垂径定理专题试题精选二附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理专题试题精选二附答案
一.解答题(共29小题)
1.(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=8,AD=10,求CD的长.
2.(2015•东西湖区校级模拟)如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.
3.(2015•安徽模拟)如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B 是弧CF的中点.
(1)求证:△ABF≌△DCB;
(2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.
4.(2015•黄浦区一模)已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.
(1)求证:=;
(2)当PA=1,∠BPO=45°时,求弦AB的长.
5.(2015•大庆模拟)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.请完成下列填空:
①请在图中确定并点出该圆弧所在圆心D点的位置,圆心D坐标;
②⊙D的半径=(结果保留根号);
③的长为.
6.(2015•历城区一模)如图,AB是⊙O的直径,弦CD⊥AB,交AB于点E,∠CDB=30°,⊙O的半径为2cm,求弦CD的长.
7.(2015•嘉定区一模)如图,已知AB是圆O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON:AN=2:3,OM⊥CD,垂足为点M.
(1)求OM的长;
(2)求弦CD的长.
8.(2014•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.
(1)若∠AOB=56°,求∠ADC的度数;
(2)若BC=6,AE=1,求⊙O的半径.
9.(2015•温州模拟)已知:如图,AB是⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB于点D,CD=4,AD=8.点E为的中点,延长AE交DC的延长线于点F.
(1)求⊙O的半径;
(2)求证:CA=CF.
10.(2015•镇海区模拟)如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB 是菱形.
11.(2015•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.
12.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
13.(2015•绵阳模拟)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)请证明:E是OB的中点;
(2)若AