弦振动方程与
复变函数第7章

(7.2) (7.3) (7.4)
分离变量法 求解步骤:
1、分离变量: 2、求解特征值问题 3、求解定解问题
1、分离变量
i)分离变量形式解:设形式解为u(x,t)=T(t)X(x).
ii) 分离方程:将形式解代入泛定方程(7.2)得 TX = a2TX T X (为一常数) 即 2 a T X
r1 r2 r1 r2 r r i
二阶常系数微分方程的通解:
y C1e r1x C2e r2 x rx rx y C1e C2 xe y e x (C cos x C sin x) 1 2
X X 0 2、求解特征值问题 X (0) X (l ) 0
3、求解定解问题
由叠加原理得,方程(7.2)满足边界条件(7.3)的解为
n at n at n x u ( x, t ) (Cn cos Dn sin )sin l l l n 1
n x ( x) u ( x, 0) Cn sin l n 1 ( x) u ( x, 0) D n a sin n x t n l l n 1
X X 0 故得特征值问题 X (0) X (l ) 0
注:① 的值为该常微分方程边值问题的特征值(或本征值或固有值) ② 相应的非平凡解称为特征函数(或本证函数或固有函数) ③ 求特征值和特征函数的问题称为特征值问题(或本证函数问题或固有函数问题)
补充:
特征值问题是二阶常系数微分方程的求解问题, 所以考虑二阶常微分方程:y"+py'+qy=0的通解. 特征方程:r2+pr+q=0 的根分三种情况:
弦振动的实验研究

弦振动的实验研究弦振动的实验研究弦是指⼀段⼜细⼜柔软的弹性长线,⽐如⼆胡、吉它等乐器上所⽤的弦。
⽤薄⽚拨动或者⽤⼸在张紧的弦上拉动就可以使整个弦的振动,再通过⾳箱的共鸣,就会发出悦⽿的声⾳。
对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在⼯程技术上也有着极其重要的意义。
⽐如悬于两根⾼压电杆间的电⼒线、⼤跨度的桥梁等,在⼀定程度上也是⼀根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。
对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从⽽对其加以控制。
同时,弦的振动也提供了⼀个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。
欧拉最早提出了弦振动的⼆阶⽅程,⽽后达朗贝尔等⼈通过对弦振动的研究开创了偏微分⽅程论。
本实验意在通过对⼀段两端固定弦振动的研究,了解弦振动的特点和规律。
预备问题1.复习DF4320⽰波器的使⽤。
2.什么是驻波?它是如何形成的?3.什么是弦振动的模式?共振频率与哪些因素有关?4.张⼒对波速有何影响?试⽐较以基频和第⼀谐频共振时弦中的波速。
⼀、实验⽬的:1、了解驻波形成的条件,观察弦振动时形成的驻波;2、学会测量弦线上横波传播速度的⽅法:3、⽤作图法验证弦振动频率与弦长、频率与张⼒的关系。
⼆、实验原理⼀根两端固定并张紧的弦,静⽌时处于⽔平平衡位置,当在弦的垂直⽅向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作⽤下,弦将在平衡位置附近振动。
令弦线长度⽅向为x 轴,弦被拉动的⽅向(与x 轴垂直的⽅向)为y 轴,如图1所⽰。
若设弦的长度为L ,线密度为ρ,弦上的张⼒为T ,对⼀⼩段弦线微元dl 进⾏受⼒分析,运⽤⽜顿第⼆定律定律,可得在y ⽅向的运动微分⽅程()2222tydx dx x y T ??=??ρ(1)若令ρ/2T v =,上式可写为222221tyv x y ??=?? (2)y 图1(2)式反映了弦的位移y 与位置x 、时间t 的关系,其中)/(ρT v =代表了在弦线上横波传播的波速。
fourier变换求解弦振动方程定解问题

