点_直线_平面之间的位置关系

合集下载

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系(一)、立体几何网络图:1、线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:2线面斜交和线面角:l ∩α=A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。

2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、(重点)线面垂直的判断:证明面外直线分别平行于两条面内支线,常用方法:1中垂线平行于底边2三垂线定理及其逆定理3 欲证线a ⊥线b ,线c 所在平面,可证线b ⊥线a 所在平面→线b ⊥线a ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
•公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
•公理2:过不在同一条直线上的三点,有且只有一个平面.
•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
•公理4:平行于同一条直线的两条直线互相平行.
•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
•垂直于同一个平面的两条直线平行.
•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.。

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系知识梳理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.作用:可用来证明点、直线在平面内.公理2:过不在一条直线上的三点,有且只有一个平面.作用:①可用来确定一个平面;②证明点线共面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点.公理4:平行于同一条直线的两条直线互相平行.作用:判断空间两条直线平行的依据.2.空间直线的位置关系(1)位置关系的分类:⎧⎧⎪⎨⎨⎩⎪⎩平行共面直线相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:0,2π⎛⎤ ⎥⎝⎦.(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面,平面与平面之间的位置关系图形语言 符号语言 公共点 直线与平面 相交a ∩α=A 1个平行a ∥α 0个 在平面内a ⊂α 无数个 平面与平面 平行α∥β 0个 相交α∩β=l 无数个 易错点:1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.[试一试]1.下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面解析:选D由异面直线的定义可知选D.2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D b与α相交或b⊂α或b∥α都可以.3.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.异面B.相交C.不可能平行D.不可能相交解析:选C由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b.与a,b是异面直线相矛盾.4.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CD B.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.5.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,求异面直线B1C与EF所成的角的大小.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.方法归纳:1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角.2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内;(2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合.3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上;(2)直接证明这些点都在同一条特定直线上.4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.[练一练]1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )解析:选D A ,B ,C 图中四点一定共面,D 中四点不共面.2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,求异面直线BE 与CD 1所成的角的余弦值.解析:如上图连接BA 1 ∵BA 1∥CD 1,∴∠A 1BE 为所求.在△A 1BE 中,设AB =1,则AA 1=2,∴A 1B =5,A 1E =1,BE = 2.∴cos ∠A 1BE =31010考点精讲考点一 平面的基本性质及应用1.在下列命题中,不是..公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线解析:选A 选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数是( )A .0B .1C .2D .3解析:选C 对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为A 1A 的中点,求证:CE ,D 1F ,DA 三线共点.解析:∵112EF CD ,∴直线D 1F 和CE 必相交. 设D 1F ∩CE =P ,∵P ∈D 1F 且D 1F ⊂平面AA 1D 1D ,∴P ∈平面AA 1D 1D .又P ∈EC 且CE ⊂平面ABCD ,∴P ∈平面ABCD ,即P 是平面ABCD 与平面AA 1D 1D 的公共点.而平面ABCD ∩平面AA 1D 1D =AD .∴P ∈AD ,∴CE 、D 1F 、DA 三线共点.变式练习:本例条件不变试证明E ,C ,D 1,F 四点共面.证明:∵E ,F 分别是AB 和AA 1的中点,∴112EF A B ,又A 1D 1∥B 1C 1∥BC . ∴四边形A 1D 1CB 为平行四边形,∴A 1B ∥CD 1,从而EF ∥CD 1.∴EF 与CD 1确定一个平面,∴E ,C 1,F ,D 四点共面.[解题通法]1.证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2.证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.考点二空间两直线的位置关系[典例]1、已知m,n,l为不同的直线,α,β为不同的平面,有下面四个命题:①m,n为异面直线,过空间任一点P,一定能作一条直线l与m,n都相交.②m,n为异面直线,过空间任一点P,一定存在一个与直线m,n都平行的平面.③α⊥β,α∩β=l,m⊂α,n⊂β,m,n与l都斜交,则m与n一定不垂直;④m,n是α内两相交直线,则α与β相交的充要条件是m,n至少有一条与β相交.则四个结论中正确的个数为()A.1B.2 C.3 D.4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m⊥n,在直线m上取一点作直线a⊥l,由α⊥β,得a⊥n.从而有n⊥α,则n⊥l;④正确.2、已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.证明:①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.[类题通法]1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.[针对训练]若直线l 不平行于平面α,且l ⊄α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交解析:选B 如图,设l ∩α=A ,α内直线若经过A 点,则与直线l 相交;若不经过点A ,则与直线l 异面.考点三 异面直线所成的角[典例]1、如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,求异面直线A 1B 与AD 1所成角的余弦值.[解析] 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45. 2、已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为多少.解:连接DF ,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a , ∴222155223cos 555222a a a D FD a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⋅⋅[类题通法]用平移法求异面直线所成的角的三步法(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[针对训练]1、如图所示,点A 是平面BCD 外一点,AD =BC =2,E ,F 分别是AB ,CD 的中点,且EF =2,求异面直线AD 和BC 所成的角.解析:如图,设G 是AC 的中点,连接EG ,FG .因为E ,F 分别是AB ,CD 的中点,故EG ∥BC 且EG =12BC =1,FG ∥AD ,且FG =12AD =1.即∠EGF 为所求,又EF =2,由勾股定理逆定理可得∠EGF =90°.2、如图,三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC的中点.(1)求异面直线AE 和PB 所成角的余弦值.(2)求三棱锥A -EBC 的体积.解:(1)取BC 中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE和PB 所成的角。

点线面的位置关系知识点

点线面的位置关系知识点

点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。

这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。

本文将介绍点线面的位置关系的几个重要知识点。

一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。

例如,点A在直线AB上。

2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。

例如,点C在直线AB的两侧。

3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。

例如,点D在直线AB的延长线上。

4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。

例如,直线CD平行于直线AB。

二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。

例如,点A在平面P上。

2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。

例如,点B不在平面P上。

3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。

例如,点C在平面P的延长线上。

4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。

例如,直线EF垂直于平面P。

三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。

例如,直线L与平面P相交于点A。

2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。

例如,直线M平行于平面P。

3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。

例如,直线N被包含于平面P 中。

4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。

直线与平面的位置关系

直线与平面的位置关系

直线与平面的位置关系直线与平面的位置关系是几何学中的重要概念之一,研究它们的相互关系有助于我们深入理解空间几何。

在本文中,我们将探讨直线与平面的几种基本位置关系及其性质。

一、直线与平面的交点直线与平面可以相交于一点,此时它们具有唯一的交点。

假设有直线l和平面P,如果l与P相交于点A,我们可以得出以下结论:1. 点A在直线l上,同时也在平面P上;2. 点A在直线l上,但不在平面P上;3. 点A不在直线l上,但在平面P上。

