2017-2018学年湖北省黄石市九年级(上)期末数学试卷(解析版)(20200706092017)
湖北省黄石市九年级上学期数学期末考试试卷
湖北省黄石市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·咸宁) 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A . 主视图和左视图相同B . 主视图和俯视图相同C . 左视图和俯视图相同D . 三种视图都相同2. (2分)二次函数y=(x-1)2-2图象的对称轴是()A . 直线x=-1B . 直线x=1C . 直线x=-2D . 直线x=23. (2分)(2016·安徽模拟) 若一个几何体的俯视图是圆,则这个几何体不可能是()A . 圆柱B . 圆锥C . 正方体D . 球4. (2分)(2020·贵港模拟) 如图,四边形是边长为1的正方形,为所在直线上的两点,若,则下列结论正确的是()A .B .C .D . 四边形的面积为5. (2分)(2020·永嘉模拟) 如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,则k等于()A . 2B . 3C . 4D . 66. (2分) (2017八下·承德期末) 如图,四边形ABCD中,AB=15,BC=12,CD=16,AD=25,且∠C=90°,则四边形ABCD的面积是()A . 246B . 296C . 592D . 以上都不对7. (2分) (2017九上·新乡期中) 设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1 , y2 , y3的大小关系为()A . y2>y1>y3B . y1>y3>y2C . y3>y2>y1D . y3>y1>y28. (2分)将x=代入反比例函数y=-中,所得函数值记为y1 ,又将x=y1+1代入函数中,所得函数值记为y2 ,再将x=y2+1代入函数中,所得函数值记为y3 ,……,如此继续下去,则y2012的值为()A . 2B . -C .D . 69. (2分) (2019七下·北区期末) 如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A .B .C .D .10. (2分) (2017九上·宁城期末) 如图,已知在▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,AD=5,DC=4 则DA′的大小为().A . 1B .C .D .二、填空题 (共8题;共9分)11. (1分)如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠OCD=________.12. (1分)(2016·永州) 已知反比例函数y= 的图象经过点A(1,﹣2),则k=________.13. (1分) (2019九上·沙坪坝月考) ________.14. (2分)如图,把两个等腰直角三角板如图放置,点F为BC中点,AG=1,BG=2,则CH的长为________.15. (1分) (2020·黄浦模拟) 已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是________.16. (1分)(2017·东海模拟) 一个圆锥的侧面展开图是半径为16,且圆心角为90°的扇形,则这个圆锥的底面半径为________.17. (1分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.18. (1分) (2019九上·利辛月考) 在平面直角坐标系中,函数y=-x+3a+2(a≠0)和y=x2-ax的图象相交于P,Q两点若P,Q都在x轴的上方,则实数a的取值范围是________ 。
湖北省黄石市九年级上学期数学期末考试试卷
湖北省黄石市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·香洲模拟) 由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A .B .C .D .2. (2分) (2020九上·秦淮期末) 二次函数y=3(x-2)2-1的图像顶点坐标是()A . (-2,1)B . (-2,-1)C . (2,1)D . (2,-1)3. (2分)如图,是某种工件和其俯视图,则此工件的左视图是()A .B .C .D .4. (2分)(2017·盘锦模拟) 如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是()A .B .C .D .5. (2分) (2018九下·扬州模拟) 如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC 于点N.若CM=3,AN=4,则tan∠CAN的值为()A .B .C .D .6. (2分) (2016九上·南开期中) 如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C(0,9),D(0,﹣1),则线段AB的长度为()A . 3B . 4C . 67. (2分) (2017九上·北京月考) 已知二次函数的图象如图所示,有下列4个结论:① ;② ;③ ;④ ,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个8. (2分)反比例函数y=(k≠0)的图象经过点(2,5),若点(-5,n)在反比例函数的图象上,则n等于()A . -10B . -5C . -2D .9. (2分)(2018·乌鲁木齐) 如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△B PQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE= ;③当0≤t≤10时,y= t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A . 2个B . 3个C . 4个10. (2分)如图4,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有()A . 内切、相交B . 外离、相交C . 外切、外离D . 外离、内切二、填空题 (共8题;共9分)11. (1分)(2014·南通) 如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________度.12. (1分) (2019九下·徐州期中) 已知反比例函数的图像经过点,那么的值是________.13. (1分)(2018·奉贤模拟) 计算:tan60°﹣cos30°=________.14. (2分)如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.15. (1分)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC 平移一定的距离得到△D1B1C1 ,连接AC1 , BD1 .如果四边形ABD1C1是矩形,那么平移的距离为________.16. (1分)用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是________cm.17. (1分)(2017·浙江模拟) 已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为________.18. (1分) (2020九上·嘉陵期末) 将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。
湖北省黄石市九年级上学期数学期末测试卷
湖北省黄石市九年级上学期数学期末测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共36分)1. (3分) (2019七下·句容期中) 若a=﹣0.32 , b=﹣3﹣2 , c=,d=,则()A . a<b<c<dB . b<a<d<cC . a<d<c<bD . c<a<d<b2. (3分)已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是()A . 1B . 2C . -2D . -13. (3分) (2018九上·仙桃期中) 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A 点落在位置,若,则的度数是()A . 50°B . 60°C . 70°D . 80°4. (3分)(2017·茂县模拟) 下列事件,是必然事件的是()A . 掷一枚六个面分别标有1~6的数字的均匀正方体骰子,骰子停上转动后偶数点朝上B . 从一幅扑克牌中任意抽出一张,花色是红桃C . 在同一年出生的 367 名学生中,至少有两人的生日是同一天D . 任意选择在播放中电视的某一频道,正在播放新闻5. (3分) (2019九上·思明期中) 下列图形中是中心对称图形的是()A . 平行四边形B . 锐角三角形C . 直角三角形D . 钝角三角形6. (3分)(2019·赤峰模拟) 某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确是()A . 289(1﹣x)2=256B . 256(1﹣x)2=289C . 289(1﹣2x)2=256D . 256(1﹣2x)2=2897. (3分)(2016·甘孜) 将y=x2向上平移2个单位后所得的抛物线的解析式为()A . y=x2+2B . y=x2﹣2C . y=(x+2)2D . y=(x﹣2)28. (3分) (2019九上·南浔月考) 二次函数y=ax2+bx+c(a>0)图象的顶点为D ,其图象与x轴的交点A、B的横坐标分别为-1,3.与y轴负半轴交于点C ,在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△AC B为等腰三角形的a值可以有三个.其中正确的结论是()A . 1B . 2C . 3D . 49. (3分) (2020八下·临江期末) 如图,在正方形中,,点在边上,且,将沿折叠得到,延长交边于点,则的长为()A . 2B .C . 3D .10. (3分) (2018九上·瑞安期末) 二次函数与一次函数的图象交于点A(2,5)和点B(3,m),要使,则的取值范围是()A .B .C .D . 或11. (3分) (2020九上·南沙期末) 函数y=ax2与y=﹣ax+b的图象可能是()A .B .C .D .12. (3分)(2020·南召模拟) 如图,AB是半圆O的直径,半径OC⊥AB于点O,点D是的中点,连接CD,OD,BD,下列四个结论:①AC∥OD;②CD=BD;③△ODE∽△CAE;④∠ADC=∠BOD.其中正确结论的序号是()A . ①②③④B . ①②④C . ②③D . ①④二、填空题 (共5题;共15分)13. (3分) (2017九上·遂宁期末) 如果2+ 是方程的一个根,那么c的值是________.14. (3分) (2018·阳新模拟) 已知扇形的弧长为π,半径为1,则该扇形的面积为________15. (3分)如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是________.16. (3分)(2020·凤县模拟) 如图,在中,,,,点F在边AC 上,点E为边BC上的动点,将沿直线EF翻折,点C落在点P处.若,则点P到AB距离的最小值为________.17. (3分) (2016八下·万州期末) 如图所示,矩形ABCD的面积为128cm2 ,它的两条对角线交于点O1 ,以AB、AO1为两边邻作平行四边形ABC1O1 ,平行四边形ABC1O1的对角线交于点O2 ,同样以AB、AO2为两邻边作平行四边形ABC2O2 ,…,依此类推,则平行四边形ABC7O7的面积为________.三、计算题 (共2题;共17分)18. (8分) (2020七下·北京月考) 解方程:(1)(2)19. (9分) (2018九上·东台月考) 解方程:(1) x﹣1=(1﹣x)2;(2) x2﹣2(x+4)=0.四、解答题 (共5题;共52分)20. (10分) (2016九上·北京期中) 如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2 .21. (10分)(2018·秀洲模拟) 为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数。
湖北省黄石市 九年级(上)期末数学试卷
九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.给出下列一组数:227,0.3⋅,3−8,0.10010001…,π-3.14,其中无理数的个数为()A. 0B. 1C. 2D. 32.下列四个图形中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学记数法将7.5忽米记为米,则正确的记法为()A. 7.5×105米B. 0.75×106米C. 0.75×10−4米D. 7.5×10−5米4.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b−3ba2=0D. 5a2−4a2=15.对于非零实数a、b,规定a⊗b=1b−1a.若2⊗(2x-1)=1,则x的值为()A. 56B. 54C. 32D. −166.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为()A. (−3,1)B. (−1,3)C. (3,1)D. (−3,−1)7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A. 44∘B. 60∘C. 67∘D. 77∘8.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A. 100∘B. 80∘C. 50∘D.40∘9.如图,正比例函数y=x与反比例函数y=4x的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=4x的函数值时,x的取值范围()A. x>2B. x<−2C. −2<x<0或0<x<2D. −2<x<0或x>210.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. 5B. 2C. 52D. 25二、填空题(本大题共6小题,共18.0分)11.使二次根式1−2x有意义的x的取值范围是______.12.分解因式:ab3-4ab=______.13.分式方程xx−2-2x2−4=1的解是______.14.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=______度.15.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x 的方程x2+px+q=0有实数根的概率是______.16.如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.三、计算题(本大题共3小题,共21.0分)17.计算:|3−2|+2-1-cos60°-(1-2)0.18.先化简,再求值:(x+2+52−x)•2x−43−x,其中x满足x2-4=0.19.关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?四、解答题(本大题共6小题,共51.0分)20.解不等式组x−3(x−2)≤812x−1<3−32x,将解集在数轴上表示出来,并求出此不等式组的所有整数解.21.如图,正方形ABCD中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.求证:(1)BF=AE;(2)AF⊥DE.22.学习成为现代城市人的时尚,我市图书馆吸引了大批读者,有关部门统计了2018年第一季度到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有______万人到市图书馆阅读,其中商人所占百分比是______.(2)将条形统计图补充完整.(3)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工.23.为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.24.