二极管三极管的基础知识

合集下载

二极管和三极管的识别方法

二极管和三极管的识别方法

二极管和三极管的识别方法二极管和三极管是电子元件中常见的两种器件,它们在电子电路中起着重要的作用。

本文将介绍二极管和三极管的识别方法。

一、二极管的识别方法1. 外观识别:二极管通常有两个引脚,其中一个引脚长一些,另一个引脚短一些。

长引脚是正极,短引脚是负极。

另外,二极管的外壳通常是黑色的,上面有一个白色的标记,标明正极的位置。

2. 正向电压识别:使用万用表的二极管测试功能,将测试笔的红色测试引脚连接到二极管的长引脚上,将黑色测试引脚连接到短引脚上。

如果二极管正常工作,万用表将显示一个正向电压值,通常为0.6V至0.7V之间。

3. 反向电压识别:将测试笔的红色测试引脚连接到短引脚上,黑色测试引脚连接到长引脚上。

如果二极管正常工作,万用表将显示一个非常高的电阻值,表示二极管处于截止状态,没有电流通过。

二、三极管的识别方法1. 外观识别:三极管通常有三个引脚,分别是基极(B)、发射极(E)和集电极(C)。

一般情况下,三极管的引脚是按照顺序排列的,可以通过引脚的位置来确定。

2. 极性识别:通过查找三极管的规格书或者数据手册,可以确定各个引脚的功能和极性。

一般来说,基极是最细的引脚,发射极是中间的引脚,集电极是最粗的引脚。

此外,一些三极管的外壳上也会标注引脚的极性。

3. 参数识别:通过查找三极管的规格书或者数据手册,可以了解到三极管的参数信息,如最大电流、最大功率、最大电压等。

根据这些参数,可以判断三极管是否适合当前电路的需求。

二极管和三极管的识别方法主要包括外观识别、正向电压识别、反向电压识别、极性识别和参数识别等。

通过这些方法,我们可以准确识别二极管和三极管,确保在电路设计和维修中正确使用这些元件。

课件:二极管、三极管、晶闸管知识讲解

课件:二极管、三极管、晶闸管知识讲解

vi

D

0
t
vi
RL
vo
6
vo


0
t
(a)
(b)
稳压
稳压二极管的特点就是反向通电尚 未击穿前,其两端的电压基本保持不变。 这样,当把稳压管接入电路以后,若由 于电源电压发生波动,或其它原因造成
6
电路中各点电压变动时,负载两端的电 压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字 表示
管加反向电压时,不管控制极加
怎样的电压,它都不会导通,而
处于截止状态,这种状态称为晶
闸管的反向阻断。
主回路加反向电压
c 触发导通 d 反向阻断
可控硅只有导通和关断两种工作状态,它具有 开关特性,这种特性需要一定的条件才能转化, 此条件见下表
状态
条件
说明
从关断到导通
1、阳极电位高于是阴极电位
2、控制极有足够的正向电压和电流
图a
开关断开
b 正向阻断
(2)触发导通 在图(c)所示
电路中,晶闸管加正向电压,在
控制极上加正向触发电压,此时
指示灯亮,表明晶闸管导通,这
种状态称为晶闸管的触发导通。
(3)反向阻断 在图(d)所示
电路中,晶闸管加反向电压,即
a极接电源负极,k极接电源正极,
此时不论开关s闭合与否,指示
灯始终不亮。这说明当单向晶闸
单向可控硅的结构
不管可控硅的外形如何,它们的管芯都是由P型 硅和N型硅组成的四层P1N1P2N2结构。它有三 个PN结(J1、J2、J3),从J1结构的P1层引 出阳极A,从N2层引出阴级K,从P2层引出控制 极G,所以它是一种四6 层三端的半导体器件。

二极管和三极管--原理

二极管和三极管--原理

二极管图三极管工作(gōngzuò)原理三极管是电流放大器件,有三个极,分别(fēnbié)叫做集电极C,基极B,发射极E。

分成NPN和PNP两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流(diànliú)放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够(nénggòu)提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化(biànhuà)被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib 的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