一、引言在物理学和工程学中,弦振动方程是一个重要且常见的定解问题,它描述了弹性绳或弦体在一定条件下的振动现象。
而Fourier变换则是一种有效的数学工具,能够帮助我们求解这类定解问题。
本文将对Fourier变换在求解弦振动方程定解问题中的应用进行深入探讨。
二、弦振动方程的描述弦振动方程是描述弦体在振动过程中的运动规律的数学模型。
假设一根质量可忽略不计的均匀弹性绳,长度为L,固定在两端,并且在t=0时刻有初始位移和初速度,那么弦振动方程可以描述为:∂^2y/∂t^2 = c^2 * (∂^2y/∂x^2)其中,y(x,t)是弦的位移函数,c是振动速度。
三、Fourier变换在弦振动方程中的应用1. Fourier级数展开为了求解弦振动方程的定解问题,我们首先可以利用Fourier级数展开的方法,将位移函数y(x,t)进行分解。
假设y(x,t)可写为一个无穷级数的形式:y(x,t) = Σ(A_n * sin(nπx/L) * cos(ω_nt + φ_n))其中,A_n、φ_n是待定系数,ω_n是频率参数。
将y(x,t)代入弦振动方程,经过计算和比较系数,可以得到A_n和φ_n的表达式。
这样,我们就成功地利用Fourier级数展开解决了弦振动方程的定解问题。
2. Fourier变换除了Fourier级数展开,Fourier变换也是另一种有效的方法,能够帮助我们求解弦振动方程。
利用Fourier变换的性质和定理,我们可以将原始的弦振动方程转化为一个更加简单的形式,例如常微分方程或偏微分方程。
进而,我们可以更方便地对方程进行求解。
通过逆Fourier变换,我们最终可以得到弦振动问题的解析解,为实际问题的分析和应用提供了重要的理论支持。
四、个人观点和理解在我看来,Fourier变换在求解弦振动方程定解问题中具有非常重要的作用。
它能够将原始的复杂问题转化为更简单的形式,从而减少了求解难度。
Fourier变换也能将原始问题的解析解表达为一种更加优美和清晰的数学形式,有利于我们深入理解弦振动问题的本质。
弦振动的研究

弦振动的研究
弦振动是物理学中的一个重要研究课题,应用广泛,具有重要的理论和实际意义。
简言之,弦振动是指弦的运动,包括弦的振动频率、振动模式、振幅等。
弦振动的基本方程是弦波方程或量子力学中极小作用量原理,可以通过一些理论和数学工具来描述。
弦的运动包括纵波和横波,其振幅和频率与弦的材料、长度、张力等因素有关。
弦振动理论的研究对于解决许多问题,如乐器的制造、声波的传播、光学、电子学等都非常重要。
传统的弦乐器包括小提琴、大提琴、中提琴、吉他、二胡等都是利用弦的振动来发出美妙的音乐。
在传统的音乐制作中,乐器演奏者通过调整弦的长度、材料、张力和空气的共振效应来调节音高和音色。
在摇滚音乐中,弦乐器的音乐效果可以被电吉他、电贝斯和合成器等电子乐器所模拟。
这些电子乐器配备了内置的高级数字信号处理器,允许乐手模拟各种音效,并使用不同的音效修饰器来调节音色。
弦振动的研究也可以应用于声波传播的分析和量子场论的理论研究。
声波的传播在医学成像中应用广泛,如超声波的成像。
在物理学中,弦振动问题是量子场论中的一种简单的形式,弦理论和标准模型都对此进行了研究。
总之,弦振动是物理学中一个非常重要的研究课题,其理论和应用方面也非常广泛。
通过研究弦振动,我们可以更深入地理解自然界的规律,并为科学技术的发展做出贡献。
弦振动——精选推荐

弦振动的实验研究弦是指一段又细又柔软的弹性长线,比如二胡、吉它等乐器上所用的弦。
用薄片拨动或者用弓在张紧的弦上拉动就可以使整个弦的振动,再通过音箱的共鸣,就会发出悦耳的声音。
对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在工程技术上也有着极其重要的意义。
比如悬于两根高压电杆间的电力线、大跨度的桥梁等,在一定程度上也是一根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。
对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从而对其加以控制。
同时,弦的振动也提供了一个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。
欧拉最早提出了弦振动的二阶方程,而后达朗贝尔等人通过对弦振动的研究开创了偏微分方程论。
本实验意在通过对一段两端固定弦振动的研究,了解弦振动的特点和规律。
预备问题1. 复习DF4320示波器的使用。
2. 什么是驻波?它是如何形成的?3. 什么是弦振动的模式?共振频率与哪些因素有关?4. 张力对波速有何影响?试比较以基频和第一谐频共振时弦中的波速。
一、 实验目的:1、了解驻波形成的条件,观察弦振动时形成的驻波;2、学会测量弦线上横波传播速度的方法:3、用作图法验证弦振动频率与弦长、频率与张力的关系。
二、实验原理一根两端固定并张紧的弦,静止时处于水平平衡位置,当在弦的垂直方向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作用下,弦将在平衡位置附近振动。
令弦线长度方向为x 轴,弦被拉动的方向(与x 轴垂直的方向)为y 轴,如图1所示。
若设弦的长度为L ,线密度为ρ,弦上的张力为T ,对一小段弦线微元dl 进行受力分析,运用牛顿第二定律定律,可得在y 方向的运动微分方程()2222tydx dx x y T ∂∂=∂∂ρ (1) 若令ρ/2T v =, 上式可写为222221tyv x y ∂∂=∂∂ (2)y 图1(2)式反映了弦的位移y 与位置x 、时间t 的关系,其中)/(ρT v =代表了在弦线上横波传播的波速。
弦振动偏微分方程的求解