如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连结AC,将△ACE沿AC翻转得到△ACF,直线FC与直线AB相交于点G.(1)求证:FG是⊙O的切线;(2)若B为OG的中点,CE=3,求⊙O的半径长;(3)①求证:∠CAG=∠BCG;②若⊙O的面积为4π,GC=23,求GB的长.25.如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:,0.,=-2,0.10010001…,π-3.14,其中无理数为:0.10010001…,π-3.14,共2个数.故选:C.直接利用无理数的定义分析得出答案.此题主要考查了无理数,正确把握无理数的定义是解题关键.2.【答案】B【解析】解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【答案】D【解析】解:7.5忽米用科学记数法表示7.5×10-5米.故选:D.小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b-3ba2=0,C正确;D、5a2-4a2=a2,D错误,故选:C.先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.本题主要考查的是同类项的概念和合并同类项的法则,掌握合并同类项的法则:系数相加作为系数,字母和字母的指数不变.5.【答案】A【解析】解:根据题意得:2⊗(2x-1)=-=1,去分母得:2-(2x-1)=4x-2,去括号得:2-2x+1=4x-2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选:A.根据题中的新定义化简所求式子,计算即可得到结果.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.【答案】A【解析】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(-,1).故选:A.过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.【答案】C【解析】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED-∠A=46°,∴∠BDC==67°.故选:C.由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.【答案】D【解析】解:∵∠AOB=80°∴∠ACB=∠AOB=40°.故选:D.由圆周角定理知,∠ACB=∠AOB=40°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.【答案】D【解析】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(-2,-2)∴当x>2或-2<x<0故选:D.由题意可求点B坐标,根据图象可求解.本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.10.【答案】C【解析】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a-1,DC=aRt△DEC中,a2=22+(a-1)2解得a=故选:C.通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.11.【答案】x≤12【解析】解:由题意得:1-2x≥0,解得:x≤.故答案为:x≤.根据二次根式有意义的条件可得1-2x≥0,再解不等式即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】ab(b+2)(b-2)【解析】解:ab3-4ab,=ab(b2-4),=ab(b+2)(b-2).故答案为:ab(b+2)(b-2).先提取公因式ab,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.【答案】x=-1【解析】解:-=1,去分母得x(x+2)-2=(x+2)(x-2),解得x=-1,检验:当x=-1时,(x+2)(x-2)≠0,所以原方程的解为x=-1.故答案为:x=-1.方程两边都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解.本题考查了解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.14.【答案】50【解析】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°-25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°-65°-65°=50°,故答案为:50.首先利用切线长定理可得PA=PB,再根据∠OBA=∠BAC=25°,得出∠ABP的度数,再根据三角形内角和求出.此题主要考查了切线的性质以及三角形内角和定理,得出∠ABP是解决问题的关键.15.【答案】23【解析】解:画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有4种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+px+q=0有实数根的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】(-21009,-21010)【解析】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2019=504×4+3,∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).故答案为(-21009,-21010).根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.17.【答案】解:原式=2-3+12-12-1=1-3.【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=(x2−4x−2-5x−2)•2(x−2)−(x−3)=x2−9x−2•2(x−2)−(x−3)=(x+3)(x−3)x−2•2(x−2)−(x−3)=-2(x+3)=-2x-6,∵x满足x2-4=0,∴x=±2,又∵x=2时,分式没有意义,∴x=-2,则原式=-2×(-2)-6=4-6=-2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再解方程得出x的值,继而由分式有意义的条件得出确定的x的值,代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.19.【答案】解:(1)[(m-1)x-(m+1)](x-1)=0,(m-1)x-(m+1)=0或x-1=0,所以x1=m+1m−1,x2=1;(2)x=m+1m−1=1+2m−1,由于m为整数,所以当m-1=1或2时,x=m+1m−1为正整数,此时m=2或m=3,所以m为2或3时,此方程的两个根都为正整数.【解析】(1)利用因式分解法解方程易得x1=,x2=1;(2)由于x=1为正整数,则x=为正整数,先变形为1+,然后利用整数的整除性可确定m的值为2或3.本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.【答案】解:x−3(x−2)≤8①12x−1<3−32x②解不等式①,得:x≥-1,解不等式②,得:x<2,则不等式的解集为:-1≤x<2,将不等式解集表示在数轴上如图:此不等式组的所有整数解为:-1,0,1.【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上,由两不等式解集的公共部分可得不等式组的解集,即可求得解集内所有整数解.本题考查了解一元一次不等式组:先分别解两个不等式,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了数轴表示不等式的解集.21.【答案】证明:(1)∵四边形ABCD是正方形,∴AD=AB,∠DAE=∠ABE=90°,在Rt△DAE与Rt△ABF中,AD=ABDE=AF,∴Rt△DAE≌Rt△ABF(HL),∴BF=AE;(2)∵Rt△DAE≌Rt△ABF,∴∠ADE=∠BAF,∵∠ADE=∠AED=90°,∴∠BAF=∠AEG=90°,∴∠AGE=90°,∴AF⊥DE.【解析】(1)根据正方形的性质得到AD=AB,∠DAE=∠ABE=90°,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到∠ADE=∠BAF,根据余角的性质即可得到结论.本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.22.【答案】16 12.5%【解析】解:(1)这段时间,到图书馆阅读的总人数为4÷25%=16(万人),其中商人所占百分比为×100%=12.5%,故答案为:16,12.5%;(2)职工的人数为16-(4+2+4)=6(万人),补全条形图如下:(3)估计其中职工人数为28000×=10500(人).(1)用学生数除以其所占的百分比即可得到总人数,然后用商人数除以总人数即可得到商人所占的百分比;(2)根据各职业人数之和等于总人数可得职工的人数,据此可补全图形;(3)用总人数乘以职工占总人数的百分比即可得到职工人数.本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息.23.【答案】解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:y=x+8010x+4y=2000,解得x=120y=200∴一套课桌凳和一套办公桌椅的价格分别为120元、200元;(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000-120×20m-200×m≤24000,解得:21713≤m≤24813,∵m为整数,【解析】(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可;(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出16000≤80000-120×20m-200×m≤24000求出即可.此题主要考查了二元一次方程组的应用和不等式组的应用,根据已知得出不等式关系是解题关键.24.【答案】(1)证明:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,∵△ACE沿AC翻折得到△ACF,∴∠OAC=∠FAC,∠F=∠AEC=90°,∴∠OCA=∠FAC,∴OC∥AF,∴∠OCG=∠F=90°,∴OC⊥FG,∴直线FC与⊙O相切;(2)解:连接BC.∵点B是Rt△OCG斜边的中点,∴CB=12OG=OB=OC,∴△OCB是等边三角形,且EC是OB上的高,在Rt△OCE中,∵OC2=OE2+CE2,即OC2=14OC2+(3)2,∴OC=2,即⊙O的半径为2.(3)①∵OC=OB,∴∠CBA=∠OCB,∵∠CAG+∠CBA=90°,∠BCG+∠BCO=90°,∴∠CAG=∠BCG.②∵4π=π•OB2,∴OB=2,由①可知:△GCB∽△GAC,∴AGCG=CGGB,即AB+GBCG=CGGB,∴4+GB23=23GB,解得GB=2.【解析】(1)连接OC,由OA=OC得∠OAC=∠OCA,根据折叠的性质得∠OAC=∠FAC,∠F=∠AEC=90°,则∠OCA=∠FAC,于是可判断OC∥AF,根据平行线的性质得∠OCG=∠F=90°,然后根据切线的性质得直线FC与⊙O相切;(2)首先证明△OBC是等边三角形,在Rt△OCE中,根据OC2=OE2+CE2,构建方程即可解决问题;(3)①根据等角的余角相等证明即可;②利用圆的面积公式求出OB,由△GCB∽△GAC,可得=,由此构建方程即可解决问题;本题属于圆综合题,考查了切线的判定,解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想思考问题,属于中考压轴题.25.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B (-3,3),O(0,0)可得4a−2b+c=09a−3b+c=3c=0,解得a=1b=2c=0.故抛物线的解析式为y=x2+2x;(2)①当AO为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2,则D在x轴下方不可能,∴D在x轴上方且DE=2,则D1(1,3),D2(-3,3);②当AO为对角线时,则DE与AO互相平分,∵点E在对称轴上,对称轴为直线x=-1,由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1)故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1);(3)存在,如图:∵B(-3,3),C(-1,-1),根据勾股定理得:BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2.∴△BOC是直角三角形.假设存在点P,使以P,M,A为顶点的三角形与△BOC相似,设P(x,y),由题意知x>0,y>0,且y=x2+2x,①若△AMP∽△BOC,则AMBO=PMCO,即x+2=3(x2+2x)得:x1=13,x2=-2(舍去).当x=13时,y=79,即P(13,79).②若△PMA∽△BOC,则AMCO=PMBO,即:x2+2x=3(x+2)得:x1=3,x2=-2(舍去)当x=3时,y=15,即P(3,15).故符合条件的点P有两个,分别是P(13,79)和(3,15).【解析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;(2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标;(3)根据相似三角形对应边的比相等可以求出点P的坐标.本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标.。
2017-2018年湖北省黄石市初三上学期期末数学试卷及参考答案