这些情况中,最常见的是第一种情况,即直线与平面相交于一点,该点同时属于直线和平面。

二、直线与平面的重合直线与平面有可能重合,即它们完全重合于同一几何形状。

在这种情况下,直线与平面的所有点都是重合的,它们具有相同的位置和方向。

三、直线与平面的平行关系直线与平面可能平行,即它们始终保持着固定的距离,永不相交。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P平行,则其上的任意点都不在平面P上;2. 若直线l与平面P平行,则直线l上的一切点与平面P上的一切点的距离相等。

需要注意的是,直线与平面的平行关系是相对的,当我们谈论直线l与平面P平行时,必须指定相对于哪种参考系来判断。

四、直线与平面的垂直关系直线与平面可能垂直,即直线与平面形成一个直角。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P垂直,则直线l上的任意向量与平面P上的任意向量之间的内积为零;2. 若直线l与平面P垂直,则直线l与平面P相交于一点,该点同时属于直线和平面。

需要注意的是,直线与平面的垂直关系也是相对的,需要指定相对于哪种向量或平面来判断。

五、直线与平面的夹角除了垂直关系外,直线与平面之间还可以存在其他夹角。

对于直线l和平面P,我们可以定义它们之间的夹角为直线l上的某条与平面P 垂直的直线与平面P的交线的夹角。

直线与平面的夹角可以是锐角、直角或钝角,具体取决于直线与平面的位置关系和夹角的大小。

空间点、直线、平面之间的位置关系-高考复习

空间点、直线、平面之间的位置关系-高考复习

2.空间中两条直线的位置关系 (1)位置关系分类 位置关系共面直线相 平交 行直 直线 线: :在 在同 同一 一平 平面 面内 内, ,有 没且 有只 公有 共一 点个公共点
异面直线:不同在任何一个平面内,没有公共点
(2)基本事实 4 和定理 ①基本事实 4:平行于同一条直线的两条直线 □01 平行 . ②定理:如果空间中两个角的两条边分别对应平行,那么这两个 角 □02 相等或互补 .
(2)若 A1C 交平面 DBFE 于 R 点,则 P,Q,R 三点共线.
证明 (2)在正方体 AC1 中,设平面 A1ACC1 为 α,平面 BDEF 为 β. ∵Q∈A1C1,∴Q∈α.又 Q∈EF,∴Q∈β, ∴Q 是 α 与 β 的公共点,同理,P 是 α 与 β 的公共点,∴α∩β=PQ. 又 A1C∩β=R,∴R∈A1C. ∴R∈α,且 R∈β,∴R∈PQ, ∴P,Q,R 三点共线.
2.(多选)(2021·新高考Ⅱ卷)如图,在正方体中,O 为底面的中心,P 为 所在棱的中点,M,N 为正方体的顶点.则满足 MN⊥OP 的是( )
答案 BC
解析 设正方体的棱长为 2,对于 A,如图 1 所示,连接 AC,则 MN∥AC, 故∠POC 或其补角为异面直线 OP,MN 所成的角,在直角三角形 OPC 中, ∠PCO=90°,则∠POC≠90°,故 MN⊥OP 不成立,故 A 错误;对于 B, 如图 2 所示,取 MT 的中点为 Q,连接 PQ,OQ,则 PQ⊥MN,OQ∥TD, 由正方体 SBCN-MADT 可得 TD⊥平面 SNTM,故 OQ⊥平面 SNTM,又 MN ⊂ 平面 SNTM,所以 OQ⊥MN,而 OQ∩PQ=Q,所以 MN⊥平面 OPQ,而 OP⊂ 平面 OPQ,故 MN⊥OP,故 B 正确;对于 C,如图 3,连接 BD,则 BD∥MN,由 B 的判断可得 OP⊥BD,故 OP⊥MN,故 C 正确;对于 D,如