二极管与三极管的命名以及辨别

二极管与三极管的命名以及辨别
通过测量三极管的放大倍数也可以判断其类型和性能。
05 常见二极管与三极管型号 及参数
常见二极管型号及参数
型号
1N4007
参数
正向电流1A,反向电压1000V, 封装形式为DO-41
用途
主要用于开关电源、整流电路等
常见二极管型号及参数
特点
低正向压降,高可靠性
型号
1N5408
参数
正向电流3A,反向电压400V,封装形式为DO-201AD
显示
在显示器中,二极管用于构成像素点, 如LED显示屏等。
三极管的应用场景
信号放大
三极管具有电流放大作用,可用于信号 放大,如音频放大器、无线通信系统等。
振荡器
三极管可以构成振荡电路,产生高频 振荡信号,如石英晶体振荡器等。
开关控制
利用三极管的开关特性,可以实现电 路的通断控制,如继电器、电机控制 器等。
自动控制
在自动控制系统中,三极管用于信号 处理和执行机构的控制,如温度控制 器、流量计等。
THANKS FOR WATCHING
感谢您的观看
可以使用万用表的二极管档位进行检测,对于三极管,则可以
使用万用表的电阻档位进行检测。根据测量结果可以判断元件
的类型。
02 二极管的命名规则
字母表示材料
A代表锗材料 B代表硅材料
数字表示序号
• 序号通常为2位数字,如11、22等,用于区分同一材料不 同型号的二极管。
字母表示极性
C代表阴极
D代表阳极
常见三极管型号及参数
用途
主要用于高频放大、振荡电路等
特点
高截止频率、低噪声
06 二极管与三极管的应用场 景
二极管的应用场景

二极管、三极管与场效应管

二极管、三极管与场效应管

电子元器件知识:二极管、三极管与场效应管。

一、半导体二极管2、半导体二极管的分类分类:a 按材质分:硅二极管和锗二极管;b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。

3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。

4、半导体二极管的导通电压是:a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。

6、半导体二极管可分为整流、检波、发光、光电、变容等作用。

7、半导体二极管的识别方法:a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。

变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。

在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。

二极管,三级管基础知识培训教材

二极管,三级管基础知识培训教材

PN结及其单向导电性
• PN结的形成 • PN结的单向导电性
PN结的形成
• 在一块晶凡两边分别形成P型和N型半导 体。 图中 代表得到一个电子的三价杂质(例如硼) 离子,带负电; 代表失去一个电子的五价杂 质(例如磷)离入带正电。由于P区有大量空穴 (浓度大),而N区的空穴极少(浓度小),因此空 穴要从浓度大的P区向浓度小的N区扩散。 P
在一定范围内,外电场愈强,正向电 流(由P区流向N区的电流)愈大,这时PN 结呈现的电阻很低。正向电流包括空穴电 流和电子电流两部分。空穴和电子虽然带 有不同极性的电荷,但由于它们的运动方 向相反,所以电流方向一致。外电源不断 地向半导体提供电荷,使电流得以维持。
PN结的单向导电性
• 若给PN结加反向电压,即外电源的正端接N区, 负端接P区,则外电场与内电场方向一致,也 破坏了扩散与漂移运动的平衡。 • 外电场驱使空间电荷区两侧的空穴和自由电子 移走,使得空间电荷增加,空间电荷区变宽, 内电场增强,使多数载流子的扩散运动难以进 行。但另一方面,内电场的增强也加强了少数 裁流于的漂移运动,在外电场的作用下,N区 中的空穴越过PN结进入P区, P区中的自由电 子越过PN结进入N区,在电路中形成了反向电 流(由N区访向P区的电流)。
半导体二极管
• • • • • 二极管的基本结构和类型 二极管的伏安特性 二极管的主要参数 二极管的应用 常用二极管类型
二极管的基本结构和类型
• 将PN结加上相应的电极引线和管壳,就成为半 导体二极管。 从P区引出的电极称为阳极(正 极),从N区引出的电极称为阴极(负极)。 • 按结构分二极管有点接触型和面接触型两类。
D
(c)符号
在使用二极管时,必须注意极性不能接错,否则 电路非但不能正常工作,还有毁坏管子和其他元件的 可能。