2017-2018学年湖北省黄石市初三上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)的负倒数是( ) A .﹣ B . C . D .﹣2.(3分)下列图形:(1)平行四边形,(2)抛物线,(3)等边三角形,(4)双曲线;(5)圆.其中是中心对称图形的个数有( )A .1B .2C .3D .43.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( )A .44×108B .4.4×109C .4.4×108D .4.4×10104.(3分)下列运算正确的是( )A .(x 2)3=x 5B .2x 3•x 2=2x 5C .x 6÷x 2=x 3D .(x ﹣1)2=x 2﹣15.(3分)方程x 2﹣2x=0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=,x 2=2 6.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示: 成绩(m )1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2 这15名运动员跳高成绩的中位数是( )A .4B .1.70C .1.75D .1.657.(3分)如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°8.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.89.(3分)如图,直线y=3x、y=x与双曲线y=在第一象限内分别交于A、B两=8,则k=()点,S△ABOA.6B.8C.4D.510.(3分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x 之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)函数的自变量x的取值范围是.12.(3分)分解因式:a3﹣ab2=.13.(3分)分式方程﹣=1的解为.14.(3分)如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.(3分)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个.16.(3分)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与A1A2,边A1A2与A4A5,边A4A5与边A7A8,…均相距一个单位长度,则顶点A3的坐标为,顶点A31的坐标为.三、解答题(共72分)17.(7分)计算:6cos45°+(﹣1.73)0+|5﹣3|+(﹣1)2017.18.(7分)先化简,再求值:÷(m+2﹣),其中m=4.19.(7分)解不等式组,并写出这个不等式组的整数解.20.(7分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围.(2)若x1x2+|x1|+|x2|=7,求k 的值.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.22.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.23.(8分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?打折前一次性购物总金额优惠措施不超过400元售价打九折超过400元售价打八折24.(10分)已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图1,当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空CE BD.(2)如图2,把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图3,在图1的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.2017-2018学年湖北省黄石市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)的负倒数是()A.﹣B.C.D.﹣【解答】解:的负倒数是﹣=﹣,故选:D.2.(3分)下列图形:(1)平行四边形,(2)抛物线,(3)等边三角形,(4)双曲线;(5)圆.其中是中心对称图形的个数有()A.1B.2C.3D.4【解答】解:由中心对称图形的概念可知,(1)(4)(5)是中心对称图形,符合题意;(2)(3)不是中心对称图形,是轴对称图形,不符合题意.故中心对称的图形有3个.故选:C.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.4.(3分)下列运算正确的是()A.(x2)3=x5B.2x3•x2=2x5C.x6÷x2=x3D.(x﹣1)2=x2﹣1【解答】解:A、原式=x6,不符合题意;B、原式=2x5,符合题意;C、原式=x4,不符合题意;D 、原式=x 2﹣2x +1,不符合题意,故选:B .5.(3分)方程x 2﹣2x=0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=,x 2=2【解答】解:x 2﹣2x=0,x (x ﹣2)=0,x=0,x ﹣2=0,x 1=0,x 2=2,故选:C .6.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示: 成绩(m )1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2这15名运动员跳高成绩的中位数是( )A .4B .1.70C .1.75D .1.65【解答】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70, 则中位数是1.70,故选:B .7.(3分)如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°【解答】解:如图,∵直线m ∥n ,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A ,∠2=30°,∴∠A=40°,故选:C.8.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.9.(3分)如图,直线y=3x、y=x与双曲线y=在第一象限内分别交于A、B两=8,则k=()点,S△ABOA.6B.8C.4D.5【解答】解:过A作AE⊥x轴于E,过B作BF⊥x轴于F,设A (a ,b ),B (c ,d ),则ab=cd=k ,即S △OAB =S △OAE +S 梯形AEFB ﹣S △BOF =S 梯形AEFB ,∵y=3x ,y=,∴A 的坐标是( ,),同理B 的坐标是( ,),即 •( +)•( ﹣)=8, 解得:k=6,故选:A .10.(3分)矩形ABCD 中,AD=8cm ,AB=6cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( )A .B .C.D.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x•2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.二、填空题(每小题3分,共18分)11.(3分)函数的自变量x的取值范围是x≥6.【解答】解:根据题意得:x﹣6≥0,解得x≥6.12.(3分)分解因式:a3﹣ab2=a(a+b)(a﹣b).【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).13.(3分)分式方程﹣=1的解为x=﹣1.【解答】解:去分母得:x+2﹣4=x2﹣4,即x2﹣x﹣2=0,解得:x=2或x=﹣1,经检验x=2是增根,分式方程的解为x=﹣1,故答案为:x=﹣114.(3分)如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为2π﹣4.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×42=2π﹣4.故答案为2π﹣4.15.(3分)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有4个.【解答】解:设袋中的黑球有x个,根据题意得:=,解得:x=4,经检验:x=4是原分式方程的解.即袋中的黑球有4个.故答案为:4.16.(3分)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与A1A2,边A1A2与A4A5,边A4A5与边A7A8,…均相距一个单位长度,则顶点A3的坐标为(0,1﹣),顶点A31的坐标为(﹣11,11).【解答】解:∵从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与边A1A2,边A1A2与A4A5,A4A5与A7A8,…均相距一个单位,∴A1A2=2,A1E=1,A1(﹣1,1),∴EA3=,则OA3=﹣1,则顶点A3的坐标为:(0,1﹣),同理可得出:A4(﹣2,2),A7(﹣3,3)…∵4=2×3﹣2,7=3×3﹣2,10=4×3﹣2…31=11×3﹣2∴A31的坐标为:(﹣11,11),故答案为:(0,1﹣),(﹣11,11),三、解答题(共72分)17.(7分)计算:6cos45°+(﹣1.73)0+|5﹣3|+(﹣1)2017.【解答】解:原式=6×+1+5﹣3﹣1=5.18.(7分)先化简,再求值:÷(m+2﹣),其中m=4.【解答】解:当m=4时,原式=÷==1219.(7分)解不等式组,并写出这个不等式组的整数解.【解答】解:解不等式7(x﹣1)>4x+2,得:x>3,解不等式≥2x﹣5,得:x≤4,则不等式组的解集为3<x≤4,所以不等式组的整数解为x=4.20.(7分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围.(2)若x1x2+|x1|+|x2|=7,求k 的值.【解答】解:(1)由题意△>0,∴4k2﹣12k+9﹣4k2﹣4>0,∴k<.(2)由题意x1x2=k2+1>0,x1+x1=2k﹣3<0,∴x1<0,x2<0,∴k2+1﹣(2k﹣3)=7,解得k=﹣1或3(舍弃),∴k=﹣1.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.【解答】(1)证明:连接AE,∵AB是⊙O直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE.(2)解:∵∠BAC=54°,AB=AC,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.22.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为108°;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.【解答】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜欢用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°(2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人(4)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,甲、乙两名同学恰好选中同一种沟通方式的概率为:=故答案为:(1)100;108°23.(8分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?打折前一次性购物总金额优惠措施不超过400元售价打九折超过400元售价打八折【解答】解:(1)设甲商品购进x件,则乙商品购进(100﹣x)件,由题意,得y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,故y与x之间的函数关系式为:y=﹣5x+1000;(2)由题意,得15x+35(100﹣x)≤3000,解之,得x≥25.∵y=﹣5x+1000,k=﹣5<0,∴y随x的增大而减小,∴当x取最小值25时,y最大值,此时y=﹣5×25+1000=875(元),∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元;(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.①当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),则20m+45n=360,m=18﹣n>0,∴0<n<8.n是4的倍数,有3种情况:情况1:m=0,n=8,则利润是:324﹣8×35=44(元);情况2:m=9,n=4,则利润是:324﹣(15×9+35×4)=49(元);情况3:m=18,n=0,则利润是:324﹣15×18=54(元);②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元),则20m+45n=405,m=≥0,∴0≤n≤9.∴m、n均是非负整数,有3种情况:情况1:m=0,n=9,则利润为:324﹣(0×15+9×35)=9(元);情况2:m=9,n=5,则利润为:324﹣(9×15+5×35)=14(元);情况3:m=18,n=1,则利润为:324﹣(18×15+1×35)=19(元).综上所述,商家可获得的最小利润是9元,最大利润是54元.24.(10分)已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图1,当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空CE⊥BD.(2)如图2,把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图3,在图1的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.【解答】解:(1)CE⊥BD.(2)延长CE交BD于M,设AB与EM交于点F.∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD.又∵△ABC≌△ADE,∴AC=AE,AB=AD,∴∠ACE=,∠ABD=,∴∠ACE=∠ABD.又∵∠AFC=∠BFM,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE⊥BD.(3)过C′作C′G⊥AM于G,过D作DH⊥AM交延长线于点H.∵∠E′NA=∠AGC′=90°,∴∠NE′A+∠NAE′=90°,∠NAE′+∠C′AG=90°,∴∠NE′A=∠C′AG,∵AE′=AC′∴△ANE′≌△C′GA(AAS),∴AN=C′G.同理可证△BNA≌△AHD,AN=DH.∴C′G=DH.在△C′GM与△DHM中,∠C′GM=∠DHM=90°,∠C′MG=∠DMH,C′G=DH,∴△C′GM≌△DHM,∴C′M=DM,∴=.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。
湖北省黄石市九年级上学期数学期末考试试卷
湖北省黄石市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·成都模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是()A . ⊙O1B . ⊙O2C . 两圆增加的面积是相同的D . 无法确定3. (2分)用配方法解方程,配方正确的是()A .B .C .D .4. (2分) (2018八下·乐清期末) 已知点P(1,-3)在反比例函数(k≠0)的图象上,则k的值是()A . 3B .D .5. (2分)圆内接四边形ABCD的四个内角之比可能是()A . 1:2:3:4B . 1:3:4:5C . 2:3:4:5D . 2:3:5:46. (2分)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为A . 1.5米B . 2.3米C . 3.2米D . 7.8米7. (2分) (2019九上·贵阳期末) 将2019个边长为1的正方形按如图所示的方式排列,点A,A1 , A2 ,A3 ,……A2019和点M,M1 ,M2……,M2018是正方形的顶点,连接A1M,A2M1 , A3M2 ,……A2018分别交正方形的边A1M,A2M1 , A3M2 ,……A2018M2017于点N1 , N2 ,N3……N2018,四边形M1N1A1A2的面积是 ,四边形M2N2A2A3的面积是,…,则为()A .B .C .D .8. (2分)(2019·武汉模拟) 在不透明袋子里装颜色不同的16个球,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.5,估计袋中白球有()C . 8个D . 5个9. (2分)(2020·长宁模拟) 将抛物线y=(x+1)2﹣3向右平移2个单位后得到的新抛物线的表达式为()A . y=(x﹣1)2﹣3B . y=(x+3)2﹣3C . y=(x+1)2﹣1D . y=(x+1)2﹣510. (2分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为,则下面所列方程正确的是()A . (32-x)(20-x)=32×20-570B . 32x+2×20x=32×20-570C . 32x+2×20x-2x2=570D . (32-2x)(20-x)= 57011. (2分) (2019九上·临城期中) 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C ,使得点A′恰好落在AB上,则旋转角为()A . 30°B . 60°C . 45°D . 90°12. (2分) (2014九上·临沂竞赛) 已知二次函数的图象开口向上,与 x轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是()A . abc<0D . 2a+b二、填空题 (共4题;共4分)13. (1分)(2018·郴州) 如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为________cm.(结果用π表示)14. (1分)从下列4个函数:①y=3x﹣2;②y=﹣(x<0);③y= (x>0);④y=﹣x2(x<0)中任取一个,函数值y随自变量x的增大而增大的概率是________.15. (1分) (2019九上·南海期末) 如图,点P在反比例函数y= (x<0)的图象上,过P分别作x轴、y轴的垂线,垂足分别为点A、B.