弦振动偏微分方程的求解(郑州航空工业管理学院数理系 田硕 450015)摘要:本文列出了不同情况下的弦振动问题的定解方程及其成立条件,给出了不同情况下偏微分方程的求解方法,对于我们的生活和学习有一定的指导意义。
关键词:数学物理方程;偏微分方程;弦振动;拉普拉斯变换Method for solving partial differential equations of string vibration (Tianshuo Department of mathematics and physics, Zhengzhou Institute ofAeronautics Industry Management, henna zhengzhou 450015)Abstract : This article lists the definite solution of the equation of string vibration problems in different situations and the establishment of conditions, given the method for solving partial differential equations under different circumstances, for our lives and learning have a certain significance. Keywords : mathematical physics equations; partial differential equations; vibrating string; Laplace transform在数学物理方程中,根据常见物理模型,可以建立求解的偏微分方程。
如在很多物理实际问题中要遇到的拉普拉斯方程,泊松方程,波动方程,热传导方程等等。
弦振动方程的导出与定解条件

2、答疑:从第六周开始
3、综合成绩: 平时成绩:30%(考勤+作业) 卷面成绩:70%
典型的数学物理方程的导出
1.1 弦振动方程与定解条件 1.2 热传导方程与定解条件 1.3 拉普拉斯方程与定解条件
在考察弦振动问题时的基本假设为:
1.弦是均匀的,弦的截面直径与弦的长度
相比可以忽略,弦的线密度 是常数。
2.弦是柔软的,它在形变时不抵抗弯曲, 弦上各点所受的张力方向与弦的切线方向一 致,而弦的伸长形变与张力的关系服从胡克
(Hooke)定律。(即指在弹性限度内, 物体的形变跟引起形变的外力成正比)
分量的代数和为
T0 sin 2 T0 sin 1 T0 (sin 2 sin 1).
由于小振动:
u u T0[ x |x2 x |x1 ]
sin 2
tan2
u x
|x2 ,
sin 1
tan1
u x
| x1 ,
12
u
1
M1 M2
T0
2
T0
O x1 x2
lx
应用微分中值定理:
T0
[
u x
|x2
接下来, 我们只须说明张力与位置 x 无关
9
u
M2
T2
1
M1
T1
O x1 x2
2
lx
我们分别把在点 M1, M2 处的张力记作 T1, T2, 由前所述知他们的方向分别是沿着弦在点
M1, M2 处的切线方向。
由假定,弦只作横向振动,因此张力在
1方程的导出、定解条件

二、定解条件
1.初始条件: () 1 .已知初始条件: u t =0 = ϕ ( x ),0 ≤ x ≤ l , (2).已知初始速度: ut
2 .边界条件: 已知边界位移 (1) .第一类边界条件: ( u
x =0
t =0
= ψ (x ),0 ≤ x ≤ l ,
)
)
= g1 (t ), t ≥ 0, u
= g 2 (t ).
x=l
4、Cauchy问题(或初值问题) Cauchy问题(或初值问题) 问题 对于弦中某一段,如果在所考虑的时间内,弦端点的影响可忽略不计 时,可以认为弦长为无穷,此时问题化为
2 ∂ 2u 2 ∂ u = f ( x , t ), − ∞ < x < ∞ , t > 0, 2 −a ∂t ∂x 2 ∂u t = 0 : u = ϕ ( x ), = ψ ( x ), − ∞ < x < ∞ . ∂t
x + ∆x
ρ
∂u ( x, t ) dx. ∂t ∂ u (x , t + ∆ t ) dx . ∂t
∫
Байду номын сангаасx + ∆x
x
ρ
所以从时刻 t 到时刻 t + ∆ t , 弦段 ( x , x + ∆ x )的动量增加量为
∫
∫
t + ∆t
x + ∆x
x
ρ
∂ u (x , t + ∆ t ) ∂ u (x , t ) − dx . ∂t ∂t
这一段的惯性离心力F=mω^2R 为
ρ dx ω 2 u ( x。t ) ,
ρ (l − x − dx) gux
弦振动频率计算公式推导

弦振动频率计算公式推导全文共四篇示例,供读者参考第一篇示例:弦振动频率是指弦在振动时产生的频率,它是弦的长度、材质、张力等因素共同作用的结果。
在物理学中,弦振动频率的计算是一个重要的问题,它可以帮助我们了解弦的振动特性以及音乐乐器的原理。
为了计算弦的振动频率,我们需要首先推导出弦振动频率的计算公式。
在这里,我们将通过弦的基本原理和波动方程来推导这个公式。
我们假设一根长度为L、质量为m的弦被拉紧,并在两端固定。
弦上的振动可以被描述为横波传播,其波速v可以用张力T和线密度μ来表示:v = √(T/μ)弦的振动频率f可以用波速v和波长λ来表示:f = v/λ我们知道波长λ与弦的长度L有关系:其中n为弦的振动模态数。
当n=1时,弦的整数倍分之一波长的振动称为基频振动,也称为第一次共振;当n=2时,弦的整数倍分之二波长的振动称为第二次共振,如此类推。
将λ带入频率计算公式中,得到:将波速v的公式代入,得到:f = (1/2L)√(T/μ) * n这就是弦振动频率的计算公式。
从这个公式可以看出,弦振动频率与弦的长度L、张力T、线密度μ以及振动模态数n有关。
当我们改变这些参数时,弦的振动频率也会相应改变。
通过这个公式,我们可以更好地理解弦的振动特性,并且可以应用于乐器的设计和制作中。
通过调节张力和长度,可以改变乐器的音调,使得音乐更加美妙动听。
弦振动频率的计算公式是一个重要的物理公式,它可以帮助我们理解弦的振动原理和音乐乐器的工作原理。
希望通过本文的介绍,读者能够更加深入地了解弦振动频率的计算方法,并且能够应用于实际问题中。
【这是我对于弦振动频率计算公式的一些理解,希望能够对您有所帮助。
】第二篇示例:弦振动是物理学中常见的一种现象,例如吉他、小提琴等乐器中的琴弦就是一种典型的弦振动系统。
在弦振动中,弦线上的每一个微小的部分都在进行横向振动,形成一系列波动。
而弦振动的频率则是指每秒钟弦线振动的次数,是描述弦振动特性的重要参数之一。
第八章 弦振动方程初值问题的达朗贝尔解

at x
0
c ( )d 2
固得:
u( x , t ) f 2 ( ( x at )) f 2 ( x at ) 1 1 [ (at x ) ( x at )] x ( )d 2 2a at
at x
综上得:
( x at ) ( x at ) 1 x at at ( )d , x at 2 2a x u( x , t ) x at (at x ) ( x at ) 1 x ( )d , x at 2 2a at
解:
0 ( x) 0 ( x ) 0
x at x at
x1 x x2 x1 x , x2 x
x at
1 1 1 u( x, t ) at ( )d 2a ( )d 2a ( )d 2a x
1 ( x) ( )d 2a
( x) 0
(x)
u0
x
x1
x1 x2 2
x2
u( x , t )
1 ( x) 2
x1
u0
x2
x x x
1 u( x , t ) [ ( x at ) ( x at )] 2
例:初位移为0,在 x1 x x2 范围有恒定速度。 相当于用一定宽度的物件敲击弦。
2 代入方程 utt a uxx
得: u 0
u c( )
u( , ) c( )d f1 ( ) f 2 ( )
代回原变量得: u( x, t ) f1 ( x at ) f 2 ( x at )
容易验证,只要这两个任意函数具有二阶连续偏导数,则 上式就是所求弦振动方程的的解,且是通解(一般解).
弦振动方程

演奏弦乐器(如提琴、二胡)的人用弓在 弦上来回拉动. 弓所接触的只是弦的很小一段, 似乎应该只引起这个小段的振动. 实际上,振 动总是传播到整根弦,弦的各处都振动起来. 人们力求用数学方法研究这种弦振动传播现 象.
弦振动方程
考虑一根绷紧的弦,它在不振动时是一根 直线,就取此直线作为x 轴. 在时刻t=0 将此弦 拨动一下使其振动. 令u(x,t)表示弦上对应与横 坐标x 的点在时刻t 的横向位移. 则用讨论张力 的方法可推得u(x,t)满足偏微分方程
2u 2u ξ 2u η 2u ξ 2u η = 2 + + + 2 2 x ξ x ξη x ξη x η x 2u 2u 2u = 2 +2 + 2 ξ ξη η
弦振动方程
u u ξ u η u u = + = a( ) t ξ t η t ξ η
2u 2u ξ 2u η 2u ξ 2u η = a[ 2 + 2 ] 2 t ξ t ξη t ξη t η t 2u 2u 2u = a2 ( 2 2 + 2) ξ ξη η
代入原方程得 先对 η 积分,得
2u =0 ξη u = f (ξ ) ξ
弦ቤተ መጻሕፍቲ ባይዱ动方程
再对 ξ 积分,就得到通解
u = ∫ f (ξ )dξ + f 2 (η ) f1 (ξ ) + f 2 (η )
= f1 ( x + at ) + f 2 ( x at )
其中f1,f2为任意函数. 通解有很鲜明的物理意义. 事实上,凡f(x-at) 形状的函数描述的是沿x 的正方向传播的波, 其速度为a. 而f(x+at)形状的函数描述的是沿x 的负方向传播的波,其速度也为a.
弦的振动实验报告

