2023最新版-八年级数学教案优秀5篇

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学教案优秀5篇

八年级数学教案篇一

【教学目标】

1、了解三角形的中位线的概念

2、了解三角形的中位线的性质

3、探索三角形的中位线的性质的一些简单的应用

【教学重点、难点】

重点:三角形的中位线定理。

难点:三角形的中位线定理的证明中添加辅助线的思想方法。

【教学过程】

(一)创设情景,引入新课

1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

3、引导学生概括出中位线的概念。

问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

4、猜想:DE与BC的关系?(位置关系与数量关系)

(二)、师生互动,探究新知

1、证明你的猜想

引导学生写出已知,求证,并启发分析。

(已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE⊿BC,DE=1/2BC)

启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

启发2:证明线段的倍分的方法有哪些?(截长或补短)

学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE⊿⊿CFE。

⊿⊿ADE=⊿F,AD=CF,

⊿AB⊿CF。

又⊿BD=AD=CF,

⊿四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

⊿DF⊿BC(根据什么?),

⊿DE 1/2BC

2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

(三)学以致用、落实新知

1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的。三角形周长

是多少?

2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

求证:四边形EFGH是平行四边形。

启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF⊿GH吗?为什么?

证明:如图,连接AC。

⊿EF是⊿ABC的中位线,

⊿EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

同理,HG 1/2AC。

⊿EF HG。

⊿四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

(四)学生练习,巩固新知

1、请回答引例中的问题(1)

2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点。求证:⊿PNM=⊿PMN

(五)小结回顾,反思提高

今天你学到了什么?还有什么困惑?

八年级数学教案篇二

教材分析

1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

学情分析

1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

教学目标

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

教学重点和难点

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

八年级数学教案篇三

一、全章要点

1、勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

2、勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

3、勾股定理的证明常见方法如下:

方法一:,,化简可证。

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积。

四个直角三角形的面积与小正方形面积的和为

大正方形面积为所以

方法三:,,化简得证

4、勾股数记住常见的勾股数可以提高解题速度,如;;;;8,15,17;9,40,41等

二、经典训练

(一)选择题:

1、下列说法正确的是( )

A.若a、b、c是⊿ABC的三边,则a2+b2=c2;

B.若a、b、c是Rt⊿ABC的三边,则a2+b2=c2;

C.若a、b、c是Rt⊿ABC的三边,,则a2+b2=c2;

D.若a、b、c是Rt⊿ABC的三边,,则a2+b2=c2.

2、⊿ABC的三条边长分别是、、,则下列各式成立的是( )

A. B. C. D.

3、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )

A.121

B.120

C.90

D.不能确定

4、⊿ABC中,AB=15,AC=13,高AD=12,则⊿ABC的周长为( )

A.42

B.32

C.42 或32

D.37 或33

(二)填空题:

5、斜边的边长为,一条直角边长为的直角三角形的面积是。

6、假如有一个三角形是直角三角形,那么三边、、之间应满足,其中边是直角所对的边;如果一个三角形的三边、、满足,那么这个三角形是三角形,其中边是边,边所对的角是。

7、一个三角形三边之比是,则按角分类它是三角形。

8、若三角形的三个内角的比是,最短边长为,最长边长为,则这个三角形三个角度数分别是,另外一边的平方是。

9、如图,已知中,,,,以直角边为直径作半圆,则这个半圆的面积是。

10、一长方形的一边长为,面积为,那么它的一条对角线长是。

三、综合发展:

相关文档
最新文档