已知矩形PAOB的面积为8,则k=________.16. (1分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为________.三、解答题 (共10题;共96分)17. (5分)解方程:x2﹣25=0.18. (10分)(2017·兰州模拟) 已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D(1)如图1,求证:BD=ED;(2)如图2,AD为⊙O的直径.若BC=6,sin∠BAC= ,求OE的长.19. (11分)(2018·清江浦模拟) 一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n =1时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.20. (11分)定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}=________ ;(2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.21. (10分) (2016九下·苏州期中) 如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点E处有一休息亭,测得假山坡脚C与楼房水平距离BC=6米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.(1)求点E距水平面BC的高度;(2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732)22. (4分)在平面直角坐标中表示下面各点:A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7).(1) A点到原点O的距离是________.(2)将点C向x轴的负方向平移6个单位它与点________重合.(3)连接CE,则直线CE与y轴位置关系是________.(4)点F分别到x、y轴的距离分别是________.23. (10分)(2018·宜宾) 如图,为⊙ 的直径,为⊙ 上一点,为延长线上一点,且于点 .(1)求证:直线为⊙ 的切线;(2)设与⊙ 交于点,的延长线与交于点 .已知,,,求的值.24. (15分) (2016九上·宜城期中) 某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?25. (10分) (2019七上·椒江期末) 阅读理解:整体代换是一个重要的数学思想方法.例如:计算4(a+b)-7(a+b)+(a+b)时可将(a+b)看成一个整体,合并同类项得-2(a+b),再利用分配律去括号得-2a-2b.同时,我们也知道:代数的基本要义就是用字母表示数使之更具一般性。
湖北省黄石市九年级上学期数学期末考试试卷
湖北省黄石市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中是中心对称图形的是()A .B .C .D .2. (2分) (2015九上·黄冈期中) 下列事件发生的概率为0的是()A . 射击运动员只射击1次,就命中靶心B . 任取一个实数x,都有|x|≥0C . 画一个三角形,使其三边的长分别为8cm,6cm,2cmD . 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为63. (2分) (2017九上·岑溪期中) 已知反比例函数y= 的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .4. (2分) (2016九上·南岗期末) 如图,是半圆,连接AB,点O为AB的中点,点C、D在上,连接AD、CO、BC、BD、OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是()A . 26°B . 28°C . 30°D . 32°5. (2分) (2017八下·泉山期末) 已知反比例函数,在下列结论中,不正确的是().A . 图象必经过点(1,2);B . 图象在第一、三象限;C . 随的增大而减少;D . 若 >1,则 <2 。
6. (2分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为,则下面所列方程正确的是()A . (32-x)(20-x)=32×20-570B . 32x+2×20x=32×20-570C . 32x+2×20x-2x2=570D . (32-2x)(20-x)= 5707. (2分) (2019九上·辽源期末) 三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为()A . πB . πC . 2πD . 3π8. (2分) (2018九上·绍兴期中) 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A . <m<3B . <m<2C . ﹣2<m<3D . ﹣6<m<﹣29. (2分)某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为,那么水流从喷出至回落到地面所需要的时间是()A . 6sB . 4sC . 3sD . 2s10. (2分)把方程x2﹣4x+3=0化为(x+m)2=n形式,则m、n的值为()A . 2,1B . 1,2C . ﹣2,1D . ﹣2,﹣1二、填空题 (共5题;共6分)11. (1分) (2017八下·湖州期中) 方程(k﹣1)x2﹣x+ =0有两个实数根,则k的取值范围是________.12. (1分) (2017·古田模拟) 在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有________个.13. (1分) (2016九上·仙游期末) 一个y关于x的函数同时满足两个条件:①图象过(0,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)14. (2分)如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于________15. (1分)(2012·来宾) 如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1 ,则∠A1OB=________°.三、解答题 (共8题;共65分)16. (10分) (2018八下·凤阳期中) 关于x的一元二次方程(m-1)x2-2mx+m+1=0(m≠1)(1)求证:方程总有两个不相等的实数根;(2)求出该方程一个固定的根.17. (10分) (2019九上·克东期末) 在如图所示的平面直角坐标系中,解答下列问题:(1)将绕点逆时针方向旋转,画出旋转后的;(2)求线段在旋转过程中所扫过的面积.18. (10分) (2018九上·阜宁期末) 甲、乙、丙3名学生各自随机选择到A、B 2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.19. (10分)(2016·广东) 如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC= ,求DE的长;(3)连接EF,求证:EF是⊙O的切线.20. (2分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).(1)求这两个函数的表达式;(2)观察图象,当x>0时,直接写出y1>y2时自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.21. (5分) (2017九上·芜湖期末) 小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2 ,求金色纸边的宽度.22. (16分)(2017·丹东模拟) 如图①,点P是正方形ABCD的BC边上的一点,以DP为边长的正方形DEFP 与正方形ABCD在BC的同侧,连接AC,FB.(1)请你判断FB与AC又怎样的位置关系?并证明你的结论;(2)若点P在射线CB上运动时,如图②,判断(1)中的结论FB与AC的位置关系是否仍然成立?并说明理由;(3)当点P在射线CB上运动时,请你指出点E的运动路线,不必说明理由.23. (2分)(2014·南通) 如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共65分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。
湖北省2017-2018学年度上学期期末考试九年级数学试卷 带答案
2017-2018学年度上学期期末测试九年级数学试题一、选择题(每小题3分,共计30分)( )1.下面生活中的实例,不是旋转的是:A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动( )2.下列方程中,一元二次方程的个数是:①0122=--x x ;②02=-x ;③02=++c bx ax ;④05312=-+x x;⑤2)1(22=+-y x ;⑥2)3)(1(x x x =--. A.1个 B.2个 C.3个 D.4个( )3.用配方法将1282+-=x x y 化成k h x a y +-=2)(的形式为:A.4)4(2+-=x yB.4)4(2--=x yC.4)8(2+-=x yD.4)8(2--=x y( )4.如图,圆锥的底面半径r 为6cm,高h 为8cm,则圆锥的侧面积为:A.230cm π B.248cm π C.260cm π D.280cm π( )5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是:A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球 ( )6.反比例函数xy 3-=的图象在: A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 ( )7.如果两个相似三角形的面积的比是4:9,那么它们的周长的比是: A.4:9 B.1:9 C.1:3 D.2:3( )8.如图,AB 是⊙O 的直径,点C 为⊙O 外一点,CA 、CD 是⊙O 的切线,A 、D 为切点,连接BD 、AD.若∠ACD =48º,则∠DBA 的大小是:A.48ºB.60ºC.66ºD.32º( )9.下列说法正确的是:A.与圆有公共点的直线是圆的切线B.过三点一定可以作一个圆C.垂直于弦的直径一定平分这条弦D.三角形的外心到三边的距离相等( )10.二次函数的图象如图所示,对称轴为1=x ,给出下列结论:①0<abc ;②ac b 42>;③024<++c b a ;④02=+b a .其中正确的结论有:A.4个B.3个C.2个D.1个二、填空题(每小题3分,共18分)11.先后两次抛掷一枚质地均匀的硬币,落地后恰好一次正面向上,一次正面向下的概率是___________. 12.关于x 的方程051242=-+x kx 有实数根,则k 的取值范围是_________. 13.如图,点A 是双曲线xky =上的任意一点,过点A 作AB ⊥x 轴于B,若△OAB 的面积为8,则k =__________.ABCDE第14题图第15题图oxyA B 第13题图14.如图,在△ABC 中,AC =9,AB =6,点D 与点A 在直线BC 的同侧,且∠ACD =∠ABC,CD =3,点E 是线段BC 延长线上的动点,当△ABC 和△DCE 相似时,线段CE 的长为__________.15.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,若AB =10,CD =6,则BE =__________. 16.二次函数223212--=x x y 的图象如图所示,若线段AB 在x 轴上,且AB=334,以AB 为边作等边△ABC,使点C 落在该函数第四象限的图象上,则点C 的坐标是____________.三、解答题(共72分)17.(7分)先化简,再求值:)12(12xx x x +-÷-,其中3=x18.(7分)如图,在Rt △ABC 中,∠A =90º,AB =6,BC =10,D 是AC 上一点,CD =5,DE ⊥BC 于E.求线段DE 的长. ABCD19.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为)3,1(,请解答下列问题: (1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标; (2)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标.20.(7分)珍珍与环环两人一起做游戏,游戏规则如下:每人从1,2,3,4,5,6,7,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于她们各自选择的数,就再做一次上述游戏,直到决出胜负.若环环事先选择的数是5,用列表法或画树状图的方法,求她获胜的概率.21.(8分)已知关于x 的方程022=-++m mx x .(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD 于G ,OG:OC =3:5,AB=8. (1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD =15º,将弧CE 沿弦CE 翻折,交CD 于点F,求图中阴影部分的面积.123423.(8分)如左图,某小区的平面图是一个400⨯300平方米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形.如果要使四周的空地所占面积是小区面积的36%,并且南北空地与东西空地的宽度各自相同. (1)求该小区南北空地的宽度; (2)如右图,该小区在东西南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东西侧绿化带完全相同,其长约为200米,南侧绿化带的长为300米,绿化面积为18000平方米,请求出小区道路的宽度.绿化带绿化带绿化带建筑区小区道路小区道路小区道路建筑区空地空地空地空地24.(9分)如图,已知EC ∥AB,∠EDA =∠ABF. (1)求证:四边形ABCD 是平行四边形;(2)图中存在几对相似三角形?分别是什么?请直接写出来不必证明; (3)求证:OF OE OA ⋅=2.25.(10分)如图,在平面直角坐标系中,抛物线42++=bx ax y 与坐标轴分别交于点A 、点B 、点C,并且∠ACB =90º,AB =10.(1)求证:△OAC ∽△OCB; (2)求该抛物线的解析式;ABCDEF(3)若点P 是(2)中抛物线对称轴上的一个动点,是否存在点P 使得△PAC 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.OxyABC襄城区2016-2017学年度上学期期末测试九年级数学试题参考答案一.选择题二.填空题 11.21 12.59-≥k 13.16- 14.2或4.5 15.1 16.)2,3(- (第14题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题17.解:原式xx x x x 1212--÷-=…………………………………………………………2分 2)1(1--⋅-=x xx x …………………………………………………………3分 11--=x …………………………………………………………5分 当3=x 时,原式131--=………………………………………………………6分 21-= …………………………………………………………7分 18.解: ∵DE ⊥BC∴∠DEC =∠A =90° …………………………………………………………2分 又∵∠C =∠C …………………………………………………………3分 ∴△ABC ∽△EDC …………………………………………………………4分 ∴CDDEBC AB = …………………………………………………………5分 即5106DE = …………………………………………………………6分 ∴DE =3 …………………………………………………………7分19.解:)5,4(1-B )5,1(2-C(两个图,两个坐标共四个得分点,每个2分,共计8分)20.