点、线、面之间的位置关系

点、线、面之间的位置关系

点、线、面之间的位置关系在数学几何学中,点、线、面都是我们研究的基本要素,它们之间的位置关系是我们探索空间几何性质的关键所在。

本文将从点、线、面的定义入手,分析它们之间的位置关系。

一、点的定义与位置关系点是最基本的几何要素,是空间中不具有长度、宽度和高度的对象。

我们通常用大写字母表示点,如A、B、C等。

点没有固定的位置,可以在空间中随意移动。

点与点之间的位置关系有以下几种情况。

1. 共点关系当两个或多个点在空间中重合时,它们被称为共点。

共点的点在数轴上只有一个坐标,无法用直线连接。

2. 在一条直线上如果两个点A、B之间可以通过一条直线连接,则称它们共线,即A、B两点在同一条直线上。

在数学中,我们可以通过两点确定一条直线。

3. 不共线关系若三个或三个以上的点不在同一条直线上,则它们被称为不共线。

不共线的点可以构成一个平面或空间。

二、线的定义与位置关系线是由无数个点在空间中按照一定规律排列组成的,是没有宽度和厚度的。

用小写字母表示线,如ab、cd等。

线与线之间的位置关系有以下几种情况。

1.相交关系当两条线在空间中有一个公共点时,称它们相交。

相交的线可以形成一个交点,交点有无数个。

2. 平行关系若两条线在平面内无交点,它们被称为平行线。

平行线的特点是始终保持平行的距离。

3.一条线与一平面的位置关系当一条线与一个平面有一个并且仅有一个交点时,称该线与该平面相交,交点是唯一的。

4.两平行线与一平面的位置关系若两条平行线与一个平面没有交点,它们被称为平面上的平行线。

平面上的平行线具有相同的斜率,但不会相交。

三、面的定义与位置关系面是由无数个点和线按照一定规律组成的,是有长度、宽度和厚度的。

用大写字母表示面,如ABC、DEF等。

面与面之间的位置关系有以下几种情况。

1.共面关系若两个或两个以上的面在空间中可以重合,它们被称为共面。

共面的面在数学中可以用判别式等方式表示。

2. 平行关系若两个面之间没有交点,它们被称为平行面。

点、线、面之间的位置关系——平行关系 - 简单 - 讲义

点、线、面之间的位置关系——平行关系 - 简单 - 讲义

点、线、面之间的位置关系——平行关系知识讲解一、空间间位置关系的集合语言集合的语言来描述点、直线和平面之间的关系:点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ∉; 点A 在平面α内,记作:A α∈;点A 不在平面α内,记作A α∉; 直线l 在平面α内(即直线上每一个点都在平面α内),记作l α⊂; 直线l 不在平面α内(即直线上存在不在平面α内的点),记作l α⊄; 直线l 和m 相交于点A ,记作{}lm A =,简记为lm A =;平面α与平面β相交于直线a ,记作a αβ=.二、平面的三个公理及推论1.公理一:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.图形语言表述:如右图:符号语言表述:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 用途:证明“点在面内”、“线在面内”.2.公理二:经过不在同一条直线上的三点,有且只有一个平面,也可以简单地说成,不共线的三点确定一个平面.图形语言表述:如右图,符号语言表述:,,A B C 三点不共线⇒有且只有一个平面α,使,,A B C ααα∈∈∈. 用途:证明“两平面重合”、“多点共面”、“点线共面”.3.公理三:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.图形语言表述:如右图:符号语言表述:,A a A a αβαβ∈⇒=∈.用途:证明“多点共线”、“多线共点”.如果两个平面有一条公共直线,则称这两个平面相交,这条公共直线叫做两个平面的交线.4.推论推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.三、空间中线线位置关系1.共面直线:平行直线与相交直线.2.公理四:平行于同一条直线的两条直线平行.3.异面直线:不同在任一平面内的两条直线.4.异面直线所成的角定义:例如下图所示,,a b 是两条异面直线,在空间中选取一点O ,过O 分别作,a b 的平行线','a b ,我们把','a b 所成的锐角(或直角),称异面直线,a b 所成的角(或夹角).注:异面直线所成的角为90,则称两条直线异面垂直;异面直线所成角的范围(0,90].5.判断两条直线为异面直线的方法1)判定定理:与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线. 如图符号语言:已知,,,,a A B B a ααα⊂∉∉∈则直线AB 与直线a 是异面直线. 2)反证法:要证明两条直线是异面直线,只需证明它们不相交,也不平行即可.6.空间四边形:顺次连结不共面的四点所构成的图形.这四个点叫做空间四边形的顶点;所连结的相邻顶点间的线段叫做空间四边形的边;连结不相邻的顶点的线段叫做空间四边形的对角线.如下图中的空间四边形ABCD ,它有四条边,,,AB BC CD DA ,两条对角线,AC BD . 其中,AB CD ;,AC BD ;,AD BC 是三对异面直线.四、空间中线面位置关系1.直线与平面的位置关系1)直线l 在平面α内:直线上所有的点都在平面内,记作l α⊂,如图⑴; 2)直线l 与平面α相交:直线与平面有一个公共点A ;记作l A α=,如图⑵; 3)直线l 与平面α平行:直线与平面没有公共点,记作//l α,如图⑶.2.直线与平面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 符号语言表述:,,////l m l m l ααα⊄⊂⇒. 图象语言表述:如下图:DCBAl3()2()1()lAαααl3.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行. 符号语言表述://,,//l l m l m αβαβ⊂=⇒.图象语言表述:如下图:五、空间中面面位置关系1.平面与平面的位置关系平行:没有公共点,记为//αβ; 相交:有一条公共直线,记为l αβ=注:画两个平行平面时,一般把表示平面的平行四边形画成对应边平行,两个平面,αβ相交,有一条交线,l αβ=,如下图:2.两个平面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面, 那么这两个平面平行.符号语言表述:,,,//,////a b a b A a b ααββαβ⊂⊂=⇒. 图像语言表述:推论:则这两个平面平行.3.两个平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.mlαβαl m符号语言表述://,,//a b a b αβαγβγ==⇒.图象语言表述:如下图:六、平行证明的模型总结1.中位线(等分线)模型//DE BC2.平行四边形模型γbaβαEDCBAODCBA典型例题一.选择题(共10小题)1.(2016•渝中区校级模拟)已知a,b为两条直线,α,β为两个平面,下列四个命题①a∥b,a∥α⇒b∥α;②a⊥b,a⊥α⇒b∥α;③a∥α,β∥α⇒a∥β;④a⊥α,β⊥α⇒a∥β,其中不正确的有()A.1个 B.2个 C.3个 D.4个2.(2015春•惠州期末)如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是()A.①②B.③④C.②③D.①④3.(2011•浙江)若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交4.(2015•东阳市模拟)已知a,b是空间中两不同直线,α,β是空间中两不同平面,下列命题中正确的是()A.若直线a∥b,b⊂α,则a∥αB.若平面α⊥β,a⊥α,则a∥βC.若平面α∥β,a⊂α,b⊂β,则a∥b D.若a⊥α,b⊥β,a∥b,则α∥β5.(2017秋•阜城县校级月考)如图,四棱锥P﹣ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能6.(2014秋•市中区校级期末)已知直线a⊂α,给出以下三个命题:①若平面α∥平面β,则直线a∥平面β;②若直线a∥平面β,则平面α∥平面β;③若直线a不平行于平面β,则平面α不平行于平面β.其中正确的命题是()A.②B.③C.①②D.①③7.(2015秋•陕西期末)已知直线a、b与平面α、β、γ,下列条件中能推出α∥β的是()A.a⊥α且a⊥βB.α⊥γ且β⊥γC.a⊂α,b⊂β,a∥b D.a⊂α,b⊂α,a∥β,b∥β8.(2017秋•龙子湖区校级期中)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交 B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交9.(2015•大庆校级模拟)α、β表示平面,a、b表示直线,则a∥α的一个充分条件是()A.α⊥β,且a⊥βB.α∩β=b,且a∥b C.a∥b,且b∥αD.α∥β,且a ⊂β10.(2014•鹿城区校级一模)直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内二.填空题(共2小题)11.在空间四边形ABCD中,如图所示.=,=,则EH与FG的位置关系是.12.(2012秋•江阴市校级期中)空间四边形ABCD中,E,F,H,G分别为边AB,AD,BC,CD的中点,则BD与平面EFGH的位置关系是.三.解答题(共3小题)13.四棱锥P﹣ABCD中,AB=AD,∠BAD=60°,CD⊥AD,F,E分别是PA,AD的中点,求证:平面PCD∥平面FEB.14.如图,正方体ABCD﹣A1B1C1D1.(1)求证:AD1∥平面BDC1(2)求证:平面AB1D1∥平面BDC1.15.在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别是棱D1C1,B1C1,AB,AD 的中点,求证:平面D1B1A∥平面EFGH.。

