测试实验报告
jmeter性能测试实验报告
jmeter性能测试实验报告JMeter 性能测试实验报告一、实验背景随着业务的不断发展,系统的性能成为了关键的关注点。
为了确保系统在高并发、大数据量等情况下能够稳定运行,满足用户的需求,我们使用 JMeter 工具对系统进行了性能测试。
二、实验目的本次性能测试的主要目的是评估系统的性能表现,包括但不限于以下方面:1、确定系统能够承受的最大并发用户数。
2、评估系统在不同并发用户数下的响应时间和吞吐量。
3、检测系统在高负载下是否存在性能瓶颈,如内存泄漏、CPU 利用率过高等。
4、为系统的优化和改进提供依据。
三、实验环境1、硬件环境服务器:_____客户端:_____2、软件环境操作系统:_____应用服务器:_____数据库:_____JMeter 版本:_____四、实验设计1、测试场景设计登录场景:模拟用户登录系统的操作。
搜索场景:模拟用户进行搜索的操作。
数据提交场景:模拟用户提交数据的操作。
2、并发用户数设置逐步增加并发用户数,从 100 开始,每次增加 100,直到系统出现性能瓶颈或达到预期的最大并发用户数。
3、测试数据准备准备足够的测试数据,包括用户账号、搜索关键词、提交的数据等,以确保测试的真实性和有效性。
4、性能指标监控监控服务器的 CPU 利用率、内存利用率、磁盘 I/O 等性能指标。
监控系统的响应时间、吞吐量、错误率等性能指标。
五、实验步骤1、启动 JMeter 工具,创建测试计划。
2、添加线程组,设置并发用户数和循环次数。
3、添加 HTTP 请求,配置请求的方法、路径、参数等。
4、添加监听器,用于收集性能指标数据,如聚合报告、查看结果树等。
5、配置服务器监控插件,监控服务器的性能指标。
6、运行测试计划,观察性能指标的变化。
7、根据测试结果,分析系统的性能表现,找出性能瓶颈。
六、实验结果及分析1、登录场景并发用户数为 100 时,平均响应时间为 2 秒,吞吐量为 50 次/秒,错误率为 0%。
短路试验测试实验报告(3篇)
第1篇一、实验目的本次实验旨在通过短路试验,评估电气设备的短路承受能力,验证设备在短路条件下的安全性能和稳定性。
通过实验,了解设备的短路特性,为设备的设计、制造和运行提供重要依据。
二、实验原理短路试验是通过对电气设备施加一个或多个短路条件,模拟实际运行中可能出现的短路故障,以检验设备在短路条件下的性能和安全性。
实验过程中,通过测量短路电流、短路时间、短路功率等参数,分析设备的短路特性。
三、实验设备与材料1. 实验设备:- 短路试验装置- 电流表- 电压表- 电阻表- 计时器- 电流互感器- 接地线- 安全防护用具2. 实验材料:- 电气设备(如变压器、电机、开关等)- 短路试验电缆四、实验步骤1. 准备工作:- 熟悉实验原理和操作步骤。
- 检查实验设备是否完好,连接线是否牢固。
- 确保实验环境安全,符合实验要求。
2. 实验操作:a. 将电气设备接入短路试验装置。
b. 按照设备规格和实验要求设置短路电流和短路时间。
c. 启动试验装置,记录短路电流、短路时间和短路功率等参数。
d. 观察设备在短路条件下的表现,如是否有异常声响、火花、温度升高等。
e. 关闭试验装置,断开设备,检查设备是否损坏。
3. 数据处理与分析:a. 记录实验数据,包括短路电流、短路时间、短路功率等。
b. 对实验数据进行整理和分析,评估设备的短路特性。
c. 比较实验数据与设备规格和标准要求,判断设备是否符合短路性能要求。
五、实验结果与分析1. 短路电流:a. 实验测得的短路电流与设备规格和标准要求相符。
b. 设备在短路条件下的短路电流未超过额定值。
2. 短路时间:a. 实验测得的短路时间与设备规格和标准要求相符。
b. 设备在短路条件下的短路时间未超过允许值。
3. 短路功率:a. 实验测得的短路功率与设备规格和标准要求相符。
b. 设备在短路条件下的短路功率未超过允许值。
4. 设备表现:a. 设备在短路条件下的表现良好,无异常声响、火花、温度升高等。
工程测试技术实验报告
一、实验名称工程测试技术实验二、实验目的1. 熟悉工程测试技术的基本原理和方法;2. 掌握常用的测试仪器和设备的使用;3. 提高对工程测试结果的分析和判断能力;4. 培养团队合作和实际操作能力。
三、实验原理工程测试技术是利用各种测试仪器和设备,对工程实体或系统进行检测、测量和分析的技术。
通过实验,我们可以了解工程测试的基本原理和方法,以及如何运用这些技术解决实际问题。
四、实验仪器与设备1. 信号发生器2. 示波器3. 频率计4. 数字多用表5. 电阻箱6. 电容箱7. 电流表8. 电压表9. 万用表10. 实验平台五、实验内容1. 信号发生器与示波器联用实验(1)了解信号发生器和示波器的工作原理;(2)学会使用信号发生器和示波器;(3)观察不同信号波形的变化。
2. 频率计与信号发生器联用实验(1)了解频率计的工作原理;(2)学会使用频率计;(3)测量信号的频率。
3. 数字多用表与电阻箱联用实验(1)了解数字多用表的工作原理;(2)学会使用数字多用表;(3)测量电阻值。
4. 电容箱与示波器联用实验(1)了解电容箱的工作原理;(2)学会使用电容箱;(3)观察电容对信号的影响。
5. 电流表与电压表联用实验(1)了解电流表和电压表的工作原理;(2)学会使用电流表和电压表;(3)测量电路中的电流和电压。
6. 万用表与实验平台联用实验(1)了解万用表的工作原理;(2)学会使用万用表;(3)测量实验平台上的各种参数。
六、实验步骤1. 准备实验仪器和设备,连接电路;2. 根据实验要求,调整仪器和设备;3. 观察实验现象,记录数据;4. 分析实验结果,得出结论。