两次转动的点数之和为5(记为事件A)的结果共有4种 所以P(A)=41164= 答:环环获胜的概率是41. (列表或树状图给4分,说明有限性与等可能性给1分,算出概率给1分,回答给1分)21.解:(1)将1=x 代入022=-++m mx x 得……………………………………………1分 021=-++m m …………………………………………………………3分 解得21=m …………………………………………………………4分 (2)ac b 42-=∆)2(142-⨯⨯-=m m 842+-=m m4)2(2+-=m …………………………………………………………6分 ∵不论m 取任何实数,都有04)2(2>+-m即不论m 取任何实数,都有0>∆……………………………………………7分 ∴不论m 取任何实数,原方程都有两个不相等的实数根. ……………………8分22.解(1)连接OB,设⊙O 的半径为r ∵OG:OC=3:5 ∴r OG 53=……………………………………………1分 ∵AB ⊥CD ∴482121=⨯==AB BG ……………………………………………2分 又 ∵在Rt △OBG 中,222OB BG OG =+∴2224)53(r r =+ ……………………………………………3分 解得5=r答:⊙O 的半径为5. ……………………………………………4分 (2)如图,过点C 作∠ECH =∠DCE=15°,交⊙O 于点H 由轴对称的性质可知:H BC S S 弓形阴=∵∠ECH =∠DCE=15° ∴∠DCH=30°∵OH=OC ∴∠OHC =∠DCH=30° ∴∠COH=180°-∠OHC-∠DCH=120°……………………………………5分 过点O 作OM ⊥CH 于M在Rt △OCM 中2552121=⨯==OC OM 325)25(52222=-=-=OM OC CM ∴CH=352==CM ……………………………………6分 ∴ O H C O H C H BC S S S ∆-=扇形弓形 25352136012052⨯⨯-︒︒⨯⨯=π 3425325-=π ……………………………………7分 答:阴影部分的面积为3425325-π.……………………………8分23.解:(1)设建筑区的长为x 4米,则建筑区的长为x 3米,那么%)361(30040034-⨯⨯=⋅x x ………………………2分 解得8080-==x x 或(不合题意舍去)………………………3分 ∴302)803300(2)3300(=÷⨯-=÷⨯-x 答:南北的空地宽30米.………………………4分 (2)设小区道路的宽度为x 米,那么402)804400(2)4400(=÷⨯-=÷⨯-x ………………………5分 18000)30(300200)40(2=-+⨯-⨯x x ………………………6分 解得10=x ………………………7分答:小区道路的宽度为10米.………………………8分 24. (1)证明:∵EC ∥AB∴∠EDA =∠1……………………………………1分 又∵∠EDA =∠ABF∴∠ABF =∠1……………………………………2分 ∴AD ∥CF∴四边形ABCD 是平行四边形……………………………………3分(2)图中有六对相似三角形,分别是: ①△FAB ∽△FEC;②△OAB ∽△OED;……………………………………4分 ③△EAD ∽△EFC;④△OFB ∽△OAD;……………………………………5分 ⑤△EAD ∽△AFB⑥△ABD ∽△CDB……………………………………6分 (回答多少对忽略不计分,每写出1对加0.5分共3分) (3)∵EC ∥AB∴△OAB ∽△OED……………………………………7分 ∴ODOBOE OA = 又∵AD ∥CF∴△OFB ∽△OAD ∴OD OBOA OF =……………………………………8分 ∴OEOAOA OF = ∴OF OE OA ⋅=2……………………………………9分25.(1)证明:∵x 轴⊥y 轴∴∠AOC =∠COB=90°…………………………………1分 ∴∠A+∠ACO=90°又∵∠ACB =∠OCB+∠ACO=90°∴∠A =∠OCB…………………………………2分∴△OAC ∽△OCB…………………………………3分(2) ∵在42++=bx ax y 中,当0=x 时,4=y ∴OC=4…………………………………4分 又∵△OAC ∽△OCB ∴OCOBOA OC = ∴)(2OA AB OA OB OA OC -⋅=⋅= ∴)10(42OA OA -=解得OA=2或OA=8(不合题意,舍去) ∴OB=AB-OA=10-2=8∴点A 、B 的坐标分别为)0,8(),0,2(-…………………………………5分 将上述坐标代入42++=bx ax y 得⎩⎨⎧=++=+-048640424b a b a 解得⎪⎪⎩⎪⎪⎨⎧=-=2341b a∴所求作的解析式为:423412++-=x x y …………………………………6分 (3)存在点P 使得△PAC 为等腰三角形,点P 的坐标如下:)114,3(+ )114,3(- )0,3(…………………………………10分 (回答存在,就给1分,每写对1个坐标再加1分,共计4分)。
2018年湖北黄石市九年级数学上册期末复习试卷一及答案解析
2018年湖北黄石市九年级数学上册期末复习试卷一及答案解析
1九年级数学上册期末复习试卷一
一、选择题
1.(3分)﹣7的相反数是()
A .﹣
B .﹣7
C .
D .7
2.(3分)方程9x 2=16的解是()
A .
B .
C .
D .
3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()
A .
B .
C .
D .
4.(3分)下列运算正确的是()
A .a 3+a 4=a 7
B .2a 3?a 4=2a 7
C .(2a 4)3=8a 7
D .a 8÷a 2=a 4
5.(3分)将0.00007用科学记数法表示为()
A .7×10﹣6
B .70×10﹣5
C .7×10﹣5
D .0.7×10﹣6
6.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是(
)A .正方体B .圆柱C .圆椎D .球
7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:
成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80
人数124332
这15名运动员跳高成绩的中位数是()
A .4
B .1.70
C .1.75
D .1.65
8.(3分)如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB ′C ′(点B。
湖北省黄石市九年级上学期数学期末考试试卷
湖北省黄石市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·黄石模拟) 下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018九上·三门期中) 如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A . 1B . 2C . ﹣1D . ﹣23. (2分)八年级某班50位同学中,5月份出生的频率是0.2,那么这个班5月份出生的同学有()A . 10位B . 11位C . 12位D . 13位4. (2分)(2018·柳北模拟) 已知两个相似三角形的周长比为2:3,它们的面积之差为,那么它们的面积之和为A .B .C .D .5. (2分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x的值只能取2;⑤当﹣1<x<5时,y<0.其中正确的有()A . 2个B . 3个C . 4个D . 5个6. (2分)如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC 交于点E,若AD=, AC=3.则DE长为()A .B . 2C .D .7. (2分)若反比例函数的图象经过点(m , 3m),其中m≠0,则此反比例函数图象经过()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限8. (2分)如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),点B的横坐标的最大值为3,则点A的横坐标的最小值为()A . ﹣3B . ﹣1C . 1D . 39. (2分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A . AC=BCB . AC+BC=ABC . AB=2ACD . BC=AB10. (2分)已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A . 一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 一、二、三、四象限.二、填空题 (共7题;共11分)11. (2分) (2020八上·淅川期末) 在数字中,出现“ ”的频率是________.12. (2分)(2011·宿迁) 如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是________ cm.13. (2分) (2019九下·东台月考) 如图,在中,,,⊙ 与相切于点,与相交于点,则________°.14. (2分) (2016九上·姜堰期末) 若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF 的面积比为________.15. (1分)(2019·邵阳模拟) 一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长是________ 。
湖北省黄石市九年级上学期数学期末试卷
湖北省黄石市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·江津期末) 风车不能做成轴对称图形,应做成中心对称图形才能在风口处平稳旋转.如图,现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是().A .B .C .D .2. (2分)已知,且a-b+c=10,则a+b-c的值为()A . 6B . 5C . 4D . 33. (2分)(2017·深圳模拟) 下列说法正确的是().A . 将抛物线 = 向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是.B . 方程有两个不相等的实数根.C . 平行四边形既是中心对称图形又是轴对称图形.D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.4. (2分)(2018·南宁模拟) 如图,半径为4的与含有角的直角三角板ABC的边AC切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与相切时,该直角三角板平移的距离为A . 2B .C . 4D .5. (2分) (2017九下·杭州开学考) 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A . 2.5B . 2.8C . 3D . 3.26. (2分)(2020·上饶模拟) 如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1 , y2 , y3的大小关系是()A . y3<y1<y2B . y2<y1<y3C . y1<y2<y3D . y1<y3<y27. (2分) (2020九下·重庆月考) 如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A .B .C .D .8. (2分) O是△ABC的内心,∠BOC为130°,则∠A的度数为()A . 130°B . 60°C . 70°D . 80°9. (2分)如图,在中,D、E分别为AB、AC边上的点,,BE与CD相交于点F,则下列结论一定正确的是()A .B .C .D .10. (2分)如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A . 顺时针旋转90°B . 逆时针旋转90°C . 顺时针旋转45°D . 逆时针旋转45°二、填空题 (共4题;共4分)11. (1分)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是________12. (1分) (2019八上·余杭期中) 如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D , M、N分别是AD , AB上的动点,则BM+MN的最小值是________.13. (1分) (2018八上·天台期中) 如图,△ABC中,∠ACB=90°,CD⊥AB于D,AE是∠BAC的平分线,点E到AB的距离等于3cm,则CF=________cm.14. (1分) (2020九上·宁波月考) 如图,已知抛物线与x轴交于A,B两点,对称轴与抛物线交于点C ,与x轴交于点D ,⊙C的半径为2,G为⊙C上一动点,P为AG的中点,则线段DP长的最大值为________.三、解答题 (共9题;共90分)15. (5分)求下列各式中的实数x的值或计算(1)(x﹣3)2=64(2) 3(x+5)3=﹣81(3) |﹣3|﹣×3 +(﹣2)2 .16. (10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)①先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1 ,请画出△A1B1C1;②将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2 ,请画出△A2B1C2;(2)线段B1C1变换到B1C2的过程中扫过区域的面积为________.17. (10分) (2018九上·丰台期末) 在平面直角坐标系xOy中,抛物线经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y轴的直线l与抛物线交于两点A(,),B(,),其中,,与y轴交于点C,求BC AC的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.18. (10分)(2020·江西模拟) 如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.(2)若点N在(1)中的⊙P′上,求PN的长.19. (10分)(2019·西安模拟) 如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2 ,无人机的飞行高度AH为500 米,桥的长度为1255米.(1)求点H到桥左端点P的距离;(2)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.20. (10分)(2019·武汉模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD 交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21. (10分)(2019·封开模拟) 如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.22. (10分) (2018九下·广东模拟) 已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.23. (15分)(2019·长沙模拟) 如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C′,连接BC′与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C′Q,直接写出四边形C′QCP的形状.当CP=4时,并求CE⋅EQ的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共90分)15-1、15-2、15-3、16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
湖北省XX市2017-2018学年九年级上期末考试数学试题含答案
2017-2018学年度毕业年级第一次质量检测数 学温馨提示:1.各题的答案或解答过程,写在“答题卡”相应的答题位置,写在草稿上和本试卷上无效;书写内容不得超过答题卡上规定的边框。
