泰山区第二中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰山区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种
C .270种
D .540种
2. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
3. “方程
+
=1表示椭圆”是“﹣3<m <5”的( )条件.
A .必要不充分
B .充要
C .充分不必要
D .不充分不必要
4. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )
A .
B .
C .
D .
6. 若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
7. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )
A .﹣2
B .﹣1
C .1
D .2
8. 已知a=log 23,b=8﹣0.4,c=sin
π,则a ,b ,c 的大小关系是( )
A .a >b >c
B .a >c >b
C .b >a >c
D .c >b >a
9. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 10.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0
D .0<a <1且b <0
11.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )
A .2160
B .2880
C .4320
D .8640
12.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =
A 、22
B 、23
C 、24
D 、25
二、填空题
13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .
14.若
的展开式中含有常数项,则n 的最小值等于 .
15.数列{a n }是等差数列,a 4=7,S 7= .
16.函数f (x )=的定义域是 .
17.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .
18.若圆与双曲线C :
的渐近线相切,则
_____;双曲线C 的渐近线方程是
____.
三、解答题
19.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.
(1)求曲线C的直角坐标方程;
(2)求|PA|•|PB|.
20.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)求A∪B;
(2)求(∁U A)∩B;
(3)求∁U(A∩B).
21.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.
(Ⅰ)求A,B;
(Ⅱ)若A∪B=B,求实数a的取值范围.
22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.
23.在平面直角坐标系xOy 中,经过点且斜率为k 的直线l 与椭圆
有两个不同的交点
P 和Q .
(Ⅰ)求k 的取值范围;
(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量与
共线?
如果存在,求k 值;如果不存在,请说明理由.
24.(本小题满分12分)
设0
3πα⎛
⎫∈ ⎪⎝
⎭,αα+
(1)求cos 6πα⎛
⎫+ ⎪⎝
⎭的值;
(2)求cos 212πα⎛
⎫+ ⎪⎝
⎭的值.
泰山区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
2.【答案】B
【解析】解:由a2≠1,解得a≠±1.
∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.
∴“a≠1”是“a2≠1”的必要不充分条件.
故选:B.
【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
3.【答案】C
【解析】解:若方程+=1表示椭圆,则满足,即,
即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,
当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.
故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.
故选:C.
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
4.【答案】D
【解析】解:在A选项中,可能有n⊂α,故A错误;
在B选项中,可能有n⊂α,故B错误;
在C选项中,两平面有可能相交,故C错误;
在D选项中,由平面与平面垂直的判定定理得D正确.
故选:D.
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
5. 【答案】A 【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确
故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问
题的关键.
6. 【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==-,因为复数满足7
1i i
z
+=,所以()1,1i i i i z i z +=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算.
7. 【答案】A
【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,
可得,,则•==16﹣18=
﹣2; 故选A .
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
8. 【答案】B
【解析】解:1<log 23<2,0<8﹣0.4=2﹣
1.2
,sin π=sin π,
∴a >c >b , 故选:B .
【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.
9. 【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样. 10.【答案】B
【解析】解:∵函数y=a x
﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a >1,a 0
﹣b ﹣1<0,
即a >1,b >0,
故选:B
11.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
12.【答案】A
【解析】1237k a a a a a =++++176
72
a d ⨯=+
121(221)d a d ==+-, ∴22k =.
二、填空题
13.【答案】
cm 2 .
【解析】解:如图所示,是正六棱台的一部分, 侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .
取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1, 则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.
根据正六棱台的性质得OC=,O
1C 1==
,
∴CC 1=
=
.
又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .
∴正六棱台的侧面积:
S=.
=
=(cm2).
故答案为:cm2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.14.【答案】5
【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r
令=0,得n=,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.
15.【答案】49
【解析】解:
=
=7a4
=49.
故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.16.【答案】{x|x>2且x≠3}.
【解析】解:根据对数函数及分式有意义的条件可得
解可得,x>2且x≠3
故答案为:{x|x>2且x≠3}
17.【答案】20.
【解析】解:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.
∴△PQF2的周长=20.,
故答案为20.
【点评】作出草图,结合图形求解事半功倍.
18.【答案】,
【解析】【知识点】圆的标准方程与一般方程双曲线
【试题解析】双曲线的渐近线方程为:
圆的圆心为(2,0),半径为1.
因为相切,所以
所以双曲线C的渐近线方程是:
故答案为:,
三、解答题
19.【答案】
【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…
∵ρcosθ=x,ρsinθ=y,
∴曲线C的直角坐标方程为y2=4x …
(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…
代入y2
=4x 得t2﹣6t﹣14=0…
设点A,B对应的参数分别t1,t2
∴t1t2=﹣14…
∴|PA|•|PB|=14.…
20.【答案】
【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)A∪B={1,2,3,4,5,7}
(2)(∁U A)={1,3,6,7}
∴(∁U A)∩B={1,3,7}
(3)∵A∩B={5}
∁U(A∩B)={1,2,3,4,6,7}.
【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.
21.【答案】
【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的
定义域A=(﹣∞,﹣1)∪(2,+∞);
由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,
∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);
(Ⅱ)∵A∪B=B,∴A⊆B.
∴,解得﹣1≤a≤1.
∴实数a的取值范围[﹣1,1].
22.【答案】
【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),
∴=0,
+8=0,
∴=,
化为,代入=0,
化为:+16﹣cos2θ,
∴,
∴θ=或.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
23.【答案】
【解析】解:(Ⅰ)由已知条件,直线l的方程为,
代入椭圆方程得.
整理得①
直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,
解得或.即k的取值范围为.
(Ⅱ)设P(x1,y1),Q(x2,y2),则,
由方程①,.②
又.③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知或,
故没有符合题意的常数k.
【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.
24.【答案】(1;(2.
【解析】
试题分析:(1αα+⇒
sin 6πα⎛⎫+ ⎪⎝⎭,又03πα⎛
⎫∈ ⎪⎝
⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,
⇒cos 6πα⎛⎫+=
⎪⎝⎭;(2)由(1)可得21cos 22cos 1364ππαα⎛⎫⎛
⎫+=+-= ⎪ ⎪⎝⎭⎝⎭
⇒sin 23πα⎛⎫+= ⎪⎝⎭
⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫
⎛⎫⎛⎫⎛
⎫+
=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝⎭⎣⎦
.
试题解析:(1αα=∴
sin 6πα⎛
⎫+= ⎪⎝⎭………………………………3分
∵03πα⎛
⎫∈ ⎪⎝
⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛⎫+= ⎪⎝⎭………………………………6分
(2)由(1)可得2
21
cos 22cos 121364ππαα⎛⎫⎛
⎫
+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………………………8分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫
+∈ ⎪⎝⎭
,,∴sin 23πα⎛⎫+=
⎪⎝⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛
⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
.………………………………………………………………………………12分 考点:三角恒等变换.。