二极管三极管的基础知识

二极管三极管的基础知识

二极管三极管的基础知识
二极管和三极管是电子学中两种常见的元件。

它们都是半导体器件,
具有不同的特性和应用。

二极管是一种只允许电流在一个方向上通过的器件。

它由两个不同掺
杂的半导体材料(P型和N型)组成,形成PN结。

当正向偏置时,
电子从N区域流入P区域,并且空穴从P区域流入N区域,形成电流。

当反向偏置时,PN结会形成一个高阻值区域,几乎没有电流通过。

这种特性使得二极管可以用于整流、稳压和开关等应用。

三极管也被称为双极晶体管(BJT),是由三个掺杂不同的半导体层组成的器件。

它有两个PN结,其中一个被称为发射结,另一个被称为
集电结。

发射结连接到P型半导体层,集电结连接到N型半导体层。

当发射端加正向偏置时,少量的电子注入基区,并且在集电端产生大
量载流子(电子或空穴)输出信号放大器;当发射端加反向偏置时,
则会将输入信号阻断。

三极管有两种类型:NPN和PNP。

NPN型三极管中,发射区域是N
型半导体,而基区域是P型半导体;而PNP型三极管中,则相反。

这种特性使得三极管可以用于放大、开关和振荡器等应用。

总的来说,二极管和三极管都是非常重要的半导体器件,具有广泛的应用。

了解它们的基础知识对于电子学学习者来说是非常重要的。

二极管和三极管常识介绍

二极管和三极管常识介绍

二极管和三极管常识介绍一、二极管1.二极管的结构和工作原理二极管由两个半导体材料,P型半导体和N型半导体组成,通过半导体材料的p-n结而形成。

P型材料中的空穴与N型材料中的电子在p-n结附近发生复合,形成空穴区和电子区。

当给二极管正向偏压时,使得电子从N区向P区移动,空穴从P区向N区移动,形成电流通路,此时二极管处于导通状态;当给二极管反向偏压时,使N区成为负极,P区成为正极,p-n结两侧形成空间电荷区,电流不能流动,此时二极管处于绝缘状态。

2.二极管的特性(1)单向导电性:二极管只能在正向偏置时导电,不能在反向偏置时导电。

(2)电流与电压关系:在正向偏置时,二极管的电流与电压之间呈指数关系,即电流随着电压的增大而迅速增大。

(3)截止电压与饱和电流:二极管的正向截止电压是指在正向偏置电压小于截止电压时,二极管停止导通。

而饱和电流是指二极管在正向偏置下,通过的最大电流。

(4)温度特性:二极管的导电性能与温度有关,通常情况下,温度升高,二极管导电情况变差。

3.二极管的应用(1)整流器:利用二极管的单向导电性,可以将交流电转换为直流电。

(2)保护电路:在电子电路中,二极管常用于过电压保护电路中,当电压超过一定范围时,二极管会导通,将多余的电压分流至地。

(3)发光二极管(LED):利用二极管的发光特性,可以将电能转化为光能,常用于指示灯、显示器等设备中。

二、三极管1.三极管的结构和工作原理三极管由三个半导体材料组成,分别为P型半导体、N型半导体和N 型半导体或P型半导体。

三极管的三个区域分别称为基极(B)、发射极(E)和集电极(C)。

当在基极和发射极之间加一个较小的正向电压时,形成一个PN结,即为二极管的结构;而当再在集电极和发射极之间加一个正向电压时,就会形成两个PN结,即为三极管的结构。

这种结构使得三极管能够处于放大器状态。

2.三极管的工作状态三极管有四种工作状态,分别为截止、放大、饱和和反转。

(1)截止状态:当基极电压为0V或很低时,三极管处于截止状态,此时发射极和集电极之间阻断。

05-基本分立元器件(5)二极管三极管

05-基本分立元器件(5)二极管三极管

4.3.7、电感的作用: 隔交通直、储能、滤波、振荡、延迟等。 特点:流过电感器的电流不能突变。
作业1:请正确识别一下各个电容的容量和电感的电感量。
2024/7/15
23
作业2:请正确识别一下各个电感的电感量。
2024/7/15
24
谢 谢!
2024/7/15
26
基本分立元器件
信息科学与电气工程学院
学习内容
一、认识组成电路的常用分立元器件 二、了解二极管三极管的基础知识 三、掌握二极管三极管的特性和应用
四、二极管
4.4.1、什么是二极管:
二极管是由一个PN结,引出两个电极,封上外 壳而做成的半导体器件。
4.4.2、认识二极管:
整流二极管
稳压二极管
发光二极管
2024/7/15
18
(3) 色标法
在电感表面涂上不同的色环来代表电感量 (颜色与电阻相同),通常用三个或四个色环 表示。 识别色环时,紧靠电感体一端的色环为第一色 环,露出电感体本色较多的另一端为末环。 注意:用这种方法读出的色环电感量,默认单 位为微亨( μH )。
2024/7/15
19
(4) 数码表示法