2.1.1_空间点、直线、平面之间的位置关系

2.1.1_空间点、直线、平面之间的位置关系

(1)符号表示: 点A、线a、面α
(2)集合关系:
图形
符号语言
A a Aa
A a Aa
A
A
A
A
文字语言(读法)
点A在直线a上 点A不在直线a上
点A在平面α内 点A不在平面α内
Ab a
a b A 直线a、b交于点A
图形
a
a
a A
符号语言
文字语言(读法)
a 直线a在平面 内
a
直线a与平面
无公共点
C D
B A
C1 D1
B1 A1
在正方体 明理由:
ABCD中 A,1B1判C1D断1 下列命题是否正确,并说
②设正方形ABCD与 A1的B1C中1D心1 分别为O, O1
则平面 A与A1平Cຫໍສະໝຸດ C面的交BB线1D为1D ;
OO1
C
D
O
B A
正确
C1
B1
D1
O1
A1
在正方体 ABCD 中A1,B1C判1D1断下列命题是否正确,并 说明理由:
与桌面所在平面是否只相交于一点B?为什么?
B
观察长方体,你能发现长方体的两个相交平 面有公共直线吗?
D
这条公共直线B’C’叫做这两个
C 平面A’B’C’D’和平面BB’C’C的交
A
B
线.
另一方面,相邻两个平面有一
个公共点,如平面A’B’C’D’和平
D
C 面BB’C’C有一个公共点B’,经过
A
B
点B有且只有一条过该点的公共直
我们常常把水平的平面画成一个平行四边形, 用平行四边形表示平面.
平行四边形的锐角通常画成45°,且横边长等 于其邻边长的2倍.

空间点直线平面之间的位置关系例题

空间点直线平面之间的位置关系例题

空间点直线平面之间的位置关系例题空间几何是数学中一个非常重要的分支,在空间几何中,点、直线和平面是最基本的元素。

它们之间的位置关系既复杂又深刻,需要我们用深度和广度兼具的方式进行全面评估。

在本文中,我们将从简到繁,由浅入深地探讨空间点、直线和平面之间的位置关系,以及解决一些典型的例题。

一、空间点、直线和平面的基本概念1. 点:在几何中,点是最基本的概念,它是没有大小,没有形状,只有位置的。

点在空间中是唯一的,通过坐标来表示。

2. 直线:直线是由无数个点组成的,在空间中是一条无限延伸的路径。

直线有方向和长度,可以根据方向向量来表示。

3. 平面:平面是由无数个点和直线组成的,在空间中是没有边界的二维图形。

平面可以通过点和法向量来表示。

二、点、直线和平面之间的位置关系1. 点和直线的位置关系:(1)点是否在直线上:给定点P(x,y,z),直线L:Ax+By+Cz+D=0,要判断点P是否在直线L上,可以将点P的坐标代入直线方程,若等式成立,则点P在直线L上。

(2)点到直线的距离:点P到直线L的距离可以通过点到直线的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。

(3)点和直线的位置关系还包括点在直线的上、下、左、右、内、外等方面。

2. 点、直线和平面的位置关系:(1)点是否在平面上:给定点P(x,y,z),平面π:Ax+By+Cz+D=0,要判断点P是否在平面π上,可以将点P的坐标代入平面方程,若等式成立,则点P在平面π上。

(2)点到平面的距离:点P到平面π的距离可以通过点到平面的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。

(3)点和平面的位置关系还包括点在平面的前、后、内、外等方面。

三、例题解析:空间点、直线、平面的位置关系1. 例题一:已知点A(1,2,3)、直线L:2x-3y+z+4=0和平面π:3x+y-2z-7=0,判断点A是否在直线L上和平面π上,若不在,求点A到直线L和平面π的距离。

点直线平面之间的位置关系

点直线平面之间的位置关系

点直线平面之间的位置关系以点、直线和平面之间的位置关系为题,我们来探讨一下它们之间的联系和特性。

一、点与直线的位置关系:1. 在一个平面上,点与直线可以有三种位置关系:点在直线上、点在直线外、点在直线内。

- 当一个点在直线上时,我们说该点与直线重合。

- 当一个点在直线外时,我们说该点与直线相离。

- 当一个点在直线内时,我们说该点与直线相交。

2. 判断点与直线的位置关系有多种方法:- 使用坐标系:设直线方程为 Ax + By + C = 0,点的坐标为 (x0, y0),将点的坐标代入直线方程,若等式成立,则点在直线上,否则点在直线外。

- 使用向量:设直线上两点的坐标分别为 (x1, y1) 和 (x2, y2),点的坐标为 (x0, y0),计算向量 (x0 - x1, y0 - y1) 和 (x2 - x1, y2 - y1) 的叉积,若叉积为0,则点在直线上,否则点在直线外。

3. 点到直线的距离:- 设点的坐标为 (x0, y0),直线的方程为 Ax + By + C = 0,点到直线的距离为d。

可以使用以下公式计算点到直线的距离:d = |Ax0 + By0 + C| / √(A^2 + B^2)。

二、点与平面的位置关系:1. 在三维空间中,点与平面可以有四种位置关系:点在平面上、点在平面外、点在平面内、点在平面上方或下方。

- 当一个点在平面上时,我们说该点与平面重合。

- 当一个点在平面外时,我们说该点与平面相离。

- 当一个点在平面内时,我们说该点与平面相交。

- 当一个点在平面上方或下方时,我们说该点与平面平行。

2. 判断点与平面的位置关系有多种方法:- 使用平面方程:设平面方程为 Ax + By + Cz + D = 0,点的坐标为 (x0, y0, z0),将点的坐标代入平面方程,若等式成立,则点在平面上,否则点在平面外。

- 使用向量:设平面上三点的坐标分别为 (x1, y1, z1),(x2, y2, z2) 和 (x3, y3, z3),点的坐标为 (x0, y0, z0),计算向量 (x0 - x1, y0 - y1, z0 - z1) 与向量 (x2 - x1, y2 - y1, z2 - z1) 的点积和向量 (x0 - x1, y0 - y1, z0 - z1) 与向量 (x3 - x1, y3 - y1, z3 - z1) 的点积,若两个点积均为0,则点在平面上,否则点在平面外。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系基础梳理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:经过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a ,b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.平行公理:平行于同一条直线的两条直线互相平行.6.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、选择题:1.以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.32.已知a,b 是异面直线,直线c∥直线a,则c 与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图,α∩β=l,A 、B∈α,C∈β,且C ∉l,直线AB∩l=M,过A 、B 、C 三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C 但不过点MD.点C 和点M4.已知直线l,若直线m 同时满足以下三个条件:m 与l 是异面直线;m 与l 的夹角为3(定值);m 与l 的距离为π.那么,这样的直线m 的条数为( )A.0B.2C.4D.无穷5.如图,E 、F 是AD 上互异的两点,G 、H 是BC 上互异的两点,由图可知,①AB 与CD 互为异面直线;②FH 分别与DC 、DB 互为异面直线;③EG 与FH 互为异面直线;④EG 与AB 互为异面直线.其中叙述正确的是( )A.①③B.②④C.①④D.①②6.以下命题中:①点A ,B ,C ∈直线a ,A ,B ∈平面α,则C ∈α;②点A ∈直线a ,a ⊄平面α,则A ∈α;③α,β是不同的平面,a ⊂α,b ⊂β,则a ,b 异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A .0B .1C .2D .37.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1B 1、CC 1的中点,则异面直线AE 与BF 所成角的余弦值为( ) 1342 (5555)A B C D 8.正方体ABCDA 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形9.在正方体ABCD -A 1B 1C 1D 1中,E 是棱A 1B 1的中点,则A 1B 与D 1E 所成角的余弦值为( ) A.510 B.1010 C.55 D.10510.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE ,SD 所成的角的余弦值为( )A.13B.23C.33D.23二、填空题:1.在空间四边形ABCD 中,各边边长均为1,若BD=1,则AC 的取值范围是________.2.如图,正方体ABCD —A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成角的大小等于________.3.如图所示,正方体ABCD-A 1B 1C 1D 1中,给出下列五个命题:①直线AC 1在平面CC 1B 1B 内;②设正方形ABCD 与A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C 与平面BB 1D 1D 的交线为OO 1;③由点A 、O 、C 可以确定一个平面;④由A 、C 1、B 1确定的平面是ADC 1B 1;⑤若直线l 是平面AC 内的直线,直线m 是平面D 1C 内的直线;若l 与m 相交,则交点一定在直线CD 上.其中真命题的序号是________.4.如图,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).5.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.三、解答题:1、如图,平面ABEF⊥平面ABCD,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥ 12AD,BE ∥ 12FA,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点是否共面?为什么?2. 正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面;(2)CE 、D 1F 、DA 三线共点.3.如图所示,S 是正三角形ABC 所在平面外一点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,M、N 分别是AB 和SC 的中点,求异面直线SM 和BN 所成角的余弦值.4、空间四边形ABCD 中,AB=CD 且AB 与CD 所成的角为30°,E、F 分别是BC 、AD 的中点,求EF 与AB 所成角的大小.。

高二数学点,直线,平面之间的位置关系

高二数学点,直线,平面之间的位置关系

点,直线,平面之间的位置关系一、知识网络二、高考考点1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的容.2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.三、知识要点〔一〕空间直线1、空间两条直线的位置关系〔1〕相交直线——有且仅有一个公共点;〔2〕平行直线——在同一个平面,没有公共点;〔3〕异面直线——不同在任何一个平面,没有公共点.2、平行直线〔1〕公理4〔平行直线的传递性〕:平行于同一条直线的两条直线互相平行. 符号表示:设a,b,c为直线,〔2〕空间等角定理如果一个角的两边和另一个角的两边分别平行且方向一样,则这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,则这两条直线所成的锐角〔或直角〕相等.3、异面直线〔1〕定义:不同在任何一个平面的两条直线叫做异面直线.〔2〕有关概念:〔ⅰ〕设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角〔或直角〕叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设为异面直线a,b所成的角,则 .〔ⅱ〕和两条异面直线都垂直相交的直线〔存在且唯一〕,叫做两条异面直线的公垂线.〔ⅲ〕两条异面直线的公垂线在这两条异面直线间的线段〔公垂线段〕的长度,叫做两条异面直线的距离.〔二〕空间直线与平面直线与平面的位置关系:〔1〕直线在平面——直线与平面有无数个公共点;〔2〕直线和平面相交——直线与平面有且仅有一个公共点;〔3〕直线和平面平行——直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行〔1〕定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.〔2〕判定判定定理:如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 .〔3〕性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.2、直线与平面垂直〔1〕定义:如果直线l和平面的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥ .〔2〕判定:判定定理1:如果一条直线和一个平面的两条相交直线都垂直,则这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面. 符号表示:.〔3〕性质性质定理:如果两条直线垂直于同一个平面,则这两条直线平行. 符号表示:〔4〕概念〔ⅰ〕点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.〔ⅱ〕直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.〔三〕空间两个平面1、两个平面的位置关系〔1〕定义:如果两个平面没有公共点,则说这两个平面互相平行.〔2〕两个平面的位置关系〔ⅰ〕两个平面平行——没有公共点;〔ⅱ〕两个平面相交——有一条公共直线.2、两个平面平行〔1〕判定判定定理1:如果一个平面有两条相交直线都平行于另一个平面,则这两个平面平行.判定定理2:〔线面垂直性质定理〕:垂直于同一条直线的两个平面平行.〔2〕性质性质定理1:如果两个平行平面同时和第三个平面相交,则它们的交线平行.性质定理2〔定义的推论〕:如果两个平面平行,则其中一个平面的所有直线都平行于另一个平面.3、有关概念〔1〕和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的局部,叫做这两个平行平面的公垂线段.〔2〕两个平行平面的公垂线段都相等. 〔3〕公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.它们恰是平行畴中同一事物的相互依存和相互贯穿的正反两个方面.四、高考真题〔一〕选择题1,设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:①假设;②假设则〔〕A、①是真命题,②是假命题;B、①是假命题,②是真命题;C、①②都是真命题;D、①②都是假命题.分析:这里 . 对于①,假设,则l,m可能平行,也可能异面;对于②,假设则可能垂直,也可能不垂直. 故应选D.2、m,n是两条不重合的直线,是三个两两不重合的平面,给出以下四个命题:①②③④假设m,n是异面直线,其中真命题是〔〕A、①和②B、①和③C、③和④D、①和④分析:由面面平行判定定理知①为真命题;注意到垂直于同一个平面的两个平面不一定平行,②为假命题;③显然为假命题;④由于m,n为异面直线,故可在确立两条相交直线与平行,因而为真命题. 故应选D.3,设为平面,m,n,l为直线,则m⊥的一个充分条件是〔〕分析:对于选项A,由于这里的直线m不一定在,故不一定有m⊥;对于选项B,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m⊥构成的命题是:假设直线m与两个平行平面中的一个平面垂直,则它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面,给定以下条件:①存在平面,使得都垂直于;②存在平面,使得都平行于;③有不共线三点到的距离相等;④存在异面直线l,m,使得;其中可以判定平行的条件有〔〕A、1个B、2个C、3个D、4个分析:对于①,垂直于同一平面的两个平面可能相交;对于②,由面面平行的传递性可以判定;对于③,当相交时,仍可存在不共线三点到的距离等;对于④,在m上取定点P,经过点P在l与点P确定的平面作l'//l,则l'与m可确定平面 .由于于是可知,此题应选B.〔二〕填空题1、m,n是不同的直线,是不重合的平面,给出以下命题:①假设②假设③假设④m,n是两条异面直线,假设上面的命题中,真命题的序号是〔写出所有真命题的序号〕分析:①显然为假命题;对于②,的直线m,n不一定相交,故②亦为假命题;对于③,由题设知∴③为真命题;对于④,由前面选择题第4题知此为真命题.因此,答案为③、④.2、在正方体中,过对角线的一个平面交于E,交于F,则①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面ABCD的投影一定是正方形;④平面有可能垂直于平面以上结论正确的为〔写出所有正确结论的编号〕分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD〔或〕重合时有平面,故④正确.于是可知答案为①,③,④.〔三〕解答题1、如图1,ABCD是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2.〔1〕证明:;〔2〕求二面角的大小.分析:循着解决平面图形折叠问题的根本思路:〔1〕认知平面图形中有关线段的长度与联系;〔2〕了解折叠前后有关线段的长度或联系的"变"与"不变";〔3〕利用"不变"的量与"不变"的关系解题.在这里,由图1知, .至此〔1〕易证;对于〔2〕,由〔1〕知,,故,于是可利用三垂线定理构造所求二面角的平面角.解:〔1〕证明:由题设知∴∠AOB是所成的直二面角的平面角,即,∴∴OC是AC在平面上的射影①又由题设得从而②∴根据三垂线定理由①②得, .〔2〕解:由〔1〕知,,∴设,在平面AOC过点E作EF⊥AC于F,连结〔三垂线定理〕由题设知,∴∴又∴即所求二面角的大小为.点评:利用原来平面图形折叠后“不变的量〞与线段间不变的垂直或平行关系,推出立体图形中,是证明〔1〕以及解答〔2〕的根底与关键.由此可见,这类问题中认知平面图形的重要.2、在四面体P-ABC中,PA=BC=6,PC=AB=10,AC=8,PB= .F是线段PB上一点,,点E在线段AB上,且EF⊥PB.〔1〕证明:PB⊥平面CEF;〔2〕求:二面角B-CE-F的大小.分析:〔1〕要证PB⊥平面CEF,只要证PB垂直于CE或CF.这一设想的实现与否,要看对有关三角形的特性的认知与把握.在这里,,故易得BC⊥平面PAC,BC⊥AC等.注意到,,便得PB⊥CF,于是问题获证.〔2〕由〔1〕知CE⊥PB,从而CE⊥平面PAB,CE⊥AB,CE⊥EF,故∠BEF为所求二面角的平面角.至此,解题的难点得以突破.解:〔1〕证明:∵PA2+AC2=36+64=100=PC2∴△PAC是以∠PAC为直角的直角三角形,同理可证:△PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形。