七、实验结果与分析1. 信号发生器与示波器联用实验:通过实验,观察到不同信号波形的变化,加深了对信号波形的理解;2. 频率计与信号发生器联用实验:成功测量了信号的频率,掌握了频率计的使用方法;3. 数字多用表与电阻箱联用实验:准确测量了电阻值,提高了数字多用表的使用技能;4. 电容箱与示波器联用实验:观察到了电容对信号的影响,加深了对电容的认识;5. 电流表与电压表联用实验:成功测量了电路中的电流和电压,掌握了电流表和电压表的使用方法;6. 万用表与实验平台联用实验:准确测量了实验平台上的各种参数,提高了万用表的使用技能。
频率特性测试_实验报告
频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。
2. 学习使用示波器进行频率特性测试。
3. 了解放大器的频率响应特性。
实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。
在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。
实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。
2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。
3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。
4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。
实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。
在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。
实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。
通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。
软件测试实验二实验报告
软件测试实验二实验报告一、实验目的本次软件测试实验的主要目的是熟悉并掌握软件测试的基本方法和技术,通过对一个具体软件系统的测试,发现软件中存在的缺陷和问题,提高软件的质量和可靠性。
二、实验环境1、操作系统:Windows 102、测试工具:Jmeter、Selenium、Bugzilla3、开发语言:Java4、数据库:MySQL三、实验内容1、功能测试对软件的登录功能进行测试,包括输入正确和错误的用户名、密码,验证登录是否成功以及相应的提示信息是否准确。
测试软件的注册功能,检查输入的各项信息是否符合要求,如用户名长度、密码强度等。
对软件的搜索功能进行测试,输入不同的关键词,检查搜索结果的准确性和完整性。
2、性能测试使用 Jmeter 工具对软件的并发性能进行测试,模拟多个用户同时登录、搜索等操作,观察系统的响应时间、吞吐量等性能指标。
对软件的数据库操作性能进行测试,包括插入、查询、更新和删除数据,检查数据库的响应时间和资源占用情况。
3、兼容性测试在不同的浏览器(如 Chrome、Firefox、IE 等)上运行软件,检查界面显示和功能是否正常。
在不同的操作系统(如 Windows、Mac OS、Linux 等)上安装和运行软件,验证其兼容性。
4、安全测试对软件的用户认证和授权机制进行测试,检查是否存在未授权访问和越权操作的情况。
测试软件对 SQL 注入、XSS 攻击等常见安全漏洞的防范能力。
四、实验步骤1、功能测试步骤打开软件登录页面,输入正确的用户名和密码,点击登录按钮,观察是否成功登录并跳转到相应页面。
输入错误的用户名或密码,检查提示信息是否清晰准确。
进入注册页面,输入合法和不合法的注册信息,如用户名过短、密码强度不够等,查看系统的校验结果。
在搜索框中输入关键词,点击搜索按钮,对比搜索结果与预期是否一致。
2、性能测试步骤打开 Jmeter 工具,创建测试计划,添加线程组、HTTP 请求等元素。
弹性参数测定实验报告(3篇)
第1篇一、实验目的1. 熟悉弹性参数测定的基本原理和方法;2. 掌握测定材料的弹性模量、泊松比等弹性参数的实验步骤;3. 培养实验操作技能和数据分析能力。
二、实验原理弹性参数是描述材料在受力后发生形变与应力之间关系的物理量。
本实验采用拉伸试验方法测定材料的弹性模量和泊松比。
1. 弹性模量(E):在弹性范围内,应力(σ)与应变成正比,比值称为材料的弹性模量。
其计算公式为:E = σ / ε其中,σ为应力,ε为应变成分。
2. 泊松比(μ):在弹性范围内,横向应变(εt)与纵向应变(εl)之比称为泊松比。
其计算公式为:μ = εt / εl三、实验仪器与材料1. 仪器:材料试验机、游标卡尺、引伸计、应变仪、万能试验机、数据采集器等;2. 材料:低碳钢拉伸试件、标准试样、引伸计、应变仪等。
四、实验步骤1. 准备工作:将试样安装到材料试验机上,调整好试验机夹具,检查实验设备是否正常;2. 预拉伸:对试样进行预拉伸,以消除试样在安装过程中产生的残余应力;3. 拉伸试验:按照规定的拉伸速率对试样进行拉伸,记录拉伸过程中的应力、应变等数据;4. 数据处理:根据实验数据,计算弹性模量和泊松比;5. 结果分析:对比实验结果与理论值,分析误差产生的原因。
五、实验结果与分析1. 弹性模量(E)的计算结果:E1 = 2.05×105 MPaE2 = 2.00×105 MPaE3 = 2.03×105 MPa平均弹性模量E = (E1 + E2 + E3) / 3 = 2.01×105 MPa2. 泊松比(μ)的计算结果:μ1 = 0.296μ2 = 0.293μ3 = 0.295平均泊松比μ = (μ1 +μ2 + μ3) / 3 = 0.2943. 结果分析:实验结果与理论值较为接近,说明本实验方法能够有效测定材料的弹性参数。
实验过程中,由于试样安装、试验机夹具等因素的影响,导致实验结果存在一定的误差。
实验报告内容格式范文5篇
实验报告内容格式范文5篇实验报告内容格式范文5篇实验报告的分析讨论,主要分析实验结果和数值是否匹配,如果有误差,分析具体原因。
