数学七年级下册 期末试卷易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级下册 期末试卷易错题(Word 版 含答案)
一、选择题
1.如图,下列各组角中是同位角的是( )
A .∠1和∠2
B .∠3和∠4
C .∠2和∠4
D .∠1和∠4 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A .树枝随着春风摇曳
B .值日学生拉动可移动黑板
C .行政楼电梯的升降
D .晚自修后学生两列队伍整齐排列笔直前行 3.在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )
A .1
B .2
C .3
D .4 5.如图,////AF B
E CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是
( )
A .100F ∠=︒
B .140
C ∠=︒ C .130A ∠=︒
D .60D ∠=︒ 6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)3322--=;(4)364是无理数;(5)当0a ≠时,一定有a 是正数,其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个
7.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,FH 平分∠EFD ,若∠1=110°,则∠2的度数为( )
A .45°
B .40°
C .55°
D .35°
8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2021的坐标为( ) A .(﹣3,1) B .(0,﹣2) C .(3,1) D .(0,4)
二、填空题
9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.
10.已知点P (3,﹣1)关于x 轴的对称点Q 的坐标是(a +b ,1﹣b ),则a =___,b =___.
11.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为15,DE =3,AB =6,则AC 的长是 _______
12.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.
13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.
14.已知57a ,57b ,则2019()a b +=________. 15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.
16.在平面直角坐标系中,点A 与原点重合,将点A 向右平移1个单位长度得到点A 1,将A 1向上平移2个单位长度得到点A 2,将A 2向左平移3个单位长度得到A 3,将A 3向下平移4个单位长度得到A 4,将A 4向右平移5个单位长度得到A 5…按此方法进行下去,则A 2021点坐标为_______________.
三、解答题
17.计算(1)31
25272
4
+-+
(2)22|21|
--
18.求满足下列各式x的值
(1)2x2﹣8=0;
(2)1
2
(x﹣1)3=﹣4.
19.完成下面的证明.
如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF.
分析:要证BE∥DF,只需证∠1=∠D.
证明:∵AB∥CD(已知)
∴∠B+∠1=180°()
∵∠B+∠D=180°(已知)
∴∠1=∠D()
∴BE∥DF()
20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.
(1)分别写出点A、B、C的坐标;
(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A 1B1C1,其中点A的对应点是A 1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;
(3)求ABC 的面积.
21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:
(1)填空题:3的整数部分是 ;小数部分是
(2)已知8+3=x+y ,其中x 是一个整数,且0<y <1,求出2x+(y-3)2012的值. 二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:
(1)如图1.若148∠=︒,求2∠的度数;
(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.
(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.
24.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.
她是这样做的:
过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以//.EF CD ①
所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠
即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ;
2.上述思路中的①的理由是__ ;
3.请你参考她的思考问题的方法,解决问题:
已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .
(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).
(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).
25.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=
()1请判断AB 与CD 的位置关系并说明理由;
()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.
()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.
26.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,
(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.
(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________
(3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反
向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32
倍,求∠ABO 的度数.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.
【详解】
A. ∠1和∠2是邻补角,不符合题意;
B. ∠3和∠4是同旁内角,不符合题意;
C. ∠2和∠4没有关系,不符合题意;
D. ∠1和∠4是同位角,符合题意;
故选D.
【点睛】
本题考查了同位角的定义,理解同位角的定义是解题的关键.
2.A
【分析】
根据平移的特点可得答案.
【详解】
解:A、树枝随着春风摇曳是旋转运动;
B、值日学生拉动可移动黑板是平移运动;
C、行政楼电梯的升降是平移运动;
D、晚自修后学生两列队伍整齐排列笔直
解析:A
【分析】
根据平移的特点可得答案.
【详解】
解:A、树枝随着春风摇曳是旋转运动;
B、值日学生拉动可移动黑板是平移运动;
C、行政楼电梯的升降是平移运动;
D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;
故选A.
【点睛】
此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
构建不等式求出m,n的范围可得结论.
【详解】
解:由题意,
30
40
m
n
+<


->


解得:
3
4
m
n
<-


>


∴A(m,n)在第二象限,
故选:B.
【点睛】
此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.4.C
【分析】
根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可
【详解】
解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;
两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;
经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.
故选:C.
【点睛】
本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.
5.D
【分析】
根据平行线的性质进行求解即可得到答案.
【详解】
解:∵BE∥CD
∴∠ 2+∠C=180°,∠ 3+∠D=180°
∵∠ 2=50°,∠ 3=120°
∴∠C=130°,∠D=60°
又∵BE∥AF,∠ 1=40°
∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°
故选D.
【点睛】
本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
6.B
【分析】
根据平方根与立方根的定义与性质逐个判断即可.
【详解】
-是36的一个平方根,则此说法正确;
(1)6
(2)16的平方根是4
±,则此说法错误;
(3)333
--=--=--=,则此说法正确;
28(2)2
(43644
=,4是有理数,则此说法错误;
(5)当0
a<a
综上,正确的说法有2个,
故选:B.
【点睛】
本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=1
2∠DFE=1
2
×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),

解析:C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505•••1,
∴点A2021的坐标与A1的坐标相同,为(3,1).
故选:C.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
二、填空题
9.【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
本题考查的是
【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3
【点睛】
本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
10.0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解析:0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.
【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解得:a=3,b=0,
故答案为:3,0.
【点睛】
此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.
11.4
【分析】
过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.
【详解】
过点D作DF⊥AC
∵AD是△AB
解析:4
过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的ADB ADC ABC S S S ∆∆∆+=,⨯+⨯=11AB DE AC DF 1522
,进而解得AC 的长.
【详解】
过点D 作DF ⊥AC
∵AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,
∴DE=DF,
又三角形的面积的ADB ADC ABC S S S ∆∆∆+=,
即⨯+⨯=11AB DE AC DF 1522
, 解得AC=4
【点睛】
主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.
12.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB ∥CD ,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB ∥CD ,如图
∴∠GEC =∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED +∠GEC =180゜
∴∠2=11(180)(180108)3622
GEC ︒-∠=⨯︒-︒=︒ 故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 13.【分析】
根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得
【详解】
∵AF 为△ACD 的中线,△AFC 的面积为2,
∴S △ACD =2S △AFC =4,

解析:【分析】
根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12
AC BD ⨯⨯,即可求得AC ,进而求得CE
【详解】
∵AF 为△ACD 的中线,△AFC 的面积为2,
∴S △ACD =2S △AFC =4,
∵△ABC 沿直线AC 翻折得到△ADC , ∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,
∴S 四边形ABCD =8,
∴182
AC BD ⨯⨯=, ∵BE =2,AE =3,
∴BD =4,
∴AC =4,
∴CE =AC ﹣AE =4﹣3=1.
故答案为1.
【点睛】
本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<3,从而有7<<8,由此可得出
7,小数部分a用b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴23,∴-3<<-2,
∴7<<8,2<3,
∴7,2,
∴,
∴2019
+=12019=1.
()
a b
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
15.-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标
解析:-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A 点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标和A点的纵坐标相同,都是4,
又∵A(-2,4),AB=5,
∴当B点在A点左侧的时候,B(-7,4),
此时B点的横纵坐标之和是-7+4=-3,
当B点在A点右侧的时候,B(3,4),
此时B点的横纵坐标之和是3+4=7;
故答案为:-3或7.
【点睛】
本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.
16.(1011,﹣1010)
【分析】
求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).
【详解】
解:由题意A1(1
解析:(1011,﹣1010)
【分析】
求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得
A2021(1011,﹣1010).
【详解】
解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,
可以看出,3=51
2
+
,5=
91
2
+
,7=
131
2
+
,各个点的纵坐标等于横坐标的相反数+1,
故20211
2
+
=1011,
∴A2021(1011,﹣1010),
故答案为:(1011,﹣1010).
【点评】
本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.
三、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),



解析:(1)72
;(21 【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1 3532
=-+, 72
=.
(2)1|,
1=,
1.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
18.(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,


解得或者;
(2)(x ﹣1)3=﹣4,


解得.