弦的振动实验报告
实验目的
根据弦振动的微分方程和边界条件,计算弦振动的固有频率和振型,与实验结果对比,研究弦振动与结构及预紧力的参数关系。
实验内容
研究弦振动的固有频率与边界条件及弦的预紧力的关系,观察弦的节点及波峰波谷的形状。
实验原理
实验原理如图1所示,弦为一端固定,另一端悬挂重物(砝码),弦上固定有几种质量块,通过对弦上质量块激励,可以获得弦振动的共振频率;改变重物的质量,可以改变弦的预紧力,从而改变弦的共振频率。
通过观察可以了解弦的振型。
图1 实验装置简图
实验仪器
测试实验装置如图2所示,左侧为悬挂的重物。
取不同的悬挂重物,可以获得不同的预紧力,测取不同预紧力下弦的共振频率,可以得到弦的振动频率与预紧力的关系。
图2 实验装置图
图3 实验装置局部放大图
实验步骤
1:用非接触式激振器对准悬索的某一质量块,并保持初始间隙4-5mm,用标准砝码组弦丝张力1Kg.
2:激振器接入正弦信号后,对系统产生正弦激振力,系统将发生振动,激振信号频率由低到高缓慢调节,观察质量块的振动幅值及系统的振动形态,即可打找到系统在张力为1Kg时各阶固有频率和主振型.
3:然后增加砝码分别为2、3、4、5Kg,用同样的方法可找到张力为2、3、4、5Kg时的保阶固有频率和主振型。
实验数据记录和整理
通过眼睛观察弦在不同频率下的振动形态,得到其共振频率。
改变预紧力(增加砝码数),得到其固有频率。
表一不同预紧力下的弦的固有频率
砝码数/个2 3 4 5
一阶固有频率
/Hz
图4可观察得到的一阶振型。
弦振动实验原理

弦振动实验原理弦振动是物理学中一个重要的研究内容,它不仅在乐器制作和音乐演奏中起着重要作用,还在工程和科学领域有着广泛的应用。
弦振动实验是物理实验中常见的一个实验项目,通过实验可以直观地观察和研究弦的振动规律,了解弦振动的基本原理和特性。
本文将介绍弦振动实验的原理,希望能为相关领域的研究和实践提供一定的参考。
首先,我们来看一下弦振动的基本原理。
当一根弦被拉紧并以一定方式激发时,它会产生振动。
这种振动是由弦的横向位移引起的,当弦上的某一点发生横向位移时,会引起周围介质的位移,从而形成波动。
根据弦的材料、长度、张力和激发方式的不同,弦的振动形式也各不相同,可以是基本频率的纵波、横波或者驻波等形式。
在弦振动实验中,我们通常会通过一些简单的实验装置来观察和研究弦的振动规律。
比如,可以利用弦振动装置将一根弦固定在两端,并施加一定的张力,然后以不同的方式激发弦的振动,比如用手指拨动或者用力拨动弦等。
通过实验装置上的传感器或者摄像设备,可以记录下弦的振动过程,并通过数据分析和图像处理来研究弦振动的特性。
弦振动实验的原理还涉及到一些基本的物理理论,比如波动理论、振动理论和力学原理等。
在实验中,我们可以利用这些理论知识来解释和分析实验现象,比如通过波动方程来描述弦振动的传播规律,通过叠加原理来分析不同频率振动的叠加效应等。
同时,我们也可以通过实验数据来验证这些理论,从而加深对弦振动原理的理解。
除了基本原理和物理理论,弦振动实验还涉及到一些实验技术和数据处理方法。
比如,在实验中我们需要合理地设计实验方案,选择合适的实验装置和测量仪器,以确保实验能够准确地进行。
同时,我们还需要对实验数据进行有效的采集和处理,比如利用计算机软件对振动信号进行频谱分析、波形分析和数据拟合等,从而得出准确的实验结果。
总之,弦振动实验原理涉及到多个方面的知识和技术,需要我们综合运用物理理论、实验技术和数据处理方法来进行研究。
通过对弦振动实验原理的深入理解和掌握,我们可以更好地认识和应用弦振动的规律,为相关领域的研究和实践提供有力的支持。
吉他弦振动与影响音调因素

