人教版八年级下册数学《二次根式》练习题库(2019含答案)

合集下载

八年级数学下册《二次根式》练习题含答案

八年级数学下册《二次根式》练习题含答案

八年级数学下册《二次根式》练习题一、选择题(每题3分,共18分)1.下列各式中,是二次根式的为( ) A .π B .12 C D2.下列判断正确的是( )A .带根号的式子一定是二次根式;B 一定是二次根式C ;D .二次根式的值必定是无理数3 ) A .x 是非负数 B .x 是实数 C .x 是正实数 D .x 是不等于零的实数4.当x=5时,在实数范围内没有意义的式子是( )A B52=a-1成立的条件是( ) A .a<1 B .a ≠1 C .a ≥1 D .a ≤16有意义的实数x 的值有( )A .0个B .1个C .2个D .无数个二、填空题(每题3分,共12分)7.________. 8.当______时,代数式2x -有意义.9.计算:()2=______,()2=________. 10.把919写成一个正数的平方形式是________.三、计算题(8分)11.()2)2-)0.四、解答题(每题11分,共22分)12.若0<x<1,试化简:│x │+2.13.已知,求(xy-64)2的算术平方根.参考答案一、1.C2.B3.C4.C5.C6.B二、7.a≤3 28.x≥1且x≠29.175;4x10.2三、11.解:原式=32)2+8-1=9×2-9+8-1=16.四、12.解:原式=│x│+(1-x)-│x-1│-1,13.解:依题意,得70,70.xx-≥⎧⎨-≥⎩解得7≤x≤7,所以x=7.代入解得x=9..。

新人教版八年级数学下二次根式练习题及答案

新人教版八年级数学下二次根式练习题及答案

人教版八年级数学下二次根式练习题一、单项选择题(每小题2分,共20分) 1.下列各式是二次根式的是( )A.2--xB.xC.22+x D.22-x 2.x 的取值范围是( )A.1x >B.1x ≥C.1x ≤D.1x <)A.C.2-D.24.下列根式中属于最简二次根式的是( )5.下列计算错误..的是( )A.B.=C.=D.3= 6.估计202132+⨯的运算结果应在( ) A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间 7.最简二次根式x 26-与2是同类二次根式,则x 的值为( ) A.-2 B.2 C.-4 D.4 8.n 的最小值是( )A.2B.3C.4D.5 9.x ,小数部分为yy -的值是( )A.310.已知△ABC 的三边分别为2,x ,5,则化简22)7()3(-+-x x 的值是( )A.102-xB.4C.x 210-D.4- 二、填空题(每小题2分,共20分)1.已知2=a ,则代数式12-a 的值是.2.__________==.3.计算:825-=.4.比较大小:--). 5.若实数y x ,2(0y =,则xy 的值为.6.已知x y ==33_________x y xy +=7.三角形的一边长是cm 42,这边上的高是cm 30,则这个三角形的面积是2cm8.已知a ,b 为两个连续的整数,且a b <,则a b +=.9.如果101=+a a ,则221aa +的值是. 10.观察下列各式:①312311=+,②413412=+③514513=+,……请用含n (n ≥1)的式子写出你猜想的规律:.三、计算题(每小题5分,共20分);2.÷3.)632)(63(2-+;4.6)273482(÷-.四、求值题(每小题5分,共10分) 1.当1x =时,求代数式652--x x 的值.2.先化简,再求值:1212143222-+÷⎪⎭⎫ ⎝⎛---+x x x x x x,其中x =五、解答题(每小题7分,共14分) 1.若实数,x y满足1y <,求11y y --的值.2.解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值.六、解答题(每小题8分,共16分)1.已知正方形纸片的面积是232cm ,如果将这个正方形做一个圆柱的侧面,请问这个圆柱底面半径是多少?(精确到0.1,π取3.14)2.已知a 、b 、c 满足0235)8(2=-+-+-c b a .求:(1)a 、b 、c 的值;(2)试问:以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.3、已知,a b 为等腰三角形的两条边长,且,a b满足4b =,求此三角形的周长.4、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+;……仿上的规律计算10099199981431321211++++++++++ .参考答案第Ⅰ卷一、选择题:二、填空题:1.1;2.6,18;3.23;4.<;5.32;6.10;7.353;8.11;9.8;10.21)1(++n n . 三、1.334;2.223;3.6;4.22-. 四、1.575-;2.22. 五、1.-1;2.232. 六、1.0.7.2.(1)22=a ,5=b ,23=c ;(2)能构成三角形(525=>=+b c a ),其周长为525+.第Ⅱ卷一、10或11. 二、9.。

人教版八年级下册第十六章 二次根式: 二次根式化简计算的几种常见类型(含答案)

人教版八年级下册第十六章 二次根式: 二次根式化简计算的几种常见类型(含答案)