2.将选择题的正确选项用“2B ”铅笔涂黑,其余答案与解答过程一律用0.5mm 黑色签字笔书写。
3.注意答题卡卡面整洁;全卷4页,共三大题25小题;考试时间120分钟,卷面满分120分.★ 祝考试顺利!★一、选择题:(每小题后面代号为A 、B 、C 、D 的四个选项中,只有一个正确,将它选出来并将答题卡上对应的选项涂黑,选对一题3分,不选和选错0分,本题满分为30分)1.方程0)1(2=+x 的根是( )A.121==x xB.121-==x xC. 1,121=-=x xD.无实根2.关于x 的方程01)1()1(2=+--+x m x m 是一元二次方程,那么m 是( )A.m ≠1B.m ≠-1C.m ≠1且m ≠-1D.m ≠03.将方程542=+x x 左边配方成完全平方式,右边的常数应该是( )A.9B. 1C.6D.44.在四个数:①x=-3,②x=2,③x=3,④x=-2中,是方程(x-3)(x-2)=0的根的是( )A.①②B.③④C.①③D.②③5.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O 上的是( )A.(1,1)B.(2, 2)C.(1,3)D.(1,2)6.点M(a,2a)在反比例函数xy 8=的图象上,那么a 的 值是( ) A.4 B.-4 C.2 D.±2 7.将下面的某一点向下平移1个单位后,它在函数322-+=x x y 的图象上,这个点是( )A.(1,1)B.(2,-3)C.(1,-3)D.(2,-1)8.顶点在点M(-2,1),且图象经过原点的二次函数解析式是( )A.1)2(2+-=x yB.1)2(412++-=x y C.1)2(2++=x y D.1)2(412+-=x y9.如图,AB 是⊙O 的直径,延长BA 到C,AC=AO.以AC 为边作等边三角形ACD,将△ACD 从现在的位置起,绕点A 顺时针分别旋转①60º,②90º,③120º,④180º,能使D 点在⊙0上的是( )A.①③B.①④C.②③D.③④10.如图,有一个直径为10cm 的圆形工件 ,上下有两条水平弦,AB=CD=8cm,这两弦及圆弧包围的部分(阴影部分)是核心.探测仪按1cm/秒的速度从上至下移动,探测线沿水平方向扫描工件,从与圆相切时开始计算时间,记为t(秒),那么扫描核心的时间t 的范围是( )A.1≤t ≤5B.3≤t ≤6C.2≤t ≤8D.1≤t ≤7二、填空题:(本大题共8小题,每题3分,满分为24分)11.方程1)2(2=+x 的根是 ★ ;12.抛物线522+-=x x y 的顶点坐标是 ★ ;13.有同样大小的1块黑方砖和2块白方砖随机拼成一横条,颜色如图中黑白相间放置的概率是 ★ ;14.已知⊙O 的面积是25平方厘米,那么,⊙O 上72º的圆心角所对的扇形面积是 ★ ;15.已知⊙O 的半径OA=5cm,延长OA 到B,AB=2cm,以OB 为一边作∠OBC=45º,那么BC 所在直线与⊙O 的位置关系是 ★ ;16.关于x 的一元二次方程02)1(2=+--k kx x k 有两个不相等的实数根,则k 的范围 是 ★ ;17.y 关于x 的函数k kx x y ++=2,无论k 如何变化,图象总经过一个定点,这个定 点是 ★ ;18. 2x y =的顶点为O,将它向右水平移动m 个单位后,抛物线的顶点为A,它与2x y =的图象相交于B,若△ABO 的面积为S,则S 关于m 的关系式是 ★ ;三.解答题:(共7题,满分为66分)19. (每小题4分,本题共8分)解方程:(1)03522=+-x x(2)7222=-x x20.(本题8分)从分别写有1、2、3、4、5的5张卡片中,随机先后抽取2张,求这两张的数字中,后一张的数字恰好比前一张的数字大1的概率.(列表或画树形图或列举)21.(本题8分) 如图,一座圆弧形拱桥,跨度AB=240m,拱高CD=80m.求这个拱桥圆弧的半径.22. (本题10分)如图,⊙O 的弦CD ⊥直径AB,垂足为M.弦BF 交CD 于N,过F 作⊙O 的切线,交CD 的延长线于E.(1) 求证:EF=EN ;(2) 当N 是BF 的中点时,若MN=BM=1cm,求⊙O 的半径.23. (本题10分)如图,在反比例函数xy 12=的图象上有A 、B 两点,A 点在第三象限的一支上,AB 经过原点O,在x 轴负半轴上有点C,满足∠ACB=90º,若A(4m,3m).(1)求m 的值;(2)求△COB 的面积;(3)求BC 所在直线的解析式.24. (本题10分)生物兴趣小组在特定温度、湿度下培养某种有益菌,先将2克的活性菌种放入培养箱,此时时间记为0.经过2小时,菌团活性部分长到11克;到4小时,菌团活性部分长到18克.当菌团活性部分长到一定程度,就会开始慢慢凋亡,这个过程,菌团活性部分重量y(克)与时间t(小时)呈二次函数关系.(1)求y 关于t 的二次函数解析式;(2)菌团活性部分重量可否达到26克,如果能,求出是第几小时;如果不能,说说为什么;(3)菌团活性部分重量最多可达到多少克,是第几小时?25. (本题12分)如图,⊙P 的圆心P(m,n)在抛物线221x y =上. (1)写出m 与n 之间的关系式;(2)当⊙P 与两坐标轴都相切时,求出⊙P 的半径;(3)若⊙P 的半径是8,且它在x 轴上截得的弦MN ,满足0≤MN ≤152时,求出m 、n 的范围.九年级数学参考答案与评分说明一、选择题(3’×10=30’)1.B2.B3.A4.D5.B6.D7.A8.B9.B 10.C二、填空题(3’×8=24’)11.3,121-=-=x x 12.(1,4) 13.31 14.5cm 2 15.相交 16.k>0且k ≠1 17.(-1,1) 18.381m S = 三、解答题(按步骤给分,另解参照给分) 19.(1) 0)1)(32(=--x x (2’) 1,2321==x x (2’) (2)9)2(2=-x , (2’) 32,3221-=+=x x (2’)20. (画树形图或列表或列举5分,得结果3分,共8分) P(后一个数比前一个数大1)=51204=21.(1)延长CD 到D,若O 是圆弧的圆心,连接OA.设半径为r (m ),在Rt △AOD 中, 222120)80(r r =+- (5’) r=130答:拱桥圆弧的半径是130米. (3’)22.(1)连接OF,则∠EFB=90º-∠OFB (2’)又OF=OB,∴∠OFB=∠OBF (1’)加之∠FNE=∠MNB=90º-∠OBF ∴∠EFB=∠FNE ∴EF=EN (2’)(2)连接ON,当N 是BF 中点时,ON ⊥BF. (2’)在Rt △BNM 中,MN=BM=1cm, ∴∠OBN=45º (1’)在Rt △ONB 中, MN 是等腰直角三角形ONB 斜边上的高, ∴OM=BM=1cm, 即⊙O 的半径为2cm. (2’)23.(1)A(4m,3m)在xy 12=的图象上,∴12m 2 =12,m=±1, 又A 在第3象限, ∴m=-1 (3’)(2)∵B(4,3) ∴OB=5 OC=5 )(2153521平方单位=⨯⨯=∆COB S (4’)(3) B(4,3) C(-5,0) ∴BC:3531+=x y (3’)24.(1) 设所求解析式为22++=bt at y将(2,11) (4,18)代入上式得⎪⎩⎪⎨⎧=-=541b a ∴所求解析式为25412++-=t t y (4’)(2)当2541262++-=t t 时,12,821==t t .答:能.第8小时和12小时时,重量达到26克. (3’)(3) ∵ 27)10(41254122+--=++-=t t t y∴第10小时时,重量达到最大,为27克. (3’)25.(1)221m n = (2’)(2)当m=n 时,0212=-m m , (3’)又m ≠0,∴ m=2,此时⊙P 的半径为2. 当m=-n 时,结果与此完全一致. (2’) (3)取MN=152时,作PK ⊥MN 于K,连接PM.在Rt △PKM 中 7)15(822=-=PK . (2’)∴7≤n ≤8 (1’)14≤m ≤4或-4≤m ≤-14 (1’+1’=2’)。
2017-2018学年度上学期期末考试九年级数学试卷(含答案)
2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。
湖北省黄石市九年级上期末数学试卷(有答案)【精选】
湖北省黄石市九年级(上)期末数学试卷一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.72.(3分)方程92=16的解是()A.B.C.D.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A. B.C.D.4.(3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a45.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣66.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A .4B .1.70C .1.75D .1.658.(3分)如图,在Rt △ABC中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°9.(3分)已知二次函数y=a 2+b +c (a ≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a ;④am 2+bm +a >0(m ≠﹣1). 其中正确的个数是( )A .1B .2C .3D .410.(3分)如图,在Rt △ABC 中,∠C=90°,AC=1cm ,BC=2cm ,点P 从点A 出发,以1cm/s 的速度沿折线AC→CB→BA 运动,最终回到点A ,设点P 的运动时间为(s ),线段AP 的长度为y (cm ),则能够反映y 与之间函数关系的图象大致是( )A.B.C.D.二、填空题11.(3分)抛物线y=的顶点是.12.(3分)若二次根式有意义,则的取值范围是.13.(3分)分解因式:a3﹣9a=.14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.16.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为.三、解答题17.(7分)计算:2tan30°18.(7分)先化简,再求值:,其中=0.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.20.(7分)解不等式组,并把它们的解集表示在数轴上.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B (0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为时,△AMC与△AMC′的面积相等.湖北省黄石市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.7【解答】解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选:D.2.(3分)方程92=16的解是()A.B.C.D.【解答】解:∵92=16,∴2=,则=±,故选:C.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A. B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.4.(3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.5.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣6【解答】解:0.00007=7×10﹣5.故选:C.6.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球【解答】解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A.4 B.1.70 C.1.75 D.1.65【解答】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,则中位数是1.70,故选:B.8.(3分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64°C.77°D.87°【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选:C.9.(3分)已知二次函数y=a2+b+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线=﹣1,(故②正确);当=1时,y=a+b+c∵对称轴是直线=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);=m对应的函数值为y=am2+bm+c,=﹣1对应的函数值为y=a﹣b+c,又∵=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.10.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s 的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为(s),线段AP的长度为y(cm),则能够反映y与之间函数关系的图象大致是()A.B.C.D.【解答】解:①当点P在AC边上,即0≤≤1时,y=,它的图象是一次函数图象的一部分;②点P在边BC上,即1<≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<≤3+时,y=+3﹣=﹣+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.二、填空题11.(3分)抛物线y=的顶点是(﹣1,﹣2).【解答】解:∵y=,∴该函数的顶点坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).12.(3分)若二次根式有意义,则的取值范围是≥﹣1.【解答】解:由题意得:+1≥0,解得:≥﹣1,故答案为:≥﹣1.13.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【解答】解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:=.故答案为:.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10cm.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1016.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为28.【解答】解:∵2=,132÷6=22,∴m=22,n=6,∴m+n=22+6=28,故答案为:28.三、解答题17.(7分)计算:2tan30°【解答】解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.18.(7分)先化简,再求值:,其中=0.【解答】解:原式=÷=(﹣1)•=,当=0时,原式==.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.【解答】解:∵一元二次方程2﹣(m+6)+m2=0有两个相等的实根,∴△=0,即(m+6)2﹣4m2=0,解得m=﹣2或m=6,∵1+2=12,∴m+6=m2,解得m=﹣2或m=3,∴m=﹣2.20.(7分)解不等式组,并把它们的解集表示在数轴上.【解答】解:,解不等式①得,<2,解不等式②得,≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤<2.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:,;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【解答】解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:该校学生中类别为C的人数约为240名.22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B (0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.【解答】解:(1)由题意可知,抛物线y=a2+b+c与轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣2+2+3.(2)依题意:设M点坐标为(0,t),①当MA=MB时:=解得t=0,故M(0,0);②当AB=AM时:=3解得t=3(舍去)或t=﹣3,故M(0,﹣3);③当AB=BM时,=3解得t=3±3,故M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=+b,则,解得.则直线AB的解析式为y=﹣+3.△AOB沿轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣+3+m.设直线AC的解析式为y=′+b′,则,解得.则直线AC的解析式为y=﹣2+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于,EF交AC于M.则BE=E=m,P=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF ﹣S△PA﹣S△AFM=PE2﹣P2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于,交AC于H.因为BE=m,所以P=PA=3﹣m,又因为直线AC的解析式为y=﹣2+6,所以当=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH ﹣S△PA=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为3时,△AMC与△AMC′的面积相等.【解答】解:(1)把M(﹣3,m)代入y=+1,则m=﹣2.将(﹣3,﹣2)代入y=,得=6,则反比例函数解析式是:y=;(2)①连接CC′交AB于点D.则AB垂直平分CC′.当a=4时,A(4,5),B(4,1.5),则AB=3.5.∵点Q为OP的中点,∴Q(2,0),∴C(2,3),则D(4,3),∴CD=2,=AB•CD=×3.5×2=3.5,则S△ABC′=3.5;∴S△ABC②∵△AMC与△AMC′的面积相等,∴C和C′到直线MA的距离相等,∴C、A、C′三点共线,∴AP=CQ=,又∵AP=PN,∴=a+1,解得a=3或a=﹣4(舍去),∴当a的值为3时,△AMC与△AMC′的面积相等.故答案是:3.。