下面是小编为大家整理的实验报告格式范文,如果大家喜欢可以分享给身边的朋友。
实验报告格式内容范文【篇1】准备材料:一个玻璃杯、一枚硬币、小半杯水(最好是有颜色的)、蜡烛和一个平底的容器。
实验内容:在一个盘子里倒半杯水,放入一枚硬币。
手既不许接触到水,又不能把水倒出来,怎样才能把硬币取出来呢?实验过程:第1次:我们首先在平底的容器中倒入小半杯水,淹没硬币。
然后点燃一节蜡烛放在盘子里,罩上玻璃杯,蜡烛会因为缺氧停止燃烧,这时,外面的水便源源不断地涌进玻璃杯。
(可惜吸水不够多,所以没有把硬币取出来)结果:失败。
第2次:和第一次一样,失败。
第3次:我们换了一根大一点的蜡烛,这次流进去的水很多,成功。
第4次:我们用了两根蜡烛,不过因为杯子扣的太紧,杯口被盘子吸住,水没能流进玻璃杯,失败。
第5次:我把杯子扣下去的速度慢了一点点,导致蜡烛提前熄灭,失败。
第6次:同样是放了两根蜡烛,这次很正常,成功。
实验总结:我做这个实验是为了证实气体冷却后,能让压力下降,于是外面正常的大气压把盘子中的水挤进了杯中。
另外,在实验中,我观察到,用玻璃杯盖住蜡烛的时候,火焰不是马上熄灭,是继续燃烧一会儿才熄灭,说明玻璃杯的空气也是含有一定量的氧气的。
而做这个实验应注意:1、杯子不要扣的太慢,否则会让火焰提前熄灭导致实验失败。
2、水最好是有颜色的水,我选择在水中滴蓝墨水,效果不错,这样方便观看。
3、可以用燃烧的纸片代替蜡烛,但是水一定要放少一点,放多了难吸光。
4、要保持距离,让火焰离自己远一点。
实验报告格式内容范文【篇2】电路实验课已经结束,请按题目要求认真完成实验报告,并要仔细检查一遍,以免退回,具体要求如下:一、绘制电路图要工整、选取适宜比例,元件参数标注要准确、完整。
二、计算题要有计算步骤、解题过程,要代具体数据进行计算,不能只写得数。
软件测试实验报告
软件测试实验报告一、引言。
本实验旨在通过对软件进行测试,验证软件的功能和性能是否符合设计要求,以及发现和修复软件中可能存在的问题,提高软件质量,保证软件的稳定性和可靠性。
二、实验目的。
1. 了解软件测试的基本概念和方法;2. 掌握软件测试的基本流程和步骤;3. 熟悉软件测试工具的使用;4. 提高软件测试的实际操作能力。
三、实验内容。
1. 软件功能测试,对软件的各项功能进行测试,验证软件是否能够按照设计要求正常运行,并且达到预期的功能效果。
2. 软件性能测试,对软件的性能进行测试,包括响应时间、并发性能、负载能力等方面的测试,验证软件在不同条件下的性能表现。
3. 软件安全测试,对软件的安全性进行测试,包括数据加密、用户权限管理、漏洞扫描等方面的测试,验证软件在安全性方面的稳定性和可靠性。
四、实验步骤。
1. 确定测试目标和测试范围,编写测试计划和测试用例;2. 进行软件功能测试,记录测试结果并分析问题;3. 进行软件性能测试,记录测试数据并分析性能指标;4. 进行软件安全测试,发现安全隐患并提出改进建议;5. 汇总测试报告,总结测试过程和测试结果。
五、实验结果与分析。
经过本次实验,我们对软件进行了全面的测试,发现了一些功能上的问题,比如部分功能无法正常使用,界面显示不正确等;在性能测试中,发现了软件在高负载情况下响应时间过长的问题;在安全测试中,发现了一些安全隐患,比如数据传输过程中存在泄露风险等。
针对以上问题,我们已经提出了相应的改进建议,并在测试报告中进行了详细说明。
在今后的软件开发过程中,我们将更加重视软件测试工作,提高软件质量,保证软件的稳定性和可靠性。
六、结论。
通过本次实验,我们深刻认识到软件测试在软件开发过程中的重要性,只有经过充分的测试,才能保证软件的质量和稳定性。
我们将继续加强软件测试工作,提高测试水平,为软件的稳定运行和用户体验提供保障。
七、参考文献。
[1] 软件测试基础.杨林著.北京,清华大学出版社,2009.[2] 软件测试与质量保证.刘宏著.北京,电子工业出版社,2010.。
实验报告范文通用13篇
实验报告范文通用1实验名称:测量电源稳定性实验目的:通过对电源的稳定性测试,了解电源的性能指标,为后续电路设计提供依据。
实验器材:电源测试仪,数字万用表实验步骤:1.连接测试电路:将电源测试仪的输出端连接到需要测试的电路上。
2.打开电源:开启电源,调整电源测试仪的参数。
3.测量电源指标:分别测量电源的输出电压、输出电流和波动率。
4.记录实验数据:记录每次测量的数据,计算平均值和标准差。
实验结果:1.输出电压:10V2.输出电流:1A3.波动率:0.2%结论:通过本次实验可以得出,该电源的输出电压稳定且波动率较低,可以满足需求。
实验名称:LED亮度测试实验目的:测试不同电源电压下LED的亮度情况,为后续电路设计提供参考。
实验器材:电源测试仪,LED灯,数字万用表实验步骤:1.连接测试电路:将LED灯连接到电路中,连接电源测试仪进行测试。
2.设置电源电压:调整电源测试仪的输出电压,依次测试不同电压下LED的亮度情况。
3.记录实验数据:记录每次测量的数据,计算平均值和标准差。
实验结果:在不同电压下,LED的亮度如下表所示:电压(V)亮度(lm)5 507 809 10011 12013 130结论:通过本次实验可以得出,随着电压的升高,LED的亮度也呈现上升趋势,但在一定电压范围内,增加的亮度逐渐减少。
实验名称:运放放大器增益测试实验目的:测试不同负载情况下运放放大器的增益大小,为后续电路设计提供依据。
实验器材:运放放大器,数字万用表实验步骤:1.连接测试电路:将运放放大器连接到电路中,设置不同的负载电阻。
2.调整电平:调整电源输出电压,使运放放大器的输入电平符合要求。
3.测量增益:通过测量输出电压和输入电压大小,计算出运放放大器的增益大小。
4.记录实验数据:记录每次测量的数据,计算平均值和标准差。
实验结果:在不同负载电阻下,运放放大器的增益如下表所示:负载电阻(Ω)增益10 2050 40100 60200 80500 100结论:通过本次实验可以得出,在一定范围内,随着负载电阻的增加,运放放大器的增益也呈现上升趋势。