二次根式化简计算的几种常见类型学校:___________姓名:___________班级:___________考号:___________一、选择题1. 下列二次根式中,是最简二次根式的是( )A. 25B. 13C. 13D. 242. 如果(2a−1)2=1−2a,则a的取值范围是( )A. a<12B. a⩽12C. a>12D. a⩾123. 已知实数a,b在数轴上的对应点的位置如图所示,则化简a2+(a+1)2−(b−1)2结果为( )A. 2a+bB. −2a+bC. 2a−bD. −2a−b4. 若二次根式,32n的值是整数,则下列n的取值符合条件的是( )A. n=12B. n=15C. n=16D. n=185. 将一组数3,6,3,23,15,…,87,310按下面的方式进行排列: 3, 6, 3, 23, 15,32, 21, 26, 33, 30, ⋮按这样的方式进行下去,将15所在的位置记为(1,5),26所在的位置记为(2,3),那么62所在的位置应记为( )A. (2,5)B. (5,4)C. (6,2)D. (6,3)二、填空题6. 代数式x−6在实数范围内有意义时,x应满足的条件是.7. 细心观察图形,认真分析各式,然后解答问题.OA22=(1)2+1=2,S1=12;OA32=12+(2)2=3,S2=22;OA42=12+(3)2=4,S3=32….请用含有n(n是正整数)的等式表示上述变规律:OA n2=,S n=;8. 如图,从一个大正方形中截去面积分别为x2和y2的两个小正方形(空白部分).已知x=2−3,y=2+3,则留下阴影部分面积为.9. 已知x=7+1,x的整数部分为a,小数部分为b,则ab的值.10. 用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.则(−2)※3.三、计算题11. 计算:(1)52−22(2)(23+6)(23−6)(3)239x+6x4四、解答题12. 已知最简二次根式5a−5b与2a+4是同类二次根式,且(a−3c)2+b−5c=0,求15a+b−125c的值.13. 阅读下列计算过程:12+1=1×(2−1)(2+1)(2−1)=2−1;13+2=1×(3−2)(3+2)(3−2)=3−2;15+2=1×(5−2)(5+2)(5−2)=5−2.(1)根据上面运算方法,直接写出1n+1+n=____________;(2)利用上面的解法,请化简:12021+2020+12020+2019+12019+2018+⋅⋅⋅+12+1;(3)根据上面的知识化简1n+1+n.14. 阅读理解:已知x=2+1,求代数式x2−2x−5的值.王红的做法是:根据x=2+1得(x−1)2=2,∴x2−2x+1=2,得:x2−2x=1.把x2−2x作为整体代入:得x2−2x−5=1−5=−4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x=3−2,求代数式x2+4x−5的值;(2)已知x=5−12,求代数式x3+x2+1的值.15. 如图,在下列网格中,每个小正方形的边长都为1.(1)在图1中,画一个有一条边长为5,面积为8的平行四边形;(2)在图2中,画一个有一条边长为5,面积为10的矩形,并直接写出这个矩形的周长.周长=_______________.答案1. C2. B3. D4. D5. B6. x ≥67. n n 28. 29. 7+2 10. 3 3 11. 解:(1) 5 2−2 2 = 3 2 ;(2) (2 3+ 6)(2 3− 6)=(2 3)2−( 6)2=12−6=6 ;(3) 239x +6 x 4=23×3 x +6×12x =2 x +3 x =5 x .12. 解:∵最简二次根式 5a− 5b 与 2a +4是同类二次根式,∴5a− 5b =2a +4,即3a = 5b +4,∵(a−3c)2+ b− 5c =0,∴a−3c =0,b− 5c =0,∴a =3c ,b = 5c ,∴9c =5c +4,解得:c =1,∴a =3,b = 5,∴ 15a +b− 125c = 55×3+ 5−5 5×1=−1755. 13. 解:(1) n +1− n ;(2)1 2021+ 2020+1 2020+ 2019+1 2019+ 2018+…+1 2+1= 2021− 2020+ 2020− 2019+ 2019− 2018+…+ 2−1= 2021−1;(3)1 n +1+ n =1×( n +1− n )( n +1+ n )( n +1− n )= n +1− n n +1−n = n +1− n 1= n +1− n . 14. (1) ∵x = 3−2 ,∴x +2= 3 ,∴(x +2)2=( 3)2 ,∴x 2+4x =−1 ,∴x 2+4x−5=−6 ;(2) ∵x = 5−12,∴2x +1= 5 ,∴(2x+1)2=(5)2,变形整理得:x2+x=1,∴x3+x2+1=x(x2+x)+1=x+1=5−12+1=5+12.15.(1)解:如图所示,AB=5,AD=4,平行四边形ABCD的面积为4×2=8;(2)解:如图所示,AB=CD=5,BC=AD=25,BD=5,∴BD2=AB2+AD2,∴△BAD是直角三角形,且∠BAD=90∘,同理可得∠B=∠C=∠D=90∘,面积为AB×AD=10,∴四边形ABCD的周长为2(5+25)=65,故答案为:65.。