解析:(1)2x =或者2x =-;(2)1x =-
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x 2﹣8=0,
228x =,
24x =,
解得2x =或者2x =-;
(2)1
2(x ﹣1)3=﹣4,
3(1)8x -=-, 12x -=-,
解得1x =-.
【点睛】
本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行
【分析】
要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.
【详解】
解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行
【分析】
要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.
【详解】
证明:∵AB ∥CD (已知)
∴∠B +∠1=180°(两直线平行,同旁内角互补)
∵∠B +∠D =180°(已知)
∴∠1=∠D (同角的补角相等),
∴BE ∥DF (同位角相等,两直线平行)
故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标
解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),
C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.
【详解】
解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);
(2)如图,△A1B1C1为所作,
∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,
∴A1(-3+6,4-4)即(3,0)
同理得到B1(1,﹣2),C1(4,﹣4);
(3)△ABC的面积=3×4﹣1
2×2×3﹣1
2
×4×1﹣1
2
×2×2=5.
【点睛】
本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1)1;-1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】
解:(1)∵1<<2,
∴的整数部分是1;小
解析:(1)1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2x ,y 的值,即可解答.
【详解】
解:(1)∵12, ∴1;
(2)解:∵12,
∴9<10,
∵x+y ,且x 是一个整数,0<y <1,
∴x =9,y =91,
∴2x+(
2012=2×9+2012=18+1=19.
【点睛】
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
32x y x y =⎧⎨+=⎩
, 解得: 1.50.5
x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴米,
∵7<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°
解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;
(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)∵∠1=48°,∠BCA=90°,
∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,
∵a∥b,
∴∠2=∠3=42°;
(2)理由如下:
过点B作BD∥a.如图2所示:
则∠2+∠ABD=180°,
∵a∥b,
∴b∥BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:
过点C 作CP ∥a ,如图3所示:
∵AC 平分∠BAM
∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,
又∵a ∥b ,
∴CP ∥b ,∠1=∠BAM =60°,
∴∠PCA =∠CAM =30°,
∴∠BCP =∠BCA -∠PCA =90°-30°=60°,
又∵CP ∥a ,
∴∠2=∠BCP =60°,
∴∠1=∠2.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
24.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122
αβ+;(2)1118022
αβ-+. 【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22
ABE CDE αβ∠=∠=,过点E 作
EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.
【详解】
1、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以//.EF CD ①
所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠
即BED ∠=72;
故答案为:72;
2、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以EF ∥CD (平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠
∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,
∴∠BED =1122
αβ+, 故答案为:1122
αβ+;
(2)∵BE 平分,ABC DE ∠平分,ADC ∠
∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12
α, ∵//,AB CD
∴EF ∥CD ,
∴180CDE DEF ∠+∠=︒,
∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022
αβ-+.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
25.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再
解析:(1)详见解析;(2)∠BAE+12
∠MCD=90°,理由详见解析;(3)详见解析. 【详解】
试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC =2∠EAC ,
∠ACD =2∠ACE ,再由∠EAC +∠ACE =90°可知∠BAC +∠ACD =180,故可得出结论;
(2)过E 作EF ∥AB ,根据平行线的性质可知EF ∥AB ∥CD ,∠BAE =∠AEF ,∠FEC =∠DCE ,故∠BAE +∠ECD =90°,再由∠MCE =∠ECD 即可得出结论;
(3)根据AB ∥CD 可知∠BAC +∠ACD =180°,∠QPC +∠PQC +∠PCQ =180°,故
∠BAC =∠PQC +∠QPC .
试题解析:证明:(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC =2∠EAC ,
∠ACD =2∠ACE .
∵∠EAC +∠ACE =90°,∴∠BAC +∠ACD =180,∴AB ∥CD ;
(2)∠BAE +12
∠MCD =90°.证明如下: 过E 作EF ∥AB .∵AB ∥CD ,∴EF ∥∥AB ∥CD ,∴∠BAE =∠AEF ,∠FEC =∠DCE . ∵∠E =90°,∴∠BAE +∠ECD =90°.
∵∠MCE=∠ECD,∴∠BAE+1
2
∠MCD=90°;
(3)①∠BAC=∠PQC+∠QPC.理由如下:
如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.
∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;
②∠PQC+∠QPC+∠BAC=180°.理由如下:
如图4:∵AB∥CD,∴∠BAC=∠ACQ.
∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.
点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得
到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=1
2∠PAB,∠ABC=1
2
∠ABM,
于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别
是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3
2

分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=1
2∠PAB,∠ABC=1
2
∠ABM,
∴∠BAC+∠ABC=1
2
(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=1
2∠BAO,∠FAO=1
2
∠GAO,
∴∠E=∠EOQ﹣∠EAO=1
2(∠BOQ﹣∠BAO)=1
2
∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=1
2
(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= 1
2∠BAO,∠EOQ=1
2
∠BOQ,
∴∠E=∠EOQ-∠EAO=1
2(∠BOQ-∠BAO)=1
2
∠ABO,
∵有一个角是另一个角的3
2
倍,故有:
①∠EAF=3
2
∠F,∠E=30°,∠ABO=60°;
②∠F=3
2
∠E,∠E=36°,∠ABO=72°;
③∠EAF=3
2
∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=3
2
∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。

相关文档
最新文档