 重 点 讲 , 要 及 时 补 测 、 展 , 达 触类 还 拓 以 旁通 、 举一反 三 的效 果 , 体从 以下几 方 面进行 分 具 析、 结。 总 总之 , 二轮 复习要落到实处 , 讲究实效 , 练、 训 指 导要 倒 位 , 摆 花 架 子 , 不 力争 通 过 二 轮 复 习 全 面 提 高 学生数学解题能力 。 ( 者 单 位 : 苏省 新 沂 市第 三 中学 ) 作 江
高三数学第二轮复习策略
高三数学第二轮复习策略(一)1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
(备考指南与知识点总结)中学数学的重点知识包括:(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。
此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。
此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。
此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。
例如以函数为主线的知识链。
又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
数学思想数学在高考中涉及的数学思想有以下四种:(1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。
高考数学总体复习方案措施(7篇)
高考数学总体复习方案措施(7篇)高考数学总体复习方案措施篇1总体复习规划第二轮复习:给自己吃七个“定心丸”以下给二轮复习的同学的几点建议:1、看淡分数。
别人考得好,说明他的问题在这次考试中没有暴露出来,任何一次考试的名次都代表不了高考的名次。
高考前,自信是最终胜利的保障。
2、抓纲靠本。
抓纲,就是重视考纲、考试说明,考试说明是高考命题的依据,是同学们备考最重要的文件!靠本,指的是在最后复习阶段的时候,要注意抓基础,回归教材。
3、仔细演练真题。
在演练真题后,要仔细对照答案,了解参考答案是怎么做的,我是怎么做的,对每一个答题步骤及给分情况都要多动脑,多思考,这样可以有效地提高你的成绩。
在做过几套真题后,你就会感到,高考题其实就是那么回事儿,在高考时会有一种似曾相识的感觉。
4、明确复习重点。
很多同学都基本了解自己的强处和弱点,要在老师的指导下,制定出个性化的学习方案。
最大限度地做到不偏科,最后复习时间各科投入时间要有大致安排,各科占多大比重,这一点非常重要。
5、不要疲劳备考,平时要注意劳逸结合。
6、二轮复习要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和掌握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经掌握的知识转化为实际解题能力;三是要把握高考各题型的特点和规律,掌握解题方法,初步形成应试技巧。
7、三个原则:选题要“精”、做题要“准”、纠错要“实”。
精指的做题要有针对性,稳固自己的长处,弥补自己的短处,长期难以掌握、无法理解和得分的知识点,可以适当放一放。
准指的是做题过程要确保会的题准确无误,不要因为表述、粗心而丢分。
实指的是真正找出问题所在,真正能提高自己。
此外,高三家长这时也要注意给孩子营造一个良好的氛围,至少不要刻意去改变什么,让一切在平静中进行,让孩子能够不疾不徐充满自信地安排好自己的时间。
第三轮复习:要归纳题型回归课本经过二轮复习后,高三的同学基本上已经做了很多题了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学其次轮复习策略与重点?数学其次轮复习阶段是考生综合实力与应试技巧提高的阶段。
在这一阶段,老师将以“数学思想方法”、解题策略和应试技巧为主线。
老师的讲解,不再重视学问结构的先后次序。
首先,着重提高考生采纳“配方法、待定系数法、换元法、数形结合、分类探讨、数学模型”等方法解决数学问题的实力。
其次,考生要留意用一些解题的特殊方法,特殊技巧,以提高解题速度和应对策略。
要在这一阶段得到提高,应做到以下几点:
首先,要加强基础学问的回顾与内化。
由于第一轮复习时间比较长,范围也比较广,前面复习过的内容简洁遗忘,而临考前的强化训练,对遗忘的基本概念,基本思维方法又不能全部覆盖,加上一模的试题起点不会很高,这就要求同学们课后要抽出时间多看课本,回顾基本概念、性质、法则、公式、公理、定理;回顾基本的数学方法与数学思想;回顾疑点,查漏补缺;回顾老师教学时或自己学习时总结出来的正确结论,联想结论的生成过程与用法;回顾已往做错的题目的正确解法以及典型题目,以达到内化基础学问和基本联系的目的。
其次,要紧跟老师的复习思路与步骤。
课堂上要仔细听讲,力图当堂课内容当堂课消化;仔细完成老师布置的习题,同时要重视课本中的典型习题。
做练习时,遇到不会的或拿不准的题目要打上记号。
不管对错都要留下自己的思路,等老师讲评时心中就有数了,至少能够知道当时解题时的思维偏差在何处,对间或做对的题目也不会轻易放过,还能够检测出在哪些地方复习不到位,
哪些地方有疏忽或漏洞。
另外,在做题过程中,还要留意几点:1、不片面追求解题技巧,假如基础不好,则不要过多做难题,而要把常用的解法驾驭娴熟。
2、提高精确率,优化解题方法,提高解题质量,这关系考试的成败。
第一轮复习重在基础,指导思想是全面、系统、敏捷,在抓好单元学问、夯实“三基”的基础上,留意学问的完整性,系统性,初步建立明晰的学问网络。
其次轮复习则是在第一轮的基础上,对高考学问进行巩固和强化,数学实力及学习成果大幅度提高的阶段。
指导思想是巩固、完善、综合、提高。
巩固,即巩固第一轮学习成果,强化学问系统的记忆;完善是通过专题复习,查漏补缺,进一步完善强化学问体系;综合,是削减单一学问的训练,增加学问的连接点,增加题目的综合性和敏捷性;提高是培育、提高思维实力,概括实力以及分析问题解决问题的实力。
针对其次轮复习的特点,同学们需留意以下几个方面:
1.加强复习的安排性。
由于其次轮复习的前后跨越性比较大,这就要求同学们要事先回顾基础学问,回顾第一轮中的相关内容,抓住复习的主动权,以适应大跨度带来的不适应。
2.提高听课的效率。
深刻体会老师对问题的分析过程,亲密留意老师解决问题时的“突破口,切入点”,刚好修正自己的不到之处,在订正中强化提高。
3.加强基础学问的敏捷运用。
要做到这一点,至关重要的是加强
理论的内化,通过其次轮的复习,进一步有意识地强化对书本上定义、定理、公式、法则的理解,对这些东西理解水平的凹凸确定了你能否敏捷运用基础学问。
4.加强解题速度和正确率的强化训练。
定时定量做一些客观题和中档题,训练速度和正确率,适量做一些综合题,提高解题思维实力。
并刚好总结、记忆,内化提高。
5.强化技能的形成。
技能包括:计算、推理、画图、语言表达,这些必需做得特别规范,特别娴熟,做的时候要再现数学思想,也就是要明白每一步为什么要这么做。
6.加强阅读分析实力的训练。
平常做题时要养成一个良好的读题、审题习惯,强化用数学思想和方法在解题中的指导性。
7.防止出现的几个问题:A、防止简洁重复复习,不求深度思索。
B、防止片面追求解题技巧。
C、防止机械地就题做题,不能触类旁通,举一反三。
D、防止眼高手低,简洁的不想做或做得不规范,难的又做不出来或胆怯做。