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题(文末附答案)单选题1、下列二次根式中,是最简二次根式的是( )A .√18B .√13C .√27D .√122、下列等式中成立的是( )A .(−3x 2y )3=−9x 6y 3B .x 2=(x+12)2−(x−12)2 C .√2÷(√2√3)=2+√6D .1(x+1)(x+2)=1x+1−1x+2 3、下列计算正确的是( )A .√8÷√2=2√2B .√9=±3C .√(−3)2=3D .√24=√2 4、已知m=(﹣√33)×(﹣2√21),则有( )A .5.0<m <5.1B .5.1<m <5.2C .5.2<m <5.3D .5.3<m <5.45、式子√a+1a−2有意义,则实数a 的取值范围是( )A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2 6、(√24-3√15+√223)×√2的值是 ( )A .163√3-3√30B .3√30-23 √3C .2√30-23 √3D .203√3- √307、√2的相反数是【 】A .√2B .√22C .−√2D .−√22 8、下列二次根式是最简二次根式的是( )A .√12B .√0.3C .√8D .√6填空题9、已知√a −b +|b −1|=0,则a +1=__.10、若二次根式√1x−1有意义,则x 的取值范围是__________.11、比较大小:√22 __________12(填写“>”或“<”或“=”). 12、已知x ﹣2=√2,则代数式(x +1)2﹣6(x +1)+9的值为_____.13、计算:(√5-2)2018(√5+2)2019的结果是_____.解答题 14、观察下列等式: √2+1=√2(√2+1)(√2−1)=√2−1 √3+√2=√3√2(√3+√2)(√3−√2)=√3−√2 √4+√3=√4√3(√4+√3)(√4−√3)=√4−√3 解答下列问题:(1)写出一个无理数,使它与3−√2的积为有理数; (2)利用你观察的规律,化简2√3+√11; (3)计算:1+√2√2+√3+⋯…3+√10.15、已知x =2+√3,y =2-√3.试求代数式x y +y x 的值.(带答案)人教版初中数学二次根式_003参考答案1、答案:B解析:根据最简二次根式的定义对各选项分析判断利用排除法求解.A 、√18=3√2不是最简二次根式,错误;B 、√13是最简二次根式,正确;C 、√27=3√3不是最简二次根式,错误;D 、√12=2√3不是最简二次根式,错误,故选B .小提示:本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、答案:D解析:根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可.解:A 、(−3x 2y )3=−27x 6y 3,故选项A 错误;B 、(x+12)2−(x−12)2=x 2+2x+14−x 2−2x+14=x 2+2x +1−x 2+2x −14=x ,故选项B 错误;C 、√2÷(√2√3)=√2÷(√3√2⋅√3√2√2⋅√3) =√2√3+√2√6=√2√6√3+√2=√3√3√2)(√3+√2)(√3−√2) =6−2√6,故选项C 错误;D 、1x+1−1x+2=x+2(x+1)(x+2)−x+1(x+1)(x+2)=x +2−x −1(x +1)(x +2) =1(x+1)(x+2),故选项D 正确,故选:D .小提示:本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.3、答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.4、答案:C解析:直接利用二次根式的乘法运算法则化简,进而得出m的取值范围.∵m=(−√33)×(−2√21)=2√7=√28,5.22=27.4,5.32=28.09,∴5.2<m<5.3.故选C.小提示:考查二次根式的乘除法,估算无理数的大小,掌握无理数的估算方法是解题的关键.5、答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.6、答案:A解析:解:原式=√48−3√30+√163=4√3−3√30+4√33=16√33−3√30.故选A.7、答案:C解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此√2的相反数是−√2.故选C.8、答案:D解析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、被开方数含分母,故A不符合题意;B、被开方数0.3=310,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.小提示:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、答案:2.解析:利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.∵√a−b+|b﹣1|=0,又∵√a−b≥0,|b−1|≥0,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.10、答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.11、答案:>解析:直接用√22−12,结果大于0,则√22大;结果小于0,则12大.解:√22−12=√2−12>0,∴√22>12,所以答案是:>.小提示:本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.12、答案:2解析:利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,∵x﹣2=√2,∴原式=(√2)2=2,故答案为2.小提示:本题考查应用完全平方公式进行因式分解,进而利用整体代入法求代数式的值,灵活应用公式进行因式分解是关键.13、答案:√5+2解析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.14、答案:(1)3+√2;(2)2√3−√11;(3)√10−1.解析:(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案.解:(1)∵(3−√2)(3+√2)=9−2=7,∴这个无理数为:3+√2;(2)2√3+√11=√3−√11)(2√3+√11)(2√3−√11)=2√3−√1112−11=2√3−√11;(3)1+√2√2+√3+⋯…+3+√10=√2−1+√3−√2+⋯+√10−√9=√10−1.小提示:本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键.15、答案:14解析:先计算出x+y、xy的值,再代入原式=x 2+y2xy=(x+y)2−2xyxy计算可得.解:∵x=2+√3,y=2−√3,∴x+y=2+√3+2−√3=4,xy=(2+√3)×(2−√3)=1,则原式=x 2+y2xy=(x+y)2−2xyxy=42−2×11=14.小提示:本题主要考查分母有理化与分式的加减运算,解题的关键是掌握分式加减运算法则、完全平方公式与平方差公式及二次根式的运算法则.11。

人教版--八下-第一章二次根式测试--含答案

人教版--八下-第一章二次根式测试--含答案

形的形状是(
)
A.底与边不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
11. 已知三角形的三边长分别为 a、b、c,求其面积问题,中外数学家曾经进行过深 入研究,古希腊的几何学家海伦(Heron,约公元 50 年)给出求其面积的海伦公式 S =
p(p

a)(p

b)(p

c),其中
p
=
x−1
A.x ≥− 1且 x ≠ 1
2
B.x ≠ 1
C.x ≥− 1
2
D.x >− 1且 x ≠ 1
2
4. 下列二次根式中,最简二次根式是( )
A. x − 1
B. 18
C. 1
16
5. 下列等式正确的是(