吉他弦的振动特点与影响音调因素 物理111 姓名:杨小龙 学号:1151002142【摘要】本文分析吉他弦,对弦的振动进行分析,对于吉他,弦的粗细不同,发出的音调不同。
一、分析弦是拉紧亲柔软的,长为l ,两端钉在O ,L 两点,建立方程,弦振动方程 (又称一维波动方程)u tt =a 2u xx +f(x ,t)是最简单、最典型的双曲型偏微分方程,对于一个具体的弦振动,还必须有u 适合的定解条件,初始条件u|t =0=φ(x),u t |t =0=Φ(x)给出了初始时刻t=0时弦上各点的位移和速度。
第一边界条件(或狄利克雷(Dirichlet)边界条件)u|x=0=h 1(t),u|t=l =h 2(t)给出了弦的两个端点的位移变化,式中l 是正常数,表示弦的长度。
第三边界条件(或诺伊曼(Neumann)边界条件)u x |x=0=h 1(t),u x |x=t =h 2(t)给出了弦的两个端点所受的垂直于弦的外力作用。
第三边界条件(或诺宾(Robin)边界条件)(u x +σ1u) |x=0=h 1(t),(u x -σ2u)|x=l =h 2(t)给出了弦的两个端点的位移与所受外力作用的一个线性组合,式中σ1,σ2是正常数。
解其方程,求出定解。
吉他弦振动的发音研究1,吉他乐器的弦振动当弹拨吉他弦时,弹拨力使弦向一边运动而产生位移χ,这时弦的张力由原来的T 增至 T+ △T=T+YS LL △,式中Y 为杨氏模量,S 为弦横截面积,LL △为弦的相对伸长,这时弦的弹性恢复力为F=2(T+YS LL △)sin θ,在忽略阻尼情况下,其运动方程可表示为θsin )(2llYS T x m △++, 式中l l x l l x x-+=+=2222,sin △θ,令,202ω=ml T 当l x ≤,并忽略无穷小量33l x ,则运动方程(1)可写成 002=+x x ω这是简谐振动的运动方程,用能给出系统运动性质全局图像的相平面法表示,一运动状态变量x 和.x 为直角坐标建立相平面,则方程(2)给出的相轨线为一族同心圆曲线,在原点是一个奇点,没有相轨线通过。
弦振动实验

【实验目的】 1. 掌握产生驻波的原理,并观察弦上形成的驻波。 2. 研究线长与共振频率间的关系;研究波速与弦线所受张力及线密度间的关系。
【实验原理】 1.驻波 一简谐正弦波在拉紧的金属线上传播, 可以由方程式������1 = ������������ ������������������ 2������ 述。若金属线一端固定,波到达该端时将被反射回来,反射波为: ������2 = ������������ ������������������ 2������ ������ + ������������ ������
3.波的传播速度 对一柔韧有弹性的金属线,在金属线上的传播速度(V)由两个变量决定:金属线 的线密度(μ ),及金属线所受张力(T).关系式为: V= ������ ������
该公式与牛顿第二定律相似:描述了力、惯量及线密度间的关系。但金属线的振动 与只受一个力的简单刚体运动并不相同.(不论速度, 加速度都是物体运动时所关注的量。 但金属线上的波并没有加速度,这也许算一个合理的解释)。 如果允许这种类推, 则可以假设波速只由张力和线密度决定。 空间分析可知该方程 是正确的。没有其他方法可由张力(T)及线密度(μ )来得出波速。
该种波形即为驻波,因为金属线上并没有波形的传播。
2.共振 以上分析建立在假设驻波为原始波与反射波的叠加的基础之上。 事实上若金属线两 端都固定,每个波在到达固定端时都将被反射.总的来说,叠加在一起的反射波并非都 同相,其波幅也很小。但对于某些振动频率,所有反射波都处于同一相位,产生一振幅 很大的驻波。这些频率即为共振频率。 研究线长与共振频率间的关系。共振产生时,通过对波长与线长的分析,很容易得 出这样的结论:共振产生时,线长与波长间的关系为:线长为半波长的整数倍,即λ = 2L / n;n=1,2,3,4…的节点一定位于两固定端。
数学物理方程第一章 基础概念