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

2.空间中直线与平面的位置关系
直线CD与平面ABCD ——有无数个公共点; 直线AA1与平面ABCD ——有只且有一个公共点A; 直线D1C1与平面ABCD ——没有公共点.
D1 A1
D
A
C1
B1 C
B
直线在平面内 直线与平面相交 直线与平面平行
直线与平面的位置关系有且只有三种
直线在 平面外
(1)直线在平面内——有无数个公共点;
8.4.2 空间点、直线、平面之间的位置关系
数学
XXX
由上一小节“平面”的学习,我们认识了空 间中点、直线、平面之间的一些位置关系,如 点在平面内,直线在平面内,两个平面相交, 等等,空间中点、直线、平面之间还有其他位 置关系吗?
点线关系 线线关系 面面关系 点面关系 线面关系
在长方体ABCD-A1B1C1D1中:
观察:如图所示的长方体ABCD-A1B1C1D1中,直线与 直线之间有哪些不同的位置关系?
D1 A1
D
A
C1
B1 C
B
1.空间中直线与直线的位置关系
直线DC与AB在同一个平面ABCD内,它们 D1
没有公共点,它们是平行直线;
A1
直线DC与BC也是在同一个平面ABCD内, 它们只有一个公共点B,它们是相交直线;
CA
G DB
HE F
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,
哪些线段所在直线是异面直线?
CA
C G
A
E G
DB HE
F
H D
BF
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,

高中数学空间点、直线、平面之间的位置关系解析!

高中数学空间点、直线、平面之间的位置关系解析!

高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。

8.4空间点、直线、平面之间的位置关系

8.4空间点、直线、平面之间的位置关系

8.4空间点、直线、平面之间的位置关系教学目标:1.通过直观感知、操作确认,归纳出直线与平面平行、平面与平面平行的判定定理.2.通过直观感知、操作确认,归纳出直线与平面平行、平面与平面平行的性质定理并加以证明.3.能运用平行的相关判定定理与性质证明一些空间中的平行关系.教学重点:空间中线、面之间的平行判定定理与性质教学难点:运用平行的相关判定定理与性质证明一些空间中的平行关系教学过程:一、基础梳理1.平面与平面的位置关系有相交、平行两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:a⊄α,b⊂α,且a∥b⇒a∥α;(3)其他判定方法:α∥β;a⊂α⇒a∥β.3.直线和平面平行的性质定理:a∥α,a⊂β,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.5.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.6.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b;(2)a⊥α,a⊥β⇒α∥β.二、双基自测P106: 1—4三、例题讲解【训练1】P108 针对训练 2方法提炼:证明面面平行的方法:【训练2】P108 针对训练 3四、巩固提升考情分析:1.考查空间直线与平面平行,面面平行的判定及其性质.2.以解答题的形式考查线面的平行关系.3.考查空间中平行关系的探索性问题.针对训练:P108 1,4五、课堂小结空间中线、面之间的平行判定定理与性质以及证明六、作业布置限时作业38七、教学反思。