SMT二极管
4.4.3、二极管在电路中的符号:
4.4.4、二极管的分类:
按材料分为两种:一是硅二极管,二是锗二 极管。硅管与锗管的区别:导通电压不一样,硅 管的导通电压为0.7V,锗管的导通电压为0.3V (正向偏置电压)。
按用途分类有整流二极管、检波二极管、发 光二极管、稳压二极管、光敏(光电)二极管、 开关二极管和快恢复二极管。
4.4.5、二极管的特性: 单向导电特性 正向导通:如果给二极管正极的电压高于负极 电压(正向偏置电压),只要正极电压达到一 定的值,二极管导通,导通后二极管相当于一 个导体,二极管的两引脚之间的电阻很小,相 当于接通。电流流动方向是从正极流向负极, 电流不能从负极流向正极,否则二极管已损坏。

电阻电容二极管和三极管基本常识

电阻电容二极管和三极管基本常识

电子元件基础知识电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。

欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。

电阻的主要职能就是阻碍电流流过。

事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。

师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。

表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。

1、电阻器的种类电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。

在电子产品中,以固定电阻应用最多。

而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。

型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。

在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。

而红颜色的电阻,是RJ型的。

一般老式电子产品中,以绿色的电阻居多。

为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。

电阻器当然也有功率之分。

常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。

当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。

再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?)2、电阻器的标识这些直接标注的电阻,在新买来的时候,很容易识别规格。

可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。

所以在弯脚的时候,要特别注意。

在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。

二极管及三极管的介绍

二极管及三极管的介绍

二极管(diode)和三极管(triode)二极管的应用非常广泛。

几乎所有的电路中,都要用到二极管。

①二极管的特点、原理和表示。

晶体二极管是一个由P型半导体和N型半导体形成的P-N结,在界面处两侧形成空间电荷层,有自建电场。

二极管最重要的特性就是单向导电性。

在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。

当没有外加电压时,由于P-N结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等,这样就处于电平衡状态。

当施加正向电压时,外界电场和自建电场的互相抵消使载流子的扩散电流增加引形成正向电流。

当施加反向电压时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流。

当外加的反向电压增高到一定程度,P-N结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,这就是二极管的击穿现象。