A.( 3)2 = 3
C. 33 = 3
6. 下列计算,正确的是( ) A. 8 = 4 B. ( − 4) × ( − 4) = 4 C. 12 ÷ 3 = 4 D. 4 − 2 = 2
解:∵ (a − 6)2 ≥ 0, b − 8 ≥ 0,|c − 10| ≥ 0, ∴ a − 6 = 0,b − 8 = 0,c − 10 = 0, 解得:a = 6,b = 8,c = 10, ∵ 62 + 82 = 36 + 64 = 100 = 102, ∴ 是直角三角形. 故选 D. 11. 【答案】 B 【考点】 二次根式的应用 【解析】 根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为 2,3,4 的面积,从 而可以解答本题. 【解答】
17. 观察下列各式:2 × 2 = 2 + 2;3 × 3 = 3 + 3;4 × 4 = 4 + 4 ;…

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(含答案解析)

最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(含答案解析)

一、选择题1.下列是最简二次根式的是( )A .6B .4C .15D .3 2.下列运算正确的是( ). A .235+= B .3223-= C .236⨯= D .632÷=3.下列式子中正确的是( )A .527+=B . 22a b a b -=-C .()a x b x a b x -=-D .683432+=+=+ 4.下列各式中,正确的是( )A .93±=B .93=±C .()233-=-D .()233-= 5.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b6.下列计算正确的是( )A ()23232-⨯=±B .263=C 523= D 622= 7.已知y 1110x x --,那么252x y x y +-的值等于( ) A .1B .78C .54-D .45- 8.58) A 5B 10C 5D 5229.下列二次根式中,最简二次根式是( )A 22a b -B 27C 32a a b -D 0.5a 10.已知,22a a 那么a 应满足什么条件 ( ) A .a >0 B .a≥0 C .a =0 D .a 任何实数 11.下列计算正确的是( )A .3236362⨯==B 4=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(223410-⨯++=12. ) A .1个 B .2个 C .3个 D .4个二、填空题13.已知最简根式a =________,b =________.14.已知52y =+的值为_________.15.若a 的小数部分,则()6a a +=_____.16.若3,m ,5________.17.20052006=________.18.若1y =,则x y -=_________.19.己知0a ≥a =.请你根据这个结论直接填空:(1=______;(2)若22120202021x +=+______20.1=-==,请从上述等式找出规律,并利用规律计算++⋅⋅⋅++=_________. 三、解答题21.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.22.(1;(2)计算:23.先化简,再求值:(1+12x +)÷293x x --,其中x 2.24.先化简,再求值:22111121x x x x x x --÷+--+,其中x +1.25.计算:(1(2)26.计算.(1(2)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义逐项分析即可.【详解】,是最简二次根式;=2,故不是最简二次根式,不符合题意;=,故不是最简二次根式,不符合题意;=,故不是最简二次根式,不符合题意;D.故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.2.C解析:C【分析】二次根式的加减法法则,乘除法法则计算并依次判断.【详解】A∴A选项不符合题意;B选项:原式=∴B选项不符合题意;C选项:原式==∴C选项符合题意;D=∴D选项不符合题意.故选:C.【点睛】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.3.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A、不是同类二次根式,不能合并,故错误,不符合题意;B、计算错误,不符合题意;C、符合合并同类二次根式的法则,正确,符合题意.D、计算错误,不符合题意;故选:C.【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.4.D解析:D【分析】根据二次根式的性质化简判断.【详解】A、3=±,故该项不符合题意;B3=,故该项不符合题意;=,故该项不符合题意;C3=,故该项符合题意;D3故选:D.【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.5.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b+=-a-b+a=-b,故选:A.【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.6.B解析:B【分析】根据二次根式的性质进行化简和计算,然后进行判断即可.【详解】解:A=,所以此选项错误;B,3===C-D,故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.7.D解析:D【分析】先根据二次根式的性质求出x、y的值,再代入代数式计算即可.【详解】解:因为y+10,可知10 10 xx-≥⎧⎨-≥⎩,即11xx≥⎧⎨≤⎩,解得x=1,所以y=10;所以,252x yx y+-=210520+-=﹣1215=﹣45.故选:D.【点睛】本题考查了二次根式的意义.解决此题的关键是要先根据二次根式意义求出x,y的值再代入所求的代数式中求值.8.B解析:B根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】===,4故选:B.【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.9.A解析:A【分析】根据最简二次根式的定义逐项判断即可得.【详解】A是最简二次根式,此项符合题意;B===C aD==故选:A.