空间解析几何点直线与平面的位置关系

空间解析几何点直线与平面的位置关系

空间解析几何点直线与平面的位置关系在空间解析几何中,点、直线和平面是最基本的几何元素,它们之间的位置关系是解决几何问题的基础。

本文将讨论点、直线和平面之间的位置关系,并通过实例进行解析。

一、点和直线的位置关系在空间中,一条直线可以由两个不重合的点唯一确定。

根据点与直线之间的位置关系,可以分为以下几种情况:1. 点在直线上如果一个点在一条直线上,则将该点称为直线的一个点。

这意味着,该点与直线上的任意一点共线,并且在该直线上不存在其他点。

2. 点在直线的延长线上如果一个点在直线的延长线上,而不在直线上,则称该点在直线的延长线上。

延长线是指直线在两个端点之外延伸出去的部分。

3. 点在直线的两侧如果一个点既不在直线上,也不在直线的延长线上,则称该点在直线的两侧。

此时,点与直线之间的位置关系是不相交的。

二、点和平面的位置关系在空间中,平面可以由三个不共线的点唯一确定。

根据点与平面之间的位置关系,可以分为以下几种情况:1. 点在平面上如果一个点在平面上,则将该点称为平面的一个点。

这意味着,该点与平面上的任意一点都在一条直线上。

2. 点在平面的上方或下方如果一个点既不在平面上,也不在平面的延伸部分上,则称该点在平面的上方或下方。

此时,点与平面之间的位置关系是不相交的。

3. 点在平面的延伸线上如果一个点在平面的延伸线上,而不在平面上,则称该点在平面的延伸线上。

延伸线是指平面在边界之外延伸出去的部分。

三、直线和平面的位置关系在空间中,一条直线与一个平面之间的位置关系有以下几种情况:1. 直线在平面上如果一条直线完全位于一个平面上,则称该直线在平面上。

这意味着,直线上的任意一点都在该平面上。

2. 直线与平面相交于一点如果一条直线与一个平面相交于一个点,则称该直线与该平面相交于一点。

3. 直线与平面平行如果一条直线与一个平面平行,则称该直线与该平面平行。

此时,直线与平面之间没有交点。

4. 直线在平面的延伸面上如果一条直线在平面的延伸面上,而不在平面上,则称该直线在平面的延伸面上。

点直线与面的位置关系

点直线与面的位置关系

点直线与面的位置关系
直线与平面是几何学中经常涉及的概念,它们的位置关系可以分为三种情况:直线与平面相交、直线在平面内、直线与平面平行。

下面将分别对这三种情况进行论述。

1. 直线与平面相交
当一条直线与一个平面相交时,它们会有一个且仅有一个交点。

这个交点同时存在于直线上和平面上。

换句话说,直线上的每一个点都可以唯一地与平面上的一个点相对应。

例如,在一个平面上画一条直线,直线穿过了平面,那么这个交点将是直线与平面的位置关系。

2. 直线在平面内
如果一条直线完全位于平面内部,即直线的每一个点都在平面上,那么我们可以说这条直线在平面内部。

在这种情况下,直线与平面没有交点。

以一根铅笔在桌子上画一条线为例,线与桌面完全接触,没有任何交点。

3. 直线与平面平行
直线与平面平行表示这条直线与平面之间没有任何交点,并且它们的方向永远不会相交。

如果通过已知的条件可以判断出直线与平面的斜率或法向量平行,那么我们可以断定它们是平行的。

以桌子上的水平线为例,它与桌面平行,方向永远不会相交。

总结起来,直线与平面的位置关系有三种情况:相交、在平面内和平行。

这三种情况可以通过观察它们的交点、方向或斜率来判断。

在几何学中,直线与平面的位置关系是基础且重要的概念,对于解决各种几何问题起着重要的指导作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
2 1 3 槡 ( ( C) . D) 槡 . 2 4 已知二面角α 动点P、 8. l 0 °, Q 分别在面 - - β 为6 则 P 到β 的距离为槡 3, Q 到α 的距离为2 3, α、 槡 β内 , ( P、 Q 两点之间距离的最小值为 ) ( A) 3. 槡 ( B) 2. ( ( C) 2 3. D) 4. 槡 将正方 形 折 成 正 三 棱 柱 的 侧 面, 使 9. A B C D 正方形的对角线 A A D 与B C 重 合, C 与折痕线 则截面 E F, G H( E, G 在A B 上 )分 别 交 于 M , N, ( 与底面 所成的角的余弦值为 MNA D FH ) 5 ( A)槡 . 5 3 槡 ( B) . 2
— —2 · 复习参考 · 数学通讯 — 上半月 ) 0 1 1 年第 7、 8期(
1 0 5
( C) 3. 填空题 :
( D) 4.
在四棱锥 P -A 1 1. B C D 中, P A ⊥ 底面 , , , 底面各边都相等 是 上的一动点 当 A B C D M P C 时, 平面 M 点 M 满足 B D ⊥ 平面 P C D. ( 注: 只要填写一个你认为正确的即可 ) 1 2.在 △A B C 中, C B =9 0 °, A B = 8, ∠A B C =6 0 °, P C ⊥ 平面 A B C, P C =4, M 是A B ∠A 上一个动点 , 则P M 的最小值为 . , 对 于 四 面 体 下 列 命 题 正 确的是 1 3. A B C D ( 写出所有正确命题的编号 ) .
1 2 2 2 ( B) 槡 a +b +c . 2 2 2 2 2 槡 ( C) a +b +c . 槡 2
2 1 槡 ( ( C) . D) . 2 2 已知二面 角 α 1 0. l 0 °, P 为空间 - - β 的大小为8 中 任意一点 , 则过点 P 且与平面α 和平面β 所成的 角都是 4 0 ° 的直线的条数为 ( ( A) 1. B) 2. ( )
三棱锥 P - A 若三个侧面 5. B C 的 高 为 PH , ( 两两垂直 , 则 H 为 △A B C的 ) ( ) ( ) 内心 外心 A . B . ( ( C)垂心 . D)重心 . 四面体S-A 各个侧面都是边长为a 6. B C 中, , 的正三角形 , 分别是 则异面 EF S C 和A B 的中点 , 直线 E F 与S A 所成的角等于 ( ( A) 9 0 °. B) 6 0 °. ( ) ( ) C4 5 °. D1 3 5 °. ( )
B 与C D 所在的直线异面 ; ① 相对棱 A , 由顶点 作四面体的高 其垂足是 △B A C D ② 的三条高线的交点 ; B C 和 △A B D 的边 A B 上的 ③ 若分别作 △A 高, 则这两条高所在直线异面 ; 所得的三 ④ 分别作三组相 对 棱 中 点 的 连 线 ,
条线段相交于一点 ; 由它引出的另两条 ⑤ 最长棱必有某 个 端 点 , 棱的长度之和大于最长棱 . 若长为2的线段 MN 是异面直线a、 1 4. b的公 垂线段 , A, M ∈a, B, N ∈b, A M =6, B N =8, A B 则异面直线a, 1 4, b与公垂线 MN 所确定的 =2 槡 平面α, 所成的二面角为 . β 设平面α外两点A 和B 在 1 5. α 上的射影是A1 和 B1 , 已知 A 则直线 A1 =1, B B1 =2, A1B1 = 槡 3, A B 与平面α 所成的角为 . : 解答题 在三 棱 锥 S - A 1 6. B C 中, A B = ∠S A C ∠S