ds = 1 + (
弧段 M ′ M 在 t 时刻,沿 u 方向运动的加速度近似为 以
∂ 2 u ( x, t ) , x 为弧段 M ′ M 的质心。所 ∂t 2
− T sin α + T ′ sin α ′ − ρgdx = ρdx
即
∂ 2 u ( x, t ) ∂t 2
Q2 = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV
式中, c 为物体的比热, ρ 为物体的密度。 如果物体内部没有热源,则由热量守恒可得 Q1 = Q2 ,则
Ω
(1.2.3)
∫
t2 t1
⎡ ∂u ⎤ ⎢ ∫∫ k dS ⎥dt = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV ⎢∑ ∂n ⎥ Ω ⎦ ⎣
(1.2.4)
假设函数 u 关于 x, y, z 具有二阶连续导数,关于 t 具有一阶连续导数,则利用 Gauss 公 式有
t2 ⎡ ⎡ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞⎤ ⎤ Q1 = ∫ ⎢ ∫∫∫ ⎢ ⎜ k ⎟ + ⎜ ⎟ + ∂z ⎜ k ∂z ⎟⎥dV ⎥dt ⎜ k ∂y ⎟ t1 x x y ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠⎦ ⎥ ⎢ ⎠ ⎝ ⎣Ω ⎣ ⎦
次方程,若 f ( x, t ) = 0 ,则称为齐次方程。式(1.1.3)称为非齐次一维波动方程。
1.1.2 定解条件 一般弦线的特定振动状态还依赖于初始时刻弦的状态和通过弦线两端所受外界的影响。 为了确定一个具体的弦振动的规律, 除了列出方程外, 还需要写出它满足的初始条件和边界 条件,我们称之为定解条件。 初始条件,即初始时刻 t = 0 时,弦上各点的位移和速度。
弦振动方程cauchy问题广义解的结构

弦振动方程cauchy问题广义解的结构
弦振动方程,又称波动方程,是利用物理学中最基本原理——动
量定理(即动能定理)解决实际问题的通用数学工具。
它通常用来研
究一般固体的动态运动问题,常被用于弦的振动及其他振动的研究中。
处理弦振动方程的cauchy问题,其广义解的结构可表示为:解的形式:
$$u(x,t) = f(x-ct) + g(x+ct)$$
其中,$f(x-ct)$与$g(x+ct)$可看作特殊定解,均是$x$和
$ct$的周期函数,其波形由所选常数决定。
比如对$x$方向上的弦有
$f(x-ct) = A\cos2\pi(x-ct)$;而$g(x+ct) = B\sin2\pi(x+ct)$,
其中$A$与$B$可自行选取,其波形即由该选取的常数决定。
弦振动方程的cauchy问题的广义解的结构可认为是$u(x,t) =
f(x-ct) + g(x+ct)$的形式。
特别的,若把$f(x-ct)$与$g(x+ct)$都
简化为特殊的周期函数,如正弦函数或余弦函数,其波形将完全受常
数决定,其解即可表示为某种特殊定解函数。
总之,弦振动方程的cauchy问题的广义解的结构可记为
$$u(x,t) = f(x-ct) + g(x+ct)$$
其特殊情况下,特别定解的波形可完全由常数决定,可由正弦函数或
余弦函数构成的形式来表示。
钢丝弦振动公式

钢丝弦振动公式
钢丝弦的振动可以通过弦的长度、质量线密度、张力和频率来描述。
以下是钢丝弦振动的公式:
1.本征频率公式(基频和谐波频率):
fn=(n/2L)*√(T/μ)
其中,fn表示第n个谐波的频率,L表示弦的长度,T表示张力,μ表示钢丝弦的质量线密度。
2.波速公式:
v=√(T/μ)
其中,v表示弦上的波速。
3.波长公式:
λ=2L/n
其中,λ表示波长,n表示谐波的次数。
4.频率与波长的关系:
v=fλ
其中,f表示频率。
5.立体波与波函数关系:
y=Asin(ωt±kx)
其中,y表示弦上某一点的位移,A表示振幅,ω表示角频率,t表示时间,x表示位置,k表示波数。
以上是钢丝弦振动的一些基本公式,可以用于描述钢丝弦的频率、波速、波长和振幅等性质。
这些公式在研究音乐乐器、声学和工程等领域都有广泛的应用。
2波动方程03-弦振动方程初值问题的求解