【点睛】本题考查了最简二次根式,熟记定义是解题关键.10.B解析:B【分析】与a的取值范围即可得到答案.【详解】∵a≥a的取值范围是任意实数,a的取值范围是0a≥,故a应满足的条件是0故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 11.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的 解析:72【分析】根据同类二次根式的定义得到122531b a b +=⎧⎨-=-⎩,解方程组即可. 【详解】由题得:122531b a b +=⎧⎨-=-⎩,解得:721a b ⎧=⎪⎨⎪=⎩. 故答案为:72,1. 【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键. 14.2【分析】依据二次根式有意义的条件可求得x 的值然后可得到y 的值最后代入计算即可【详解】∵∴∴故答案为:2【点睛】本题主要考查了二次根式有意义的条件依据二次根式有意义的条件得到xy 的值是解题的关键解析:2【分析】依据二次根式有意义的条件可求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵5y =, ∴3x =,5y =.∴2==.故答案为:2.【点睛】本题主要考查了二次根式有意义的条件,依据二次根式有意义的条件得到x 、y 的值是解题的关键.15.2【分析】根据<<可得的整数部分是3则小数部分a =﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a =﹣3∴a (a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4,∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.16.【分析】先根据三角形三边的关系判断2-m 和m-8的正负然后根据二次根式的性质化简即可【详解】解:∵3m5为三角形的三边长∴5-3<m<5+3∴2<m<8∴2-m<0m-8<0∴=-(2-m)+(m-解析:210m -【分析】先根据三角形三边的关系判断2-m 和m-8的正负,然后根据二次根式的性质化简即可.【详解】解:∵3,m ,5为三角形的三边长,∴5-3<m<5+3,∴2<m<8,∴2-m<0,m-8<0,∴=-(2-m)+(m-8)=-2+m+m-8=2m-10.故答案为:2m-10.【点睛】本题考查了三角形三条边的关系,以及二次根式的性质,熟练掌握二次根式的性质是解答本题的关键.17.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析:【分析】逆用积的乘方法则和平方差公式计算即可.【详解】解:原式=20052005⋅⋅ 2005⎡⎤=⋅⋅⎣⎦=-=故答案为:-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.18.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x与y的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x与y的值代入计算即可.【详解】由题意得20 20 xx-≥⎧⎨-≤⎩,∴2x=,0011y=++=,∴1x y-=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.19.4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042再利用平方差公式可计算出2x+1=40412然后根据二次根式的性质计算【详解】(1);故答案为:解析:4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042,再利用平方差公式可计算出2x+1=40412,然后根据二次根式的性质计算.【详解】(1=3=;故答案为:3;(2)∵x+1=20202+20212,∴x=20202+20212−1=20202+(2021+1)(2021−1)=2020×(2020+2022)=2020×4042,∴2x+1=2×2020×4042+1=4040×4042+1=(4041−1)(4041+1)+1=40412−1+1=40412,∴4041=.故答案为:4041.【点睛】本题考查了二次根式的性质与化简:利用二次根式的基本性质进行化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简.20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54 3⨯+---154 =+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.22.(1)6;(2【分析】(1)根据二次根式的乘法法则计算;(2)先化简二次根式,根据二次根式的减法法则计算.【详解】解:(1)原式23=⨯,236=⨯=;(2)原式==【点睛】此题考查二次根式的计算,掌握二次根式的乘法计算法则、减法计算法则是解题的关键.23.12x +, 【分析】 首先计算括号里面的加法,再算括号外的除法,化简后,再代入x 的值可得答案.【详解】 解:原式=(22x x +++12x +)•3(3)(3)x x x -+-, =32x x ++•3(3)(3)x x x -+-, =12x +,当x 2【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简.24.11x x -+,3. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:22111121x x x x x x --÷+--+ 21(1)1(1)(1)1x x x x x x -=-++--111x x x =-++ 11x x -=+,当1x =时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.25.(1)2)4【分析】(1)先将二次根式化为最简,然后合并同类二次根式即可;(2)运用平方差公式进行计算即可.【详解】(1)原式==(2)原式=22734-=-=.【点睛】本题考查二次根式的合并运算,难度不大,注意在计算中一些公式的运用.26.(1)-1;(2)-【分析】(1)先将二次根式利用平方差公式进行化简,再合并即可;(2)先去括号,同时化简二次根式然后计算乘法,将二次根式进行合并即可.【详解】解:(1)=22-=2-3=-1;(2)62⨯+,=-【点睛】 本题考查二次根式的计算,熟练掌握二次根式的运算法则与乘法公式是关键,还要注意最后结果需要化成最简二次根式.。

新人教版八年级下册二次根式练习及答案

新人教版八年级下册二次根式练习及答案

二次根式(A卷)一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分)15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2 (C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分)五、解答题(各小题8分,共24分)29. 有一块面积为(2a+ b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?二次根式(B卷)一、填空题(每题3分,共54分)2.-27的立方根= .二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).三、计算题(各小题6分,共30分)四、化简求值(各小题8分,共16分)五、解答题(各小题8分,共24分)二次根式(A卷)答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D23. 2430. 1.80二次根式(B卷)答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19. B 20. A。

【同步练习】人教版2019年 八年级数学下册 二次根式 计算题专练(含答案)

【同步练习】人教版2019年 八年级数学下册 二次根式 计算题专练(含答案)

2019年八年级数学下册二次根式计算题专练一、选择题:1、若y=有意义,则x的取值范围是( )A.x≠4B.x≤4C.x≥4D.x<42、有下列各式:①;②;③;④ (x>0);⑤;⑥.其中,最简二次根式有( )A.1个B.2个C.3个D.4个3、下列变形中,正确的是( )A.(2)2=2×3=6B. =﹣C. =D. =4、若,则( )A.a是整数B.a是正实数C.a是负数D.a是负实数或零5、下列二次根式:中,是最简二次根式的有( )A.2个B.3个C.4个D.5个6、已知xy<0,则化简后为( )A. B. C. D.7、下列各式中,一定能成立的是( )A. B.C.=x-1D.8、化简的结果为( )A. B. C. D.9、按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是( )A.14B.16C.8+5D.14+10、若,则化简的结果是( )A. B. C. 3 D. -311、实数a在数轴上的位置如图所示,则化简后为( )A. 7B. -7C. 2a-15D. 无法确定12、等腰三角形中,两边长为和,则此等腰三角形的周长为( )A. B. C.或 D.以上都不对二、填空题:13、已知a、b满足=a﹣b+1,则ab的值为.14、已知,化简二次根式的正确结果是_______________.15、比较大小:.16、若,则= .17、计算: .18、当a=﹣1时,代数式的值是.三、解答题:19、计算:(3-2)(3+2). 20、计算:(4+3)÷2;21、计算:(2+)(2﹣)﹣(﹣1)2. 22、计算:23、计算:; 24、计算:(+-)2-(-+)2.25、已知+=b+3(1)求a的值;(2)求a2﹣b2的平方根.26、先化简,再求值:,其中a=-.27、若的整数部分是,小数部分是,求的值.28、阅读下面计算过程:;.试求:(1)的值是;(2)(为正整数)的值是;(3)的值.29、先观察下列等式,再回答问题.①②③(1)请根据上面三个等式提供的信息,猜想的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.参考答案1、D2、B3、D4、D5、A.6、B.7、A8、A9、C10、C11、A12、B13、答案为:±.14、答案为:15、答案为:>.16、答案为:2.17、答案为:118、答案为:19、解:原式=(3)2-(2)2=9×2-4×3=6.20、原式=4÷2+3÷2=2+.21、原式=(2)2﹣()2﹣(3﹣2)=12﹣6﹣3+2=3+2.22、原式23、原式=4+3﹣15×+×4=4+3﹣5+=4﹣;24、原式=2×(2-2)=4-8.25、解:(1)∵,有意义,∴,解得:a=5;(2)由(1)知:b+3=0,解得:b=﹣3,则a2﹣b2=52﹣(﹣3)2=16,则平方根是:±4.26、,1-27、(1);(2)1028、解:(2)(3)=-1+=9 29、(1)(2)。

2019-2020学年度八年级数学下册《二次根式》综合测试含答案

2019-2020学年度八年级数学下册《二次根式》综合测试含答案

2019-2020学年度八年级数学下册《二次根式》综合测试含答案 学校:___________姓名:___________班级:___________考号:___________一、选择题22440a ab b ++=,则a b 的值为( )A.2B. 12C.-2D. 12- 2.设,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和53.下列各式中,最简二次根式是( )A .B .C .D .4.下列二次根式中,是最简二次根式的是( )A .2B .C .D .5.若1<x <2,则的值为( )A .2x ﹣4B .﹣2C .4﹣2xD .26.下列运算正确的是( )。