2017-2018年湖北省黄石市大冶市初三上学期期末数学试卷及参考答案
2017-2018学年湖北省黄石市大冶市初三上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列是电视台的台标,属于中心对称图形的是()A.B.C.D.2.(3分)成语“水中捞月”所描述的事件是()A.必然事件B.随机事件C.不可能事件D.无法确定3.(3分)反比例函数y=经过()象限.A.第一和第三B.第二和第四C.第一和第二D.第三和第四4.(3分)某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=1465.(3分)用配方法解方程x2﹣6x﹣5=0时,原方程应边形为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=41D.(x﹣6)2=41 6.(3分)已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定7.(3分)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1 8.(3分)已知扇形的弧长为3πcm,半径为6cm,则此扇形的圆心角为()A.30°B.45°C.60°D.90°9.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王慧同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>﹣1;(3)2a+b<0;(4)a+b+c<0,其中正确的有()A.1个B.2个C.3个D.4个10.(3分)如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s 的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是.12.(3分)如图,已知△ABC是⊙O的内接三角形,若∠COB=150°,则∠A=度.13.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.14.(3分)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线=1,则S1+S2=.段,已知S阴影15.(3分)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.16.(3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.三、解答题(共72分)17.(7分)计算:|﹣2|+()﹣1﹣(π﹣3.14)0﹣.18.(7分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.20.(8分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根x1、x2满足x1﹣x2=4,求m的值.21.(8分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E 作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.22.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.23.(8分)某公司在销售一种进价为10元的产品时,每年总支出为10万元(不含进货支出),经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数,并得到如下部分数据:销售单价x(元)12141618年销售量y(万件)7654(1)求出y关于x的函数关系式;(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?24.(9分)如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等边△ABE中,D、C分别是边AE、BE的中点,连接CD,问四边形ABCD是互补等对边四边形吗?请说明理由.(2)如图3,在等腰△ABE中,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(3)如图4,在非等腰△ABE中,若四边形ABCD是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.25.(10分)如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y 轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(﹣1,0)(1)求抛物线的解析式;(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.2017-2018学年湖北省黄石市大冶市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列是电视台的台标,属于中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2.(3分)成语“水中捞月”所描述的事件是()A.必然事件B.随机事件C.不可能事件D.无法确定【解答】解:水中捞月是不可能事件,故选:C.3.(3分)反比例函数y=经过()象限.A.第一和第三B.第二和第四C.第一和第二D.第三和第四【解答】解:∵反比例函数y=中k=1>0,∴图象在一三象限,故选:A.4.(3分)某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=146【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选:C.5.(3分)用配方法解方程x2﹣6x﹣5=0时,原方程应边形为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=41D.(x﹣6)2=41【解答】解:x2﹣6x=5,x2﹣6x+9=14,(x﹣3)2=14.故选:B.6.(3分)已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选:A.7.(3分)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1【解答】解:将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是y=(x﹣2)2+1.故选:C.8.(3分)已知扇形的弧长为3πcm,半径为6cm,则此扇形的圆心角为()A.30°B.45°C.60°D.90°【解答】解:∵l=,l=3πcm,r=6cm,∴3π=,解得n=90°.故选:D.9.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王慧同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>﹣1;(3)2a+b<0;(4)a+b+c<0,其中正确的有()A.1个B.2个C.3个D.4个【解答】解:由图可知,抛物线与x轴有两个交点,∴b2﹣4ac>0,故(1)正确;∵抛物线与y轴的交点(0,c)在(0,﹣1)的上方,∴c>﹣1,故(2)正确;∵对称轴x=﹣<1,且a>0,∴﹣b<2a,则2a+b>0,故(3)错误;由图象知,当x=1时,y<0,即a+b+c<0,故(4)正确;故选:C.10.(3分)如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s 的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【解答】解:当点Q在AD上运动时,0≤x≤1,y=•AP•AQ=•(2x)•x=x2;当点Q在CD上运动时,1<x≤3,y=•AP•AD=•x•2=x;当点Q在CB上运动时,3<x≤4,y=•AP•CB=•x•(8﹣2x)=﹣x2+4x,故选:A.二、填空题(每小题3分,共18分)11.(3分)平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是(﹣1,3).【解答】解:点P(1,﹣3)关于原点对称的点的坐标是(﹣1,3),故答案为:(﹣1,3).12.(3分)如图,已知△ABC是⊙O的内接三角形,若∠COB=150°,则∠A=75度.【解答】解:∵OC=OB,∠COB=150°,∴∠OBC=∠OCB=15°,∴∠AOB=150°,由圆周角定理得,∠A=∠AOB=75°,故答案为:75.13.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),=S△ODE,故S△OCE即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,==,即阴影部分的面积为.故S扇形OBD故答案为:.14.(3分)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2=6.阴影【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故答案为6.15.(3分)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.16.(3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.【解答】解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当C在曲线时,则a﹣1=,解得a=+1,当A在曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.三、解答题(共72分)17.(7分)计算:|﹣2|+()﹣1﹣(π﹣3.14)0﹣.【解答】解:原式=2﹣+2﹣1﹣3=﹣.18.(7分)先化简,再求值:(+)÷,其中x=﹣1.【解答】解:(+)÷===,当x=﹣1时,原式=.19.(7分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.20.(8分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根x1、x2满足x1﹣x2=4,求m的值.【解答】解:(1)∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△≥0,即22﹣4[﹣(m﹣2)]≥0,解得m≥1;(3)∵x1﹣x2=4,∴2x1﹣(x1+x2)=4,又由根与系数的关系可得x1+x2=﹣2,∴2x1+2=4,解得x1=1,∴1+2﹣(m﹣2)=0,解得m=5.21.(8分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E 作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.22.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.【解答】解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:所有可能出现的情况有6种,其中乙丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.23.(8分)某公司在销售一种进价为10元的产品时,每年总支出为10万元(不含进货支出),经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数,并得到如下部分数据:销售单价x(元)12141618年销售量y(万件)7654(1)求出y关于x的函数关系式;(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?【解答】解:(1)设y=kx+b,根据题意,得:,解得:,则y=﹣x+13;(2)∵该公司年利润w=(﹣x+13)(x﹣10)﹣10=﹣(x﹣18)2+22,∴当x=18时,该公司年利润最大,最大值为22万元.24.(9分)如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等边△ABE中,D、C分别是边AE、BE的中点,连接CD,问四边形ABCD是互补等对边四边形吗?请说明理由.(2)如图3,在等腰△ABE中,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(3)如图4,在非等腰△ABE中,若四边形ABCD是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.【解答】解:(1)四边形ABCD是互补等对边四边形,理由:如图2,∵△ABE是等边三角形,∴AE=BE,连接AC,BD,∵点D是AE的中点,∴BD⊥AE,∴∠ADB=90°,同理:∠BCA=90°,∴AD=BC,∠ADB+∠BCA=180°∴四边形ABCD是互补等对边四边形.(2)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(3)仍然成立;理由如下:如图4所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.25.(10分)如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y 轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(﹣1,0)(1)求抛物线的解析式;(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N 三点构成以MN为底边的等腰直角三角形,求点N的坐标.