实验实训报告10篇
实验实训报告10篇报告是对某一阶段的工作、学习进行分析研究的书面材料,它可以给我们下一阶段的学习和工作生活做指导。
关于实验实训报告到底是怎么写的呢?以下是小编整理的实验实训报告10篇,欢迎大家借鉴与参考!实验实训报告篇1一、实验目的(1)掌握摇床发酵法制备糖化酶的工艺流程及操作方法(2)了解利用黑曲霉菌菌种发酵时的生长条件及注意事项(3)熟练掌握实验过程中的无菌操作和培养条件的选择二、实验仪器及试剂菌种:黑曲霉仪器:锥形瓶(500ml)、移液管、恒温水浴锅、秒表、50mL比色管、牛皮纸、纱布(8层)、pH计。
药品:三水乙酸钠、冰醋酸、硫代硫酸钠、碘、氢氧化钠、硫酸、可溶性淀粉、玉米粉、豆饼粉、麸皮三、实验原理摇瓶发酵是实验室常用的通风发酵方法,通过将装有液体发酵培养基的摇瓶放在摇床上振荡培养,以满足微生物生长、繁殖及产生许多代谢产物对氧的需求。
它是实验室筛选好气性菌种,以及摸索种子培养工艺与发酵工艺的常用方法。
葡萄糖淀粉酶(EC3.2.1.3)系统名为淀粉α-1,4-葡聚糖葡萄糖水解酶,俗称糖化酶,是国内产量最大的酶品种。
糖化酶对淀粉分子的作用是从非还原末端切开α-1,4键,也能切开α-1,3键和α-1,6键,产生葡萄糖。
糖化酶有催化淀粉水解的作用,能从淀粉分子非还原末端开始,分解α-1,4-葡萄糖苷键生成葡萄糖。
葡萄糖分子中含有醛基,能被次碘酸钠氧化,过量的次碘酸钠酸化后析出碘,再用硫代硫酸钠标准溶液滴定,计算酶活力。
四、实验步骤1.培养步骤1.1种子培养基制备及灭菌将新鲜土豆去皮切块,称取200~300 g土豆块放入500 mL烧杯中,加入一定量水,在电炉上煮沸至土豆块熟透,用120目纱布过滤,滤渣反复用一定量水清洗、过滤2次,合并各次滤液且定容至1000 mL即得土豆汁。
取一定体积的土豆汁,在其中加入5%的蔗糖,溶解摇匀并调pH至5.5,即得种子培养基。
将适量种子培养基倒入锥形瓶(250ml),用纱布塞塞住管口,并用牛皮纸包扎,置灭菌锅中,于121℃下灭菌30min。
硬度测试实验报告实验结论
硬度测试实验报告实验结论硬度测试实验报告实验结论实验目的:本次实验的目的是通过硬度测试仪器对不同材料的硬度进行测量,以了解不同材料的硬度特性,并得出相应的实验结论。
实验装置与方法:实验中使用了一台硬度测试仪器,该仪器采用了维氏硬度测试方法。
首先,我们选择了不同的材料样本,包括金属、塑料和陶瓷等。
然后,将样本放置在硬度测试仪器的测试台上,调整测试仪器的压力和时间参数,进行硬度测试。
每个样本进行三次测试,取平均值作为最终结果。
实验结果与分析:经过一系列的硬度测试,我们得到了各个材料的硬度数值。
根据测试结果,我们可以得出以下实验结论:1. 金属材料的硬度普遍较高。
金属材料具有良好的结晶性和成分均匀性,使其在受力时能够更好地抵抗变形和划痕。
因此,金属材料的硬度通常较高。
2. 塑料材料的硬度较低。
塑料材料通常具有较强的韧性和可塑性,容易受到外力的变形和划痕。
因此,塑料材料的硬度相对较低。
3. 陶瓷材料的硬度因材质而异。
陶瓷材料种类繁多,硬度也因材质的不同而有所差异。
一般来说,氧化物陶瓷的硬度较高,而非氧化物陶瓷的硬度较低。
4. 不同硬度测试方法的结果可能存在差异。
本次实验采用了维氏硬度测试方法,该方法对材料的硬度进行了相对评估。
然而,不同硬度测试方法的结果可能存在一定的差异,因此在实际应用中需要根据具体需求选择合适的测试方法。
实验结论:通过本次硬度测试实验,我们得出以下结论:1. 金属材料的硬度普遍较高,适用于需要较高硬度的应用场景。
2. 塑料材料的硬度较低,适用于需要较低硬度和较好韧性的应用场景。
3. 陶瓷材料的硬度因材质而异,需要根据具体材质选择合适的陶瓷材料。
4. 在实际应用中,需要根据具体需求选择合适的硬度测试方法,并结合其他材料性能指标综合评估材料的适用性。
总结:硬度测试实验是一种常用的材料性能测试方法,通过对不同材料的硬度进行测量,可以了解材料的硬度特性。
本次实验通过维氏硬度测试方法对金属、塑料和陶瓷等材料进行了硬度测试,并得出了相应的实验结论。
力学试验测试实验报告(3篇)
第1篇一、实验目的1. 了解力学试验的基本原理和方法。
2. 掌握拉伸试验、压缩试验、弯曲试验等力学试验的操作技能。
3. 培养学生严谨的实验态度和良好的实验习惯。
二、实验原理力学试验是研究材料力学性能的重要手段。
本实验主要研究材料的拉伸、压缩和弯曲性能。
通过测量材料在受力过程中的应力、应变等参数,可以了解材料的力学特性。
1. 拉伸试验:测量材料在拉伸过程中断裂时的最大应力,称为抗拉强度。
2. 压缩试验:测量材料在压缩过程中断裂时的最大应力,称为抗压强度。
3. 弯曲试验:测量材料在弯曲过程中断裂时的最大应力,称为抗弯强度。
三、实验仪器与材料1. 实验仪器:万能试验机、拉伸试验机、压缩试验机、弯曲试验机、测量仪器等。
2. 实验材料:钢棒、铜棒、铝棒等。
四、实验步骤1. 拉伸试验:(1)将材料固定在拉伸试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢拉伸,直到断裂。
(3)记录断裂时的最大应力值。
2. 压缩试验:(1)将材料固定在压缩试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢压缩,直到断裂。
(3)记录断裂时的最大应力值。
3. 弯曲试验:(1)将材料固定在弯曲试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢弯曲,直到断裂。
(3)记录断裂时的最大应力值。
五、实验数据与结果分析1. 拉伸试验:(1)材料:钢棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为600MPa。
(3)结果分析:钢棒在拉伸试验中表现出良好的抗拉性能。
2. 压缩试验:(1)材料:铜棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为200MPa。
(3)结果分析:铜棒在压缩试验中表现出较好的抗压性能。
3. 弯曲试验:(1)材料:铝棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为150MPa。
(3)结果分析:铝棒在弯曲试验中表现出较好的抗弯性能。
软件测试综合实验报告
一、实验目的本次实验旨在通过实际操作,让学生掌握软件测试的基本理论、方法和技巧,提高学生的实际动手能力,培养学生的团队协作精神和问题解决能力。
通过本次实验,使学生能够:1. 理解软件测试的基本概念和原则;2. 掌握常用的测试用例设计方法;3. 熟悉测试工具的使用;4. 提高测试报告的编写能力;5. 培养良好的团队协作精神和沟通能力。
二、实验内容本次实验分为以下几个部分:1. 软件测试基础知识2. 测试用例设计3. 测试工具使用4. 测试报告编写5. 团队协作与沟通三、实验过程1. 软件测试基础知识(1)介绍软件测试的基本概念、原则和类型;(2)讲解软件测试的流程和方法;(3)分析软件测试中的常见问题及解决方案。
2. 测试用例设计(1)分析软件需求规格说明书,提取测试需求;(2)根据测试需求设计测试用例,包括功能测试、性能测试、安全测试等;(3)对测试用例进行评审,确保测试用例的完整性和有效性。
3. 测试工具使用(1)介绍常用的测试工具,如Selenium、JMeter、LoadRunner等;(2)讲解测试工具的基本操作和功能;(3)进行实际操作,使用测试工具进行测试用例的执行和结果分析。
4. 测试报告编写(1)讲解测试报告的基本格式和内容;(2)根据测试结果,编写测试报告,包括测试概述、测试结果、问题分析、建议等;(3)对测试报告进行评审,确保报告的准确性和完整性。
5. 团队协作与沟通(1)分组,每个小组负责一个模块的测试;(2)明确各小组成员的职责,确保测试任务的顺利进行;(3)进行小组讨论,分享测试经验和问题,提高团队协作能力;(4)与其他小组进行沟通,协调测试进度,确保整个项目的顺利进行。
四、实验结果与分析1. 实验结果本次实验,各小组均完成了测试任务,并编写了测试报告。
通过实际操作,学生掌握了软件测试的基本理论、方法和技巧,提高了实际动手能力。
2. 实验分析(1)测试用例设计方面:学生在测试用例设计过程中,能够根据需求规格说明书,提取测试需求,设计出较为完整的测试用例。
实验的报告15篇
实验的报告实验的报告15篇在生活中,报告的使用成为日常生活的常态,其在写作上有一定的技巧。
那么,报告到底怎么写才合适呢?以下是小编精心整理的实验的报告,欢迎大家借鉴与参考,希望对大家有所帮助。
实验的报告1电子天平实验报告实验目的1 掌握电子天平的基本操作;2 掌握实物称量的技术;3 掌握准确、简明、规范地记录实验原始数据的方法。
仪器和试剂电子天平、称量瓶(内装试剂)、称量纸、试剂勺、小烧杯(接收器)实验步骤1 直接法先整理好天平,调零后,取一张称量纸,叠成铲子,轻轻放在天平托盘上,当显示数字稳定后,即可读数,并记录数据m1,纸铲留用2 加重称量法将上述小纸铲轻轻放在天平的托盘上,显示数字稳定后按一下“除皮”键,显示即恢复为零,用加重法称取0.20xxg试样,并记录数据m2。
3 减重称量发天平调零后,将称量瓶从干燥器中取出,放在天平托盘中央,显示数字稳定后读数,记录数据m3。
用减重称量法称取0.2~0.3g样品至小烧杯中,将称量瓶再次进行称量记录数据m4。
4 m3- m4即为所称样品质量。
5 制作表格将其实验数据记录并计算实验结果。
注意事项1 电子天平属精密仪器,要精心操作。
2 所称试样不准直接放置在秤盘上,以免沾污和腐蚀仪器。
3 不管称取什么样的试样,都必须细心将试样置入接受器皿中,不得洒在天平箱板上或称盘上。
若发生了上述错误,当事人必须按要求处理好,并报告实验指导教师。
4 天平称量练习为分析化学实验课的首次实验,学生必须做好预习、准备好三个实验本子并将每页编上号码。
5 实验数据只能记在实验本上,不能随意记在纸片上。
6 实验者必须主动接受规范化的严格训练,掌握分析测试的基本操作技术,并进一步掌握有关的理论知识。
实验数据表格用托盘天平测质量写一篇实验报告实验目的:验证空气有质量材料托盘天平,两个纸盒,大烧杯步骤1,把两个纸盒放在托盘天平两端调平 2,把大烧杯放在冰箱冷冻室一段时间3,把大烧杯拿出来马上向天平一端纸盒倒结果,天平偏向倒的那端结论:空气有质量分析:纸带中只有空气,所以空气有质量,同时证明冷空气比热空气重提示,不能找个气球,先吹气称重,再放气称重。
粘度测试_实验报告
一、实验目的1. 理解粘度及其重要性;2. 掌握粘度测试的基本原理和方法;3. 学会使用粘度计进行粘度测试;4. 分析粘度与温度、剪切速率等的关系。
二、实验原理粘度是流体抵抗流动的能力,是衡量流体性质的重要指标。
粘度测试的基本原理是利用粘度计测量流体在恒定剪切速率下的剪切应力,从而得到流体的粘度值。
本实验采用毛细管粘度计进行粘度测试,其原理如下:当流体在毛细管中流动时,流体受到重力、压力差和粘度阻力的影响。
根据牛顿第二定律,粘度阻力与流速成正比,与流体的粘度成正比。
通过测量流体在毛细管中的流速,可以得到流体的粘度值。
三、实验仪器与试剂1. 实验仪器:毛细管粘度计、秒表、温度计、玻璃瓶、移液管等;2. 实验试剂:待测流体、溶剂等。
四、实验步骤1. 准备实验仪器,将毛细管粘度计安装好,确保仪器运行正常;2. 用移液管取一定量的待测流体,加入玻璃瓶中;3. 将玻璃瓶放入恒温水浴中,调节温度至实验要求;4. 待温度稳定后,用移液管将待测流体加入毛细管粘度计中,确保液面高度一致;5. 开启秒表,记录流体从毛细管流出所需的时间;6. 重复步骤4和5,至少测量3次,取平均值;7. 根据公式计算流体的粘度值。
五、实验数据与结果1. 待测流体:食用油;2. 温度:25℃;3. 测量时间(s):30.5、31.2、31.0;4. 平均测量时间(s):30.8;5. 粘度值(mPa·s):1.2。
六、实验结果分析1. 通过实验可知,食用油的粘度为1.2 mPa·s,符合实验要求;2. 粘度与温度、剪切速率等因素有关,本实验中温度为25℃,剪切速率为毛细管粘度计的固有剪切速率;3. 实验过程中,毛细管粘度计的准确度和重复性较好,可满足实验要求。
七、实验结论1. 通过本实验,掌握了粘度测试的基本原理和方法;2. 学会了使用毛细管粘度计进行粘度测试;3. 了解了粘度与温度、剪切速率等因素的关系;4. 为进一步研究流体性质提供了实验依据。
敲击测试的实验报告(3篇)
第1篇一、实验目的1. 了解敲击测试的基本原理和方法。
2. 通过敲击测试,评估材料的抗冲击性能。
3. 分析不同材料的敲击测试结果,找出其优缺点。
二、实验原理敲击测试是一种评估材料抗冲击性能的实验方法。
实验过程中,通过在材料表面施加一定的冲击力,观察材料在冲击作用下的破坏情况,从而判断其抗冲击性能。
实验原理如下:1. 根据冲击能量与材料破坏情况的关系,评估材料的抗冲击性能。
2. 通过对比不同材料的敲击测试结果,找出其优缺点。
三、实验材料与设备1. 实验材料:钢、铝、塑料、木材等。
2. 实验设备:冲击试验机、冲击试验样品、砝码、测量工具等。
四、实验步骤1. 准备实验材料,将材料切割成规定尺寸的样品。
2. 将样品放置在冲击试验机的试验台上。
3. 设置冲击试验机的冲击速度,确保实验过程中冲击力满足要求。
4. 在样品上施加一定的冲击力,记录冲击次数。
5. 观察样品在冲击作用下的破坏情况,记录破坏形态。
6. 重复实验,分析不同材料的敲击测试结果。
五、实验结果与分析1. 钢材样品:在冲击试验过程中,钢材样品在冲击次数达到50次后出现明显变形,但在100次冲击后仍保持完整。
这说明钢材具有良好的抗冲击性能。
2. 铝材样品:在冲击试验过程中,铝材样品在冲击次数达到20次后出现明显变形,但在50次冲击后出现断裂。
这说明铝材的抗冲击性能较钢材差。
3. 塑料样品:在冲击试验过程中,塑料样品在冲击次数达到5次后出现明显变形,但在10次冲击后出现断裂。
这说明塑料的抗冲击性能最差。
4. 木材样品:在冲击试验过程中,木材样品在冲击次数达到10次后出现明显变形,但在20次冲击后出现断裂。
这说明木材的抗冲击性能较铝材差。
六、结论1. 通过敲击测试,可以评估材料的抗冲击性能。
2. 钢材具有良好的抗冲击性能,其次是铝材和木材,塑料的抗冲击性能最差。
3. 在实际应用中,应根据材料的抗冲击性能选择合适的材料。
七、实验注意事项1. 实验过程中,确保实验设备运行正常,避免因设备故障导致实验结果不准确。
产品测试实验报告范本
实验名称:智能扫地机器人性能测试实验目的:1. 验证智能扫地机器人的清洁能力。
2. 测试智能扫地机器人的续航能力。
3. 评估智能扫地机器人的智能避障功能。
4. 评估用户界面的人机交互体验。
实验时间:2023年3月15日实验地点:实验室扫地机器人测试场地实验人员:张三、李四、王五实验设备:1. 智能扫地机器人一台2. 电量检测仪一台3. 扫地机器人专用充电器一个4. 地毯一块5. 地板一块6. 电池续航测试仪一台7. 记录本和笔实验方法:1. 清洁能力测试:在实验场地铺设地毯和地板,模拟家庭和办公室环境。
使用智能扫地机器人进行清扫,记录清扫前后地面上的污渍、灰尘等垃圾的去除效果。
2. 续航能力测试:将智能扫地机器人充满电,开始清扫实验场地,使用电量检测仪实时监测电量消耗情况,记录机器人从开始清扫到电量耗尽的时间。
3. 智能避障功能测试:在清扫过程中设置障碍物,观察智能扫地机器人是否能自动避开障碍物,并记录避障成功率。
4. 人机交互体验测试:记录用户在操作智能扫地机器人过程中的界面响应速度、操作便捷性等,评估用户界面的人机交互体验。
实验结果:一、清洁能力测试1. 地毯清扫效果:清扫后,地毯上的污渍、灰尘基本被清除,清洁效果良好。
2. 地板清扫效果:清扫后,地板上的污渍、灰尘基本被清除,清洁效果良好。
二、续航能力测试智能扫地机器人从开始清扫到电量耗尽,耗时120分钟,续航能力良好。
三、智能避障功能测试在清扫过程中设置多个障碍物,智能扫地机器人成功避开所有障碍物,避障成功率100%。
四、人机交互体验测试1. 界面响应速度:操作界面流畅,响应速度较快。
2. 操作便捷性:操作简单,易于上手。
实验结论:1. 智能扫地机器人的清洁能力良好,能够有效清除地面上的污渍和灰尘。
2. 智能扫地机器人的续航能力良好,能够满足日常清洁需求。
3. 智能扫地机器人的智能避障功能强大,能够自动避开障碍物,提高清洁效率。
4. 智能扫地机器人的用户界面设计合理,操作便捷,用户体验良好。
圆球硬度测试实验报告
圆球硬度测试实验报告实验目的:测定不同材料制成的圆球的硬度,并分析其相关影响因素。
实验原理:硬度是指材料抵抗外界物体对其表面产生的压痕的能力。
在圆球硬度测试中,通常采用洛氏硬度试验和布氏硬度试验两种方法进行测定。
洛氏硬度试验:通常用来测定金属材料的硬度。
该方法利用一个钢球压入试样表面,通过试样表面的压痕形成情况来判断其硬度。
硬度值越高,表明材料越硬。
洛氏硬度试验结果以一个硬度数值表示。
布氏硬度试验:该方法适用于所有材料,包括金属、非金属和复合材料等。
在这种试验中,通过在试样表面施加恒定力量的钢球或钻石锥尖,然后测量钻石锥或钢球的压入深度来判断材料的硬度。
硬度值越高,材料越硬。
布氏硬度试验结果以一个硬度数值表示。
实验步骤:1. 准备不同材料制成的圆球,包括金属和非金属材料。
2. 在圆球表面选择一个代表性区域,清洁并保持干燥。
3. 使用你选择的洛氏硬度试验仪或布氏硬度试验仪,按照操作手册进行试验操作。
4. 对每种材料进行多次试验,取平均值作为该材料的硬度。
实验结果与讨论:通过实验,我们得到不同材料制成的圆球的硬度数值。
通过分析折线图,我们可以看出不同材料之间的硬度差异。
实验中我们还观察到硬度与材料的组成和制备工艺有关。
通常情况下,金属材料的硬度较高,比如钢球的硬度要高于一些非金属材料。
这是因为金属材料内部结构有序,颗粒之间的结合强度高,因此抵抗外界压力的能力更强。
另外,对于非金属材料而言,其硬度主要取决于材料的组织结构、晶粒尺寸和存在的缺陷等因素。
晶粒尺寸越小、晶界越多,非金属材料的硬度越高。
缺陷如杂质、气孔等会削弱材料的硬度。
此外,还观察到制备工艺对材料硬度的影响。
例如,热处理可以改变材料的晶粒尺寸和组织结构,进而影响材料的硬度。
淬火处理常常用于提高金属材料的硬度。
实验结论:通过本实验,我们测定了不同材料制成的圆球的硬度,并对其影响因素进行了分析。
硬度是材料性能的重要指标之一,可以从硬度值中了解材料的抗压能力以及其组成和制备工艺的影响。
测试时间的实验报告
测试时间的实验报告引言时间是一种抽象的概念,我们通过钟表或其他计量工具来度量它。
然而,在实际生活中,我们往往会遇到一些事情,如焦虑、疲惫等,使得时间感觉快或慢。
本实验旨在探究不同因素对时间感知的影响,以及其对人们心理和行为的可能影响。
实验设计本实验采用单盲实验设计,被试者被随机分成两组,一组是实验组(EG),一组是对照组(CG)。
实验组会暗示时间过得慢,而对照组则无暗示。
每个被试者会被要求完成以下任务:1. 估计30秒的过去时间每个被试者在完成任务后会被另一名研究者审核,并记录下实际时间和被试者的估计时间。
实验过程实验过程如下:1. 随机分组:将被试者随机分成EG和CG两组。
2. 说明:向被试者简要说明实验目的和任务。
3. 训练:对每个被试者进行30秒的训练,使其能够更好地估计时间。
4. 实验任务:要求被试者估计30秒的过去时间,并记录下他们的估计时间。
5. 记录数据:另一名研究者记录下实际时间和被试者的估计时间。
6. 给予暗示:对EG组的被试者进行时间过得慢的暗示。
7. 重复步骤4-6,共进行3次。
8. 数据分析:比较EG组和CG组的实际时间和估计时间,使用统计学方法进行数据分析。
结果与讨论经过数据分析,我们得到了以下结果:1. 实验组的被试者在时间估计方面相比对照组有更高的误差率。
即他们往往觉得时间过得更慢。
2. 实验组在第二和第三次实验中的误差率更高,说明暗示的效果在时间的持续性上存在一定的积累效应。
这些结果暗示了心理状态对时间感知的影响。
人们的心理状态会调节对时间的感知,从而影响他们的行为。
在现实生活中,焦虑、疲惫等负面情绪可能导致时间感觉加快,而放松、愉悦等正面情绪可能导致时间感觉减慢。
因此,我们应该尽量保持积极的心态,以更好地利用时间。
然而,本实验还存在一些局限性。
首先,实验样本较小,样本选择也可能存在一定的偏差。
其次,实验任务的设置可能也会影响被试者的时间估计,需要进一步优化。
结论本实验结果表明,个体的心理状态会对时间感知产生一定的影响。
测试性实验报告
实验名称:酸碱滴定法测定未知溶液的pH值实验目的:1. 掌握酸碱滴定实验的基本原理和操作方法。
2. 学会使用酸碱指示剂判断滴定终点。
3. 计算未知溶液的pH值。
实验原理:酸碱滴定法是利用酸碱中和反应来确定溶液中酸或碱的浓度的方法。
在本实验中,使用已知浓度的酸或碱溶液(标准溶液)滴定未知浓度的碱或酸溶液(待测溶液),通过观察酸碱指示剂的颜色变化来判断滴定终点,从而计算出待测溶液的pH值。
实验仪器与试剂:1. 仪器:酸式滴定管、碱式滴定管、锥形瓶、移液管、烧杯、洗瓶、滤纸、滴定管夹、铁架台等。
2. 试剂:0.1 mol/L NaOH标准溶液、0.1 mol/L HCl标准溶液、酚酞指示剂、酚酞乙醇溶液、蒸馏水等。
实验步骤:1. 准备工作:检查仪器是否完好,调整滴定管至0刻度,用标准溶液润洗滴定管。
2. 配制待测溶液:用移液管准确量取一定体积的待测溶液于锥形瓶中,加入适量的酚酞指示剂。
3. 滴定:将滴定管固定在滴定管夹上,用标准溶液缓慢滴加至锥形瓶中,同时不断振荡锥形瓶,直至溶液颜色由无色变为浅红色,且半分钟内不褪色,记录滴定所用标准溶液的体积。
4. 计算待测溶液的pH值:根据滴定所用标准溶液的体积和浓度,利用酸碱中和反应的化学计量关系计算出待测溶液的pH值。
实验结果与分析:1. 实验数据:- 待测溶液体积:25.00 mL- 滴定所用标准溶液体积:20.00 mL- 标准溶液浓度:0.1 mol/L- 计算得到的待测溶液pH值:12.342. 结果分析:通过实验测定,待测溶液的pH值为12.34。
与理论计算值相符,说明实验结果准确可靠。
实验结论:本次实验通过酸碱滴定法成功测定了未知溶液的pH值,掌握了酸碱滴定实验的基本原理和操作方法,为后续实验奠定了基础。
注意事项:1. 在实验过程中,要注意酸碱指示剂的选择,选择与滴定反应终点颜色变化明显的指示剂。
2. 滴定过程中,要控制滴定速度,避免过量滴定或不足滴定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 箔式应变片性能――单臂电桥
一、实验目的:
1. 观察了解箔式应变片的结构及粘贴方式。
2. 测试应变梁变形的应变输出。
3. 比较各桥路间的输出关系。
二、实验原理:
本实验说明箔式应变片及单臂直流电桥的原理和工作情况。
应变片是最常用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。
通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种,当电路平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻1R 、2R 、
3R 、4R 中,电阻的相对变化率分别为11R R ∆、
22R R ∆、33R R ∆、44R R ∆,当使用一个应变片时,
R R
R ∆=
∑;当二个应变片组成
差动状态工作,则有
R R
R ∆=∑2;用四个应变片组成二个差动工作,且R R R R R ====4321,
R R R ∆=
∑4。
由此可知,单臂,半桥,全桥电路的灵敏度依次增大。
三、实验所需部件:
直流稳压电源(V 4±档)、电桥、差动放大器、箔式应变片、测微头、电压表。
四、实验步骤:
1. 调零。
开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。
输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。
调零后电位器位置不要变化。
如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。
拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。
调零后关闭仪器电源。
2. 按图(1)将实验部件用实验线连接成测试桥路。
桥路中1R 、2R 、
3R 、和D W 为电桥中的
固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。
直流激励电源为V 4±。
测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。
3. 确认接线无误后开启仪器电源,井预热数分钟。
调整电桥D W 电位器,使测试系统输出为零。
4. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以水平状态下输出电压为零,向上
根据表中所测数据计算灵敏度S ,v
S x ∆=
∆,并在坐标图上做出X V -关系曲线。
五、实验数据及分析
图 (1)
五、注意事项:
1.实验前应检查实验接插线是否完好,连接电路时应尽量使用较短的接插线,以避免引入干扰。
2.接插线插入插孔时轻轻地做一小角度的转动,以保证接触良好,拔出时也轻轻地转动一下拔出,切忌用力拉扯接插线尾部,以免造成线内导线断裂。
3.要对地短路。
实验二 箔式应变片三种桥路性能比较
一、实验原理:
说明实际使用的应变电桥的性能和原理。
己知单臂、半桥和全桥电路的R ∑分别为R R ∆、R R ∆2、R R ∆4。
根据戴维南定理可以得出测试电桥的输出电压近似等于
∑⋅⋅R
E 41,电桥灵敏度
R R V K u ∆=,于是对应于
单臂,半桥和全桥的电压灵敏度分别为E 4/1、E 2/1和E 。
由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。
二、实验所需部件
直流稳压电源(V 4±档)、电桥、差动放大器、箔式应变片,测微头、电压 表。
三、实验步骤:
1. 在完成实验一的基础上,不变动差动放大器增益和调零电位器,依次将 图(1)中电桥固定电阻1R 、2R 、
3R 换成箔式应变片,分别接成半桥和全桥测试系统。
2. 重复实验一中3-4步骤,测出半桥和全桥输出电压并列表,计算灵敏 度。
四、实验数据及分析:
五、注童事项:
1. 应变片接入电桥时注意其受力方向,一定要按成差动形式。
2. 直流激励电压不能过大,以免造成应变片自热损坏。
3. 由于进行位移测量时测微头要从零-→正的最大值,又回复到零,再-→负的最大值,因此容易造成零点偏移,因此计算灵敏度时可将正X ∆的灵敏 度与负的X ∆的灵敏度分开计算。
再求平均值,以后实验中凡需过零的实验均 可采用此种方法。
实验三电涡流式传感器的静态标定
一、实验目的:
了解电涡流传感器的结构、原理、工作特性。
二、实验原理:
电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属片上的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换栅变换成电压V输出,则输出电压是距离X的单值函数。
三、实验所需部件:
电涡流线圈、金属涡流片、电涡流变器、测微头、示波器、电压表。
四、实验步骤
1.安装好电涡流线圈和金属涡流片,注意两者必须保持平行。
安装好测微头,将电涡流线圈接入涡流变换器输入端。
涡流变换器输出端接电压表20V档。
2.开启仪器电源,用测微头将电涡流线圈与涡流片分开一定距离,此时输出端有一电压值输出。
用示波器接涡流变换器输入端观察电涡流传感器的高频波形,信号频率约为lMHz。
3.用测微头带动振动平台使平面线圈完全贴紧金属涡流片,此时涡流变换器输出电压为零。
涡流变换器中的振荡电路停振。
4.旋动测微头使平面线圈离开金属涡流片,从电压表开始有读数起每位移0.5mm记录一个读数,并用示波器观察变换器的高频振荡波形,将V、X数据填入下表,作出V-X曲线,指出线性范围,求出灵敏度。
五、实验数据及分析:
六、意事项:
当涡流变换器接入电涡流线圈处于工作状态时,接入示波器会影响线圈的阻抗,使变换器的输出电压减小。
或是使传感器在初始状态有一死区。
实验五 霍尔式传感器的直流激励特性
一、实验目的:
了解霍尔式传感器的结构、工作原理,学会用霍尔传感器做静态位移测试。
二、实验原理:
霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度磁场中的霍尔元件组成。
当霍尔元件通以恒定电流时,霍尔元件就有电势输出。
霍尔元件在梯度磁场中上、下移动时,输出的霍尔电势V 取决于其在磁场中的位移量X ,所以测得霍尔电势的大小便可获知霍尔元件的静位移。
三、实验所需部件:
直流稳压电源、电桥、霍尔传感器、差动放大器、电压表、测微头。
直流激励电压须严格限定在±2V ,绝对不能任意加大,以免损坏霍尔元件。
四、实验步骤:
1. 按图(3)接线,装上测微头,调节振动圆盘上、下位置,使霍尔元件位于梯度磁场中间位置。
开启电源,调节测微头和电桥D W ,使差放输出为零。
上、下移动振动台,使差放正负电压输出对称。
2. 上、下移动测微头各
3.5mm ,每变化0.5mm 读取相应的电压值。
并记入下表,作出V -X 曲线,求出灵敏度及线性。
图 (3)。