泊松分布的期望方差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泊松分布的期望方差
1.泊松分布的期望和方差公式及详细证明过程
如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证。
典型的有:
2.泊松分布均值和方差怎么求?
X~P(λ) 期望E(X)=λ,方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ
^k/k!P表示概率,x表示某种函数关系,k表示数量,扩展资料应用场景:例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等。
以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
3.设X服从λ=2的泊松分布,则X的数学期望和方差分别是多少?
期望为λ,方差也为λ。
4.poisson分布的母函数怕p(s)=exp{λ(s-1)},求数学期望和方差
期望为λ,方差也为λ,这可以根据泊松分布的定义求,可以根据矩母函数或者特征函数导函数与矩的关系求。
5.设随机变量x服从参数0.2的泊松分布,则随机变量x的期望和方差分别为你好!泊松分布的的期望与方差都等于参数的值,经济数学团队帮你解答。
6.概率论泊松分布,λ=0.03,怎么求期望和方差
Var(X)=入
7.在求无偏估计量的方差下界中I是如何求的,即求其期望的具体过程是什么如果ξ~P(λ),那么E(ξ)= D(ξ)= λ其中P(λ)表示泊松分布无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ,则称ξ∧是ξ的无偏估计量下面说明题目中的四个估计量都是λ的无偏估计量。
因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,所以它们的期望和方差都是λ,则(1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+λ+λ)/即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/3]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/。