2 6. 槡 设点 D 到平面 A 由VD-ACM = CM 的距离为h, 2 6 槡 可求得 h VM-ACD 得 2 6 h = 8, . = 槡 3 设直线C D 与平面A CM 所成的角的大小为 θ,
3 1 5 槡 ( ( C) a. D) 槡 a. 5 3 在正方体 A 若 E 是线 4. B C D- A1B1C D1 中 , 1 ( 段 A1C 则直线 C E 垂直于 ) 1 上的动点 , ( A) A C. ( ) C A1D. ( B) B D. ( ) D A1D1 .
图3
所成的角的大小 ; ( )是否存在点 E 使得二面角 A- 3 D E- P 为直 二面角 ? 并说明理由 . 已知 : 四棱锥 P -A 1 9. B C D 的底面A B C D是 , 正方形 , 平面 P D⊥ A B C D P D =A D = 2. ( )求 P 1 C 与平面 P B D 所成的角 ; ( )求点 D 到平面 P 2 A C 的距离 ; ( ) 在线段 上是否存在 一 点 E, 使P 3 P B C⊥ 平面 A 若存在 , 确定E 点的位置 ; 若不存在 , 请 D E? 说明理由 .
图1
( )求证 : /面 B 1 O M/ C F; ( )求证 : 面 MD 2 F ⊥ 面E F C D; ( ) 3 求二面角 F- DM - C 的正切值 . )可利用线 面 平 行 的 判 定 或 面 面 平 分析 ( 1 ( )结合 ( )的 结 论 利 用 面 面 垂 直 的 判 行的性质 ; 2 1 ; ( ) , 定 3 有线面垂直 可考虑三垂线法求作二面角 . ) 解 ( 取C 连接 O 则O 1 F 的中点G , G、 B G, G / / 1C / 所以四边形 O D/ M B, G BM 为 平 行 四 边 2 / / /面 形, 故B 又O 所以 O G O M, M 面B C F, M/
面B C F ⊥ 面C D E F 于C F, ∴B G ⊥ 面C D E F, / / , , 面 面 ∵B G O M ∴O M ⊥ C D E F ∴ MD F 面 E F C D . ⊥ ( )在面 A 交 DM 的延 3 B C D 中作BH ⊥ DM , 长线于 H , 连F 由F H, B ⊥ 面A B C D 知 FH ⊥ 则 ∠F DM , HB 为所求角 . 设A 在直 角 三 角 形 A B =2 a, MD 中 , DM = 2 所以 s 5 a, i n∠DMA = . 槡 5 槡 在直 角 三 角 形 A MD 中 , B M = a,则 B H = 5 槡 2 a.
图2
( )求证 : 平面 A 1 BM ⊥ 平面 P C D; ( )求 直 线 C 2 D 与平面A CM 所 成 的 角 的 大小 ; ( )求点 N 到平面 A 3 CM 的距离 . ) 、 分析 ( 可 由 线 线 线面垂直找到面的垂 1 ( )线 面 角 既 可 直 接 作 出 来 , 线; 也可利用等积变 2 ( )点 到 面 的 距 离 通 常 利 换先求高 , 再 间 接 求 角; 3 用等积变换来求解 . ) 解 ( 依题设知 , 所 1 A C 是所作球面的直径 , 以A 又因为 P 则P M ⊥M C. A ⊥ 平面 A B C D, A⊥
— —2 · 复习参考 · 数学通讯 — 上半月 ) 0 1 1 年第 7、 8期(
1 0 3
点、 直线 、 平面之间的位置关系
金 飞
( ) 湖北省武汉三中 , 4 3 0 0 5 0
本单元重 、 难点分析 1. 重点 : 空间 点 、 线、 面 间 的 位 置 关 系; 直 线、 平 面平行的判定及性质 ; 直 线、 平面垂直的判定及性 质; 异面直线所成 角 ,直 线 与 平 面 所 成 角 , 两平面 所成角 ; 点 点 距、 点 线 距、 点面距以及两异面直线 间的距离 . ( )在空间 如 何 实 现 平 行 关 系 、 难点 : 垂直关 1 系、 垂直与平行关系之间的转化 ; ( ) “ 平移 ”求作异面直线所成角 ; 依托面面垂 2 直、 线面垂直 、 特 殊 点 在 面 上 的 射 影 求 作 线 面 角; 定义法 、 垂面法 、 三垂线法求作二面角 . ( ) 求距离的步骤 : 3 ① 找出或作出表示有关距 离的线段 ; ② 证明它符合定义 ; ③ 归结到某个三角 形中进行计算 . 典型例题选讲 2. 例 1 如图1, 在直三棱柱 A 面 D E -B C F 中, , 和面 都是 正 方 形 且 所 在 的 平 面 互 A B F E A B C D 相垂直 , M 为A B 的中点 , O 为D F 的中点 .
直平行六面体 A 7. B C D - A1B1C D1 的 所 有 1 棱长 为 2, 则 对 角 线 A1C 与 侧 面 AD = 6 0 °, ∠B ( D C C1D1 所成的角的正弦值为 ) 1 ( A) . 2 3 槡 ( B) . 4
自测题 ; 3. 选择题 : 设 m, 1. n 是两条不同的直线 , α, γ 是三个不 β, 同的平面 , 给出下列四个命题 : / / 则 m ⊥ n; n ① 若 m ⊥α, α, / / / / 则 m ⊥γ; m ⊥α, ② 若α γ, β, β / / / / / / 则m n n; ③ 若m α, α, / / 则α ④ 若α ⊥γ, β ⊥γ, β. ( 其中正确命题的序号是 ) ( A) B)② 和 ③ . ① 和 ②. ( ( ( C) D) ③ 和 ④. ① 和 ④. 若长方体的三个面的对角线长分别是 a, 2. b, ( 则长方体的体对角线长为 c, ) ( A)槡 a +b +c .
h 6, 6 槡 则s 所以θ = a i n r c s i n槡 . = θ= C D 3 3 N ( ) 可求得 P 因为 A 由P 3 C =6. N ⊥N C, = P A
8 3 P A, 8 N C 5 故点 得P 所以 N= , N = = , 3 9 P C 的5. 9 又因为 M 是 PD 的中点 , 则 P、 D 两点到平面 )可 知 所 求 距 离 为 5 A CM 的 距 离 相 等 ,由 ( 2 h 9 = 1 0 6 槡 . 2 7 说明 : 距离问题中点到面的距离应用广泛 , 如 求体积 , 求线面角 , 通常先转换再求解 .
相关文档
最新文档