A. B.C.D. 7.若使二次根式在实数范围内有意义,则x 的取值范围是( )A .x ≥3B .x >3C .x <3D .x ≤38.下列命题:①负数没有立方根,②一个实数的立方根不是正数就是负数,③一个正数或负数的立方根与这个数的符号一致,④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确的是( )、3 D 、4二、填空题9.计算:|38﹣4|﹣(21)﹣2= .10.﹣+2的相反数是 .11.比较大小:√10___ 3;的平方根是_________;=_________.13.√3−x 有意义,x 的取值范围是__.14.有意义,则字母x 的取值范围是_____________. 232a aa =+94)9()4(-⨯-=-⨯-()63293a a =+=三、计算题15.计算:.16.计算:011(3)|2|()3--+-+17. 计算:﹣22(3﹣π)0﹣|﹣3|18.计算(1)24328-+(2)182712⨯÷四、解答题3a+b-1)的平方根是±4,求a+2b 的平方根.19.已知8,8,a b ab +=-=化简,并求值20.已知2x -y 的平方根为±4,-2是y 的立方根,求-2xy 的平方根.21. 先化简,再求值: 22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,,,2a =+2b =-22. 如果最简二次根式与是同类二次根式,那么要使式子x 的取值范围是什么?24.=_____, =_____, =_____, =_______, =_______,(1)根据计算结果,回答:a 吗?你发现其中的规律了吗?请你把得到规律描述出来.(2)利用你总结的规律,计算:.25. 计算:26. 已知实数x 、y 220x y -+=,求8+5x y 的平方根.27.计算(1)()22122⎛⎫- ⎪⎝⎭213π--答案1.B.【解析】1. 试题分析:化简得1 a +(2a+b )2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a =2﹣1=12.故答案选B .考点:非负数的性质.2.C【解析】2.试题分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a <4,∴a 在两个相邻整数3和4之间;故选C .3.D【解析】3.试题分析:根据最简二次根式的概念进行判断即可.解:被开方数含分母,不是最简二次根式,A 错误;=2不是最简二次根式,B 错误;=x 不是最简二次根式,C 错误;,是最简二次根式,D 正确,故选:D .4.A【解析】4.试题分析:最简二次根式的特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.解:A 、2是最简二次根式,故A 正确;B 、12=4×3,的被开放数中含有能够开方的因数,不是最简二次根式,故B 错误;C 、被开方数含分母,不是最简二次根式,故C 错误;D 、=,被开方数中含有能开得尽方的因式,故D 错误. 故选:A .点评:本题主要考查的是最简二次根式的定义,掌握最简二次根式的特点是解题的关键.5.D【解析】5.试题分析:已知1<x <2,可判断x ﹣3<0,x ﹣1>0,根据绝对值,二次根式的性质解答.解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.6.D【解析】6.试题分析:A、根据合并同类项的法则可得原式=3a;B、根据二次根式的化简法则可得原式=C、根据幂的乘方法则可得原式=276a;D、正确.考点:(1)、二次根式的计算;(2)、同底数幂的计算7.A【解析】7.在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选A.考点:二次根式有意义的条件.8.A【解析】8.试题分析:①、任何数都有立方根;②、零的立方根为零;③、一个正数或负数的立方根与这个数的符号一致;④、如果一个数的立方根等于它本身,那么它一定是1、-1或0.考点:立方根9.﹣2.【解析】9.试题分析:根据立方根的性质以及绝对值的性质、负整数指数幂的性质分别化简后合并即可,即原式=|2﹣4|﹣4=2﹣4=﹣2.考点:实数的运算.10.﹣2【解析】10.试题分析:根据相反数的定义,即可解答.解:﹣+2的相反数是:﹣(﹣+2)=﹣2,故答案为:﹣2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.11.【解析】11.试题分析:根据,,即可比较大小.,考点:本题考查的是实数的大小比较点评:解答本题的关键是注意此类比较大小的问题往往是把两个数平方后再比较.12. 32± 2【解析】12.94= ,的平方根是32=± ,22=;故答案是:(1). 32±(2). 2. 13.x≤3【解析】13.试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.14.x>2【解析】14.试题解析:根据题意得:x-2>0解得:x>2.15.5【解析】15.试题分析:分别根据绝对值的性质、负整数指数幂的运算法则及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.解:原式=3+1﹣2+3=5..【解析】16.试题分析:根据实数的运算,即可解答.试题解析:原式=1+2-3+().考点:1.实数的运算;2.零指数幂;3.负整数指数幂.17.-4【解析】17.试题分析:分别进行乘方、二次根式、零指数幂和绝对值的化简等运算,然后合并求解.试题解析:﹣22+(3﹣π)0﹣|﹣3|=﹣4+2+1﹣3=﹣4考点:实数的运算 18.6226-; 22.【解析】18.试题分析:(1)先化简每一个二次根式,在合并即可;(2)按照运算顺序计算即可. 试题解析:(1)原式=6226622422-=-+;(2)原式=228182712==⨯÷.考点:二次根式的计算.19.±3.【解析】19.试题分析:先根据题意得出2a-1=9,3a+b-1=16,然后解出a=5,b=2,从而得出a+2b=5+4=9,所以a+2b 的平方根为±3.试题解析:∵2a-1的平方根为±3,3a+b-1的平方根为±4,∴2a-1=9,3a+b-1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b 的平方根为±3.考点:平方根.20.【解析】20.试题分析:根据二次根式的性质和最简二次根式的概念可直接化简,然后代入求值. 试题解析:∵a+b=-8<0,ab=8>0∴a<0 b<0a b=--=当a+b=-8,ab=8,式=考点:二次根式的化简求值21.±8【解析】21.试题分析:根据2x-y的平方根是±4,得出2x-6=16;-2是y的立方根,则y=-8,最后求出-2xy的值,然后进行计算.试题解析:根据题意得:2168x yyì-=ïí=-ïî解得:48xyì=ïí=-ïî∴-2xy-2×4×(-8)=64 ∴-2xy=±8考点:(1)、二元一次方程组;(2)、平方根;(3)、立方根22.原式=2a b-=-【解析】22.试题分析:先根据分式的运算法则化简后再代入求知即可.试题解析:原式=()()()()()()2222222a b a b a bab a b abab a b ab ab a b a ba b+----÷=⋅=-++---把2a=+2b== =3- .23.a=5;5≤x≤10【解析】23.试题分析:先根据二次根式的定义,列方程求出a的值,代入x的取值范围即可.∴3a-8=17-2a∴a=52020{50xx-≥-≥解得:510x≤≤.24.4,0.8,0,3,23(1)不一定等于a;其中的规律是:当a≥0时,a=;当a<0时,a=-(2=3.15π-【解析】24.试题分析:分别计算,根据规律求解即可.试题解析:=4,=0.8,=0,=3,=23,(1a ;其中的规律是:当a≥0时,a =;当a <0时,a =-(2)利用规律,计算:= 3.15π-25.原式=【解析】25.先去括号,然后进行二次根式的乘法运算.解:原式=“点睛”此题考查了二次根式的乘法运算,熟练掌握运算法则是解本题的关键.26.85x y +的平方根是4±【解析】26.试题分析:利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可得出所求式子的平方根.试题解析:由题意得2310{220x y x y --=-+=, 解得8{5x y ==, ∴x+85y=16,∴4=± 则x+85y 的平方根为±4.27.(1)0;(2π【解析】27.(1)原式=4+(-4)×14-3=0(2)原式(π-3)+2-π。

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。

(完整版)八年级数学下册二次根式练习题及答案

(完整版)八年级数学下册二次根式练习题及答案

八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。

1、当x ________时,2?x在实数范围内有意义。

2、计算: =________。

3、化简: = _______。

4、计算:2×=________。

5、化简:=_______。

6、计算:÷7、计算:-20-5=_______。

8化简: = ______。

1235=_______。

二、选择题。

、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。

17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。

44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。

20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。

1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。

新人教版八年级下册二次根式练习题及参考答案:

新人教版八年级下册二次根式练习题及参考答案:

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .14310.计算:ab ab b a1⋅÷等于 ( )A .ab ab 21B .ab ab 1C .ab b 1D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅b aa b182____________;=-222425__________.15.计算:=⋅b a 10253___________.16.计算:2216a cb =_________________.17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(b a b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc4322-.23.(6分)已知:2420-=x ,求221x x +的值.参考答案:一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学《二次根式》练习题库
一、二次根式有意义的条件:
1、若二次根式1-5x 有意义,则x 的取值范围是 。

2、若二次根式x 2-3有意义,则x 的取值范围是 。

3、若二次根式12+x 有意义,则x 的取值范围是 。

4、若代数式
1
-1
x x +有意义,则x 的取值范围是 。

5、若代数式
3
1
+x 有意义,则x 的取值范围是 。

6、若二次根式
x
-15
有意义,则x 的取值范围是 。

二、二次根式的定义的应用:
1、若a 、b 满足a b b b a 则,3-22-++=的值是 。

2、已知x 、y 都是实数,且y x x x y 3,25-66-+++=则的算术平方根是 。

3、若x 、y 都是实数,且3-7
x -99-22x x y ++=,则=+y x 65 。

三、二次根式的性质:
1、计算:
(1)2)6( (2)2
)7
2( (3)2)2.0(
(4)2)32( (5)2)5.0-( (6)2)3
23-(
2、化简:
(1)23.0 (2)2)3-( (3)2)3
2
-(
(4)25- (5)2)5
2
-(- (6)2) -3(π
四、二次根式的运算:
1、化简:
(1)45 (2)31 (3)5
41
(4)2.0 (5)212
(6)6
3
(7)a 27 (8)3
x
(9)b a 220
(10)x xy 22 (11)n n
35 (12)y
y 5345-2
2、计算:
(1)246× (2)183
1
× (3)354÷
(4)6
5
321÷ (5)52154÷ (6)65027÷×
(7)515432÷× (8)182
1
482×÷
(9)254
3
122÷× (10)x y xy 1552•÷
3、计算:
(1)8-205-2+ (2)48-2775+
(3)322
1
4-18+ (4)45220-515+
(5)322
1
-20-21253+ (6)3115-48412712++
(7))68(-)2-24(+ (8))3
2224(-)612-63(+
4、计算: (1)22)2
1
-8(× (2)28-32(÷)
(3)81-63218×+ (4)
50243
1

(5)102-53× (6)2)4-(224-27+÷
(7)3)3312-123(×+ (8)8
16-3)5-242(×
(9)2)2-3(6-3212++× (10))6-8(2)3-2)(3(2++
(11))4-3)(43()1-32(2++ (12)2)1-53(-)34-7)(34(7+
(13))22-3)(322()3-2(2++ (14)
2)3-5(-)7-52)(75(2+
五、化简,求值:
1、已知22-6,226=+=y x .求22-y x 的值。

2、若13,1-3+==y x ,求22y xy x ++的值。

3、已知2-3,23=+=y x ,求下列各式的值:
(1)x
y
y x + (2)223y xy x ++
4、先化简,再求值:1
--44-222x x x x x x x x ++÷+,其中31+=x .
5、先化简,再求值:
)1
1
--1-(1-12-22+÷+m m m m m m ,其中32+=m .
人教版八年级下册数学《二次根式》练习题库
参考答案
一、二次根式有意义的条件:
(1)5
1
≥x
(2)2
3
≤x
(3)任意实数
(4)1x 1-≥≠且x
(5)3->x
(6)1<x
二、二次根式的定义的应用:
(1)8
(2)9
(3)-22
三、二次根式的性质:
1、计算: (1)6
(2)
7
2 (3)2.0
(4)12 (5)5.0
(6)6
2、化简: (1)3.0
(2)3 (3)
3
2 (4)-5
(6)5
2
-
(6)3-π
四、二次根式的运算:
1、化简: (1)53
(2)
3
3 (3)5
5
3 (4)
55 (5)3 (6)
2
6 (7)a 33
(8)
3
3x (9)b a 52 (10)x y 2 (11)3
5n
(12)-1
2、计算: (1)12
(2)6 (3)23 (4)2 (5)32
(6)15
(7)24
(8)26
(9)
10
2
3 (10)y x 3
3、计算: (1)2-5 (2)34 (3)25 (4)55 (5)2-5 (6)3
(7)23-6
(8)0
4、计算: (1)6
(2)2
(3)
4
2
35 (4)27
(5)5 (6)34+ (7)19 (8)
15-2
2
21 (9)6-8 (10)32-5 (11)34-12 (12)45-56
(13)62-
(14)1-56
五、化简,求值:
1、解:
[][
]2
482412)22-6(-)226()22-6()226()
-)((-22=×=+++=+=y x y x y x
2、解:
10
2-12)1-3)(13(-)1-313(-)(222
2==+++=+=++xy
y x y xy x 3、解:
13
1)32()(3)2(10
112-)32(2-)()1(1
)2-3)(23(32)2-3()23(2
-3,2322222222=+=++=++=×=+=+=+∴=+==++=+∴=+=xy y x y xy x xy xy y x xy y x x y y x xy y x y x
4、解:
33
21-3121-2311
-21
--1-21--)1-()2(22=
+=+==+=+•+=x x x x x x x x x
x x x x x 代入得把原式
5、解:
3
-2)
3-2)(32()
3-2(3211321)
1-(1)1-)(1()1-()
1
1
--11-()1-)(1()1-(222=+=+=+==+•
+=++÷+=m m m
m m m m m m m m m m m m m 代入把原式。

相关文档
最新文档