【解答】解:(1)当x=0时,y=3,∴C(0,3),∴OC=3,当y=0时,﹣x+3=0,x=3,∴B(3,0),∵A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣3),把C(0,3)代入得:3=a(0+1)(0﹣3),∴a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)如图1,过P作PE⊥x轴于E,∵P(m,n),∴OE=m,BE=3﹣m,PE=n,S=S梯形COEP+S△PEB=OE(PE+OC)+BE•PE,=m(n+3)+n(3﹣m),=m+n,∵n=﹣m2+2m+3,∴S=m+(﹣m2+2m+3)=﹣m2+m+=﹣(m﹣)2+,当m=时,S有最大值是;(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4),设直线BM的解析式为:y=kx+b,把B(3,0),M(1,4)代入得:,解得:,∴直线BM的解析式为:y=﹣2x+6,设N(a,﹣2a+6),Q(n,﹣n+3),分两种情况:①当N在射线MB上时,如图2,过Q作EF∥y轴,分别过M、N作x轴的平行线,交EF于E、F,∵△EQN是等腰直角三角形,∴MQ=QN,∠MQN=90°,∴∠EQM+∠FQN=90°,∵∠EQM+∠EMQ=90°,∴∠FQN=∠EMQ,∵∠QEM=∠QFN=90°,∴△EMQ≌△FQN,∴EM=FQ,EQ=FN,∴解得:,当a=2时,y=﹣2a+6=﹣2×2+6=2,∴N(2,2),②当N在射线BM上时,如图3,同理作辅助线,得△ENQ≌△FQM,∴EN=FQ,EQ=FM,∴,解得:,∴N(﹣1,8),综上所述,点N的坐标为(2,2)或(﹣1,8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年湖北省黄石市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)的负倒数是()A.﹣B.C.D.﹣2.(3分)下列图形:(1)平行四边形,(2)抛物线,(3)等边三角形,(4)双曲线;(5)圆.其中是中心对称图形的个数有()#EPA.1 B.2 C.3 D.43.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×10104.(3分)下列运算正确的是()A.(x2)3=x5B.2x3?x2=2x5C.x6÷x2=x3D.(x﹣1)2=x2﹣15.(3分)方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=26.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩1.50 1.60 1.65 1.70 1.75 1.80(m)人数124332这15名运动员跳高成绩的中位数是()A.4 B.1.70 C.1.75 D.1.657.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.89.(3分)如图,直线y=3x、y=x与双曲线y=在第一象限内分别交于A、B两点,S△ABO=8,则k=()A.6 B.8 C.4 D.510.(3分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)函数的自变量x的取值范围是.12.(3分)分解因式:a3﹣ab2=.13.(3分)分式方程﹣=1的解为.14.(3分)如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.(3分)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个.16.(3分)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与A1A2,边A1A2与A4A5,边A4A5与边A7A8,…均相距一个单位长度,则顶点A3的坐标为,顶点A31的坐标为.三、解答题(共72分)17.(7分)计算:6cos45°+(﹣1.73)0+|5﹣3|+(﹣1)2017.18.(7分)先化简,再求值:÷(m+2﹣),其中m=4.19.(7分)解不等式组,并写出这个不等式组的整数解.20.(7分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围.(2)若x1x2+|x1|+|x2|=7,求k 的值.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.22.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.23.(8分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五?一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?打折前一次性购物总金优惠措施额不超过400元售价打九折超过400元售价打八折24.(10分)已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图1,当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空CE BD.(2)如图2,把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图3,在图1的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,F G⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF 与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.2017-2018学年湖北省黄石市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)的负倒数是()A.﹣B.C.D.﹣【解答】解:的负倒数是﹣=﹣,故选:D.2.(3分)下列图形:(1)平行四边形,(2)抛物线,(3)等边三角形,(4)双曲线;(5)圆.其中是中心对称图形的个数有()#EPA.1 B.2 C.3 D.4【解答】解:由中心对称图形的概念可知,(1)(4)(5)是中心对称图形,符合题意;(2)(3)不是中心对称图形,是轴对称图形,不符合题意.故中心对称的图形有3个.故选:C.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.4.(3分)下列运算正确的是()A.(x2)3=x5B.2x3?x2=2x5C.x6÷x2=x3D.(x﹣1)2=x2﹣1【解答】解:A、原式=x6,不符合题意;B、原式=2x5,符合题意;C、原式=x4,不符合题意;D、原式=x2﹣2x+1,不符合题意,故选:B.5.(3分)方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=2【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选:C.6.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩1.50来源:] 1.60 1.65 1.70 1.75 1.80(m)人数124332这15名运动员跳高成绩的中位数是()A.4 B.1.70 C.1.75 D.1.65【解答】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是 1.70,则中位数是 1.70,故选:B.7.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选:C.8.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.9.(3分)如图,直线y=3x、y=x与双曲线y=在第一象限内分别交于A、B两点,S△ABO=8,则k=()A.6 B.8 C.4 D.5【解答】解:过A作AE⊥x轴于E,过B作BF⊥x轴于F,设A(a,b),B(c,d),则ab=cd=k,即S△OAB=S△OAE+S梯形AEFB﹣S△BOF=S梯形AEFB,∵y=3x,y=,∴A的坐标是(,),同理B的坐标是(,),即?(+)?(﹣)=8,解得:k=6,故选:A.10.(3分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x?2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.二、填空题(每小题3分,共18分)11.(3分)函数的自变量x的取值范围是x≥6.【解答】解:根据题意得:x﹣6≥0,解得x≥6.12.(3分)分解因式:a3﹣ab2=a(a+b)(a﹣b).【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).13.(3分)分式方程﹣=1的解为x=﹣1.【解答】解:去分母得:x+2﹣4=x2﹣4,即x2﹣x﹣2=0,解得:x=2或x=﹣1,经检验x=2是增根,分式方程的解为x=﹣1,故答案为:x=﹣114.(3分)如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为2π﹣4.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×42=2π﹣4.故答案为2π﹣4.15.(3分)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有4个.【解答】解:设袋中的黑球有x个,根据题意得:=,解得:x=4,经检验:x=4是原分式方程的解.即袋中的黑球有4个.故答案为:4.16.(3分)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与A1A2,边A1A2与A4A5,边A4A5与边A7A8,…均相距一个单位长度,则顶点A3的坐标为(0,1﹣),顶点A31的坐标为(﹣11,11).【解答】解:∵从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,其中x轴与边A1A2,边A1A2与A4A5,A4A5与A7A8,…均相距一个单位,∴A1A2=2,A1E=1,A1(﹣1,1),∴EA3=,则OA3=﹣1,则顶点A3的坐标为:(0,1﹣),来源:]同理可得出:A4(﹣2,2),A7(﹣3,3)…∵4=2×3﹣2,7=3×3﹣2,10=4×3﹣2…31=11×3﹣2∴A31的坐标为:(﹣11,11),故答案为:(0,1﹣),(﹣11,11),三、解答题(共72分)17.(7分)计算:6cos45°+(﹣1.73)0+|5﹣3|+(﹣1)2017.【解答】解:原式=6×+1+5﹣3﹣1=5.18.(7分)先化简,再求值:÷(m+2﹣),其中m=4.【解答】解:当m=4时,原式=÷==1219.(7分)解不等式组,并写出这个不等式组的整数解.【解答】解:解不等式7(x﹣1)>4x+2,得:x>3,解不等式≥2x﹣5,得:x≤4,则不等式组的解集为3<x≤4,所以不等式组的整数解为x=4.20.(7分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围.(2)若x1x2+|x1|+|x2|=7,求k 的值.【解答】解:(1)由题意△>0,∴4k2﹣12k+9﹣4k2﹣4>0,∴k<.(2)由题意x1x2=k2+1>0,x1+x1=2k﹣3<0,∴x1<0,x2<0,∴k2+1﹣(2k﹣3)=7,解得k=﹣1或3(舍弃),∴k=﹣1.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.【解答】(1)证明:连接AE,∵AB是⊙O直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE.(2)解:∵∠BAC=54°,AB=AC,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.22.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为108°;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.【解答】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜欢用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°(2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人(4)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,甲、乙两名同学恰好选中同一种沟通方式的概率为:=故答案为:(1)100;108°23.(8分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五?一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?优惠措施打折前一次性购物总金额不超过400元售价打九折超过400元售价打八折【解答】解:(1)设甲商品购进x件,则乙商品购进(100﹣x)件,由题意,得y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,故y与x之间的函数关系式为:y=﹣5x+1000;(2)由题意,得15x+35(100﹣x)≤3000,解之,得x≥25.∵y=﹣5x+1000,k=﹣5<0,∴y随x的增大而减小,∴当x取最小值25时,y最大值,此时y=﹣5×25+1000=875(元),∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元;(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.①当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),则20m+45n=360,m=18﹣n>0,∴0<n<8.n是4的倍数,有3种情况:情况1:m=0,n=8,则利润是:324﹣8×35=44(元);情况2:m=9,n=4,则利润是:324﹣(15×9+35×4)=49(元);情况3:m=18,n=0,则利润是:324﹣15×18=54(元);②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元),则20m+45n=405,m=>0,∴0<n<9.m、n均是正整数,有3种情况:情况1:m=9,n=5,则利润为:324﹣(9×15+5×35)=14(元);情况2:m=18,n=1,则利润为:324﹣(18×15+1×35)=19(元).综上所述,商家可获得的最小利润是14元,最大利润是54元.24.(10分)已知△A BC≌△ADE,∠BAC=∠DAE=90°.(1)如图1,当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空CE⊥BD.(2)如图2,把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图3,在图1的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.【解答】解:(1)CE⊥BD.来源:Z|xx|](2)延长CE交BD于M,设AB与EM交于点F.∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD.又∵△ABC≌△ADE,∴AC=AE,AB=AD,∴∠ACE=,∠ABD=,∴∠ACE=∠ABD.又∵∠AFC=∠BFM,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE⊥BD.(3)过C′作C′G⊥AM于G,过D作DH⊥AM交延长线于点H.∵∠E′NA=∠AGC′=90°,∴∠NE′A+∠NAE′=90°,∠NAE′+∠C′AG=90°,∴∠NE′A=∠C′AG,∵AE′=AC′∴△ANE′≌△C′GA(AAS),∴AN=C′G.同理可证△BNA≌△AHD,AN=DH.∴C′G=DH.在△C′GM与△DHM中,∠C′GM=∠DHM=90°,∠C′MG=∠DMH,C′G=DH,∴△C′GM≌△DHM,∴C′M=DM,∴=.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF 与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.来源学&科&网Z&X&X&K]【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。