=−
ϕ ( x + at ) + ϕ ( x − at )
2
1 − 2a
x + at
x − at
∫ ψ ( s ) ds
t x + a ( t −τ ) ⎤ 1 ⎡ − ∫ ⎢ ∫ f ( s,τ )ds ⎥ dτ 2a 0 ⎢ x − a ( t −τ ) ⎥ ⎣ ⎦
= − u ( x , t ).
u ( x, 0) = 0,
∂v ∂v + a = 0, ∂t ∂x
− ∞ < x < +∞.
− ∞ < x < +∞, t > 0;
v( x, 0) = ψ ( x),
− ∞ < x < +∞.
因此,可用特征线法先求出v, 再求出 u , 就得到所求解的表达式。
解法2:①,先求方程
u = 0 的通解。
即,
∂ 2u ∂ 2u ∂ ⎛ ∂u ∂u ⎞ ∂ ⎛ ∂u ∂u ⎞ 2 u ≡ 2 − a 2 = ⎜ − a ⎟ + a ⎜ − a ⎟ ∂t ∂x ∂t ⎝ ∂t ∂x ⎠ ∂x ⎝ ∂t ∂x ⎠
∂ ⎞ ⎛ ∂u ∂u ⎞ ⎛∂ = ⎜ + a ⎟⎜ − a ⎟ ∂x ⎠ ⎝ ∂t ∂x ⎠ ⎝ ∂t ∂ ⎞⎛ ∂ ∂ ⎞ ⎛∂ = ⎜ + a ⎟⎜ − a ⎟u ∂x ⎠ ⎝ ∂t ∂x ⎠ ⎝ ∂t
四性质推论的偶奇周期函数则由表达式8给出的函数注意这里我们只能说表达式8给出的函数而不能说定解问题1的解这是因为我们还不知道问题是否有其它解一旦证明问题之解为唯一我们可以说问题之解满足这一性质
2.2
一、问题
解的表达式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦振动方程与
弦振动方程是力学运动中重要的概念,它用于模拟受力的弦体的振动运动。
弦振动方程的发展可以溯源到古希腊时期,由古希腊数学家凯撒斯在其时期提出的弦方程,在17世纪末到19世纪初作为弦振动方程形式存在。
自从古希腊时期以来,弦振动方程一直是研究弦振动问题的基础。
在当今,弦振动方程经常用于模拟从质点、弦体到结构框架等受力系统的动力学振动行为,并且在工程应用中被广泛用于振动分析的计算和运动模拟。
弦振动方程的历史追溯到古希腊时期,由古希腊数学家凯撒斯于《On the Sphere and Cylinder》一书中提出了第一个弦体振动方程,即弦振动方程。
凯撒斯的弦振动方程可以表述为:弦上的任意一点的位移y可以表示为:y=Ay+Bsin(wt+f),其中A、B、w、f分别表示系统的参数。
前一部分(Ay)表示系统的静态位置,后一部分(Bsin(wt+f))表示系统的振动位置。
弦振动方程主要用于研究弦体的动力学振动行为,解释动力学行为的机理,包括幅度、频率、相位等。
在17世纪末到19世纪初,随着几何学、力学学说的发展,弦振动方程得到了深入研究。
数学家贝尔格拉姆把凯撒斯的弦振动方程称为“贝尔格拉姆方程”,是弦振动方程的第一个重要发展。
20世纪,力学家斯穆特科特尔于1903年提出了新的弦振动方程,该方程预测
了不同类型弦体的振动行为。
斯穆特科特尔的方程被称为“斯穆特科特尔方程”,它在不同类型弦体振动行为预测中有着重要的作用,极
大地丰富了弦振动方程的理论内涵。
有着悠久历史的弦振动方程在现代被广泛应用于科学研究和工
业应用。
在科学研究领域,弦振动方程被用于各个研究领域的研究,包括天文学、电化学、地震学研究等,也被应用于生物力学,研究肌腱的振动行为特性。
在工程领域,弦振动方程被广泛应用于飞机、汽车、火车车身振动分析,受力构件的动态分析,各种机械结构的动态分析,以及机电系统的振动分析等。
此外,弦振动方程还有着重要的在声学领域的应用,被用于研究声学发射体的动态行为特性以及声音传播等。
弦振动方程在当今被广泛用于模拟和分析各类受力系统的振动
行为,在力学和工程应用中均有重要的作用。
它解释了动力学振动行为的机理,可以用来预测力学系统的振动行为,并为技术领域的进一步研究提供了重要的理论基础。
而在当今,随着现代科学技术的发展,弦振动方程在当今各领域的应用将越来越广泛,为社会进步和发展做出更多贡献。