二极管在电路中常用“D”加数字表示,如: D8表示编号为8的二极管。

②二极管的分类。

按照所用的半导体材料,可分为硅二极管(Si管)和锗二极管(Ge管)。

按照用途,可分为稳压二极管、开关二极管、检波二极管、整流二极管等。

按照管芯结构,可分为点接触型二极管、面接触型二极管及平面型二极管。

三极管内部含有2个P-N结,并且具有放大能力的的器件。

①三极管的原理、分类和表示。

三极管顾名思义具有三个电极。

前面我们提到的二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。

由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

这两种类型的三极管从工作特性上可互相弥补。

比如OTL电路中的对管就是由PNP型和NPN型配对使用。

三极管在电路中常用“Q”加数字表示,如:Q10表示编号为10的三极管。

二极管三极管的基础知识

二极管三极管的基础知识

二极管三极管的基础知识二极管和三极管是电子领域中常见的两种元件,它们在电路中起着重要的作用。

本文将从二极管和三极管的基础知识入手,介绍它们的结构、工作原理以及在电子设备中的应用。

一、二极管的基础知识二极管是一种具有两个电极的半导体器件,通常由P型半导体和N 型半导体组成。

它的主要作用是允许电流在一个方向上流动,而阻止电流在另一个方向上流动。

二极管的一个电极称为阳极(Anode),另一个电极称为阴极(Cathode)。

二极管的工作原理是基于PN结的特性。

PN结是指P型半导体和N 型半导体的结合处。

当P型半导体的电子与N型半导体的空穴相遇时,会发生电子与空穴的复合,形成一个带电的区域,这个区域被称为耗尽区。

在耗尽区的两端会形成一个电势差,这个电势差被称为势垒。

当二极管正向偏置时,即阳极连接正极,阴极连接负极,势垒将变得较小,电流可以流过二极管。

而当二极管反向偏置时,即阳极连接负极,阴极连接正极,势垒将变得较大,电流无法流过二极管。

二极管有很多种不同的类型,例如常用的正向工作电压为0.7伏的硅二极管和正向工作电压为0.3伏的锗二极管等。

它们在电子设备中广泛应用,如整流器、稳压器、电压调节器等。

二、三极管的基础知识三极管是一种具有三个电极的半导体器件,通常由P型半导体、N 型半导体和另一种掺杂物较少的P型半导体组成。

它的主要作用是放大电流和控制电流。

三极管的三个电极分别为基极(Base)、发射极(Emitter)和集电极(Collector)。

基极用于控制电流,发射极用于发射电子,集电极用于收集电子。

三极管有两种类型,NPN型和PNP型,它们的构造和工作原理基本相同,只是P型半导体和N型半导体的位置相反。

三极管的工作原理是基于PNP结和NPN结的特性。

当三极管的基极电流较小时,三极管处于截止区,电流无法通过三极管。

当基极电流增大时,会使三极管进入饱和区,电流可以从发射极流向集电极。

三极管的放大作用是通过控制基极电流来实现的,当基极电流变化时,发射极到集电极的电流也会相应变化。

半导体二极管三极管基本知识(补充)

半导体二极管三极管基本知识(补充)
(1) 最大整流电流I F 管子长期运行允许通过的最大正向平均电流。
(2) 反向击穿电压VBR
反向电流急剧增加时所加的反向电压。
(参数表中一般规定反向电流所达到的值)
最高反向工作电压一般取击穿电压的一半。 (3) 反向电流I R
管子未发生电击穿时的反向电流。
(参数表中一般规定所应加的反向电压)
23
4.二极管基本电路及其分析方法
2.2 半导体二极管和三极管的开关特性 2.2.1 半导体基本知识 1. 半导体材料
导体:铜,银,铝,铁…… 绝缘体:云母,陶瓷,塑料,橡胶…… 半导体:硅,锗…… 半导体得以广泛应用,是因为其导电性能会随 外界条件的变化而产生很大的变化。
使导电性能产生很大变化的外界条件主要有: 温度:温度上升,电阻率下降。 光照:光照使电阻率降低。 掺杂:掺入少量的杂质,会使电阻率大大降低。
5
4. 杂质半导体 (1) P型半导体
本征激发产生 电子-空穴对。
+4
在本征半导体中掺入微量 3价元素(如硼)形成 。
+4 +3 +4 +4
三价杂质称为 受主杂质。
杂质原子获得一个 电子成为负离子。 硅原子的共价键上 缺少一个电子形成 空穴。
空 穴 -----多数载流子(多子) 自由电子---少数载流子(少子)
一个三价杂质原子产生 一个空穴-负离子对。
6
(2) N型半导体
在本征半导体中掺入少量的 5价元素(如磷)形成。 杂质原子多余的一个价 电子容易挣脱原子核的 束缚变成自由电子。 杂质原子失去一个 电子成为正离子。 一个5价杂质原子产生 一个电子-正离子对。
本征激发:自 由电子-空穴 对
自由电子-----多数载流子 5价杂质-----施主杂质 空 穴 -----少数载流子

二极管三极管的基础知识

二极管三极管的基础知识

二极管三极管的基础知识1. 引言二极管和三极管是电子学中最基本和常用的两种半导体器件。

它们在电路中起到了重要的作用,如信号调理、开关和放大等。

本文将介绍二极管和三极管的基本原理、结构和特性等重要知识。

2. 二极管二极管是一种由P型和N型半导体材料制成的器件。

它具有一个PN结,通过这个结可以实现电流的单向导通。

常见的二极管有普通二极管、肖特基二极管和光电二极管等。

2.1 基本原理二极管的导电性来自于PN结。

当PN结被正向偏置时,P型区域的空穴和N型区域的电子互相扩散,导致少数载流子的重组,形成一个导电通道。

这个导电通道使得电流可以流过二极管,称为正向工作状态。

当PN结被反向偏置时,少数载流子几乎无法通过结,电流基本上是断开的,称为反向工作状态。

2.2 特性曲线二极管的特性曲线是指其正向特性曲线和反向特性曲线。

正向特性曲线显示了二极管在不同正向偏置电压下的电流响应关系。

反向特性曲线显示了二极管在不同反向偏置电压下的电流响应关系。

这些特性曲线对于理解二极管的工作状态和限制条件非常重要。

2.3 应用二极管在电子电路中有广泛的应用。

它可以用作整流器转换交流电为直流电、用作信号调理器修正和稳定输入信号、用作开关控制电流流动方向等。

3. 三极管三极管是一种由三个掺杂不同的半导体材料制成的器件。

它由基极(B)、发射极(E)和集电极(C)组成,具有放大作用。

根据掺杂型号不同,三极管可以分为NPN和PNP两种类型。

3.1 基本原理三极管的放大作用来自于PNP或NPN结之间形成的电流控制区域。

在NPN三极管中,当基极正向偏置时,将使得发射极-基极间的电流增加,进而通过集电极-发射极间的电流放大。

这种放大作用使三极管成为一种强大的电流放大器。

3.2 特性曲线三极管的特性曲线是指其输出特性曲线、输入特性曲线和直流负载线等。

输出特性曲线显示了三极管的集电极电流与集电极-发射极电压之间的关系。

输入特性曲线显示了三极管的基极电流与基极-发射极电压之间的关系。

二极管三极管

二极管三极管

二极管三极管二极管三极管作为电子学中最基础的元件,它们经过几十年的发展,已经发挥着非常重要的作用,几乎在所有的电子设备、电子计算机和其他电子设备中都可以看到它们的身影。

那么,这两种元件究竟有什么不同呢?首先,在外形上,二极管一般由两个端子组成,而三极管则由三个端子组成。

其次,从功能上来看,二极管能够实现电路的开关及衰减功能,而三极管能够实现电路的放大及稳压功能。

从结构上来看,二极管一般由三层结构组成:P型半导体区域、N型半导体区域和缓冲区域;三极管一般由两个受控元件和一个缓冲元件组成,其中受控元件包括P型和N型半导体。

从原理上来讲,二极管能够控制电路中的电流,并能够实现电路的开关功能和衰减功能;三极管的则可以放大电路的输入电压,并且可以实现电路的放大功能和稳压功能。

二极管和三极管的另一个重要区别在于工作模式:二极管一般工作在半导体状态下,它只能实现电路的半导体衰减功能;三极管一般工作在稳压状态下,它可以实现电路的放大和稳压功能。

由以上对二极管和三极管的分析可以看出,它们之间有着非常大的不同。

它们在电子电路中的应用也有着非常大的差别:二极管用于控制电路的开关和衰减,而三极管则用于放大和稳压电路。

二极管和三极管在电子学中的重要性不言而喻。

它们可以控制电路的开关和调节功能、放大电路信号、稳压电路,为电子学发展做出了重要贡献。

近年来,随着半导体技术的发展,二极管三极管也发生了非常大的变化,尤其是封装技术的发展,使得它们可以更轻便、更小、更智能地使用。

由此可见,二极管三极管是电子学研究领域不可或缺的基础元件,它们的发展为电子设备的发展提供了基础。

未来,二极管三极管还有很大的发展空间,必将为电子学的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二极管三极管的基础知识
1、二极管是一种双极型半导体器件,是由一个n型半导体和一个p型半导体夹层而成,并且由两个电极连接起来,形成了一个半导体导通元件。

二极管的特点是在正反向作用下具有很大的电阻性。

2、二极管有自发型和电控型。

自发型二极管可以单独工作,而电控型二极管依靠外加电压进行工作,又分半导体二极管、隔离二极管和中继二极管。

3、二极管的基本功能:
(1)可以作为电路的一个开关或分流器;
(2)可以对输入电压的放大作用;
(3)可以实现电子电路与电器的互联;
(4)可以实现信号的保护。

二、三极管
1、三极管是由三个电极(收集极、基极和发射极)连接而成的一种半导体器件,它们三个电极间的关系可以控制电子的流动,从而改变电路的电流。

三极管的特点是在正反向作用下具有很大的电阻性,但其中收发极处的电阻值要小于中间基极处的电阻值。

2、三极管通常以晶体管的形式出现,并可分为双极型晶体管和三极型晶体管两种。

3、三极管的基本功能:
(1)可以实现电子电路的功率放大;
(2)可以对输入信号进行阻塞和增益;
(3)可以实现电子电路的解耦;
(4)可以实现电子电路的节流;
(5)可以实现电子电路的低成本放大和控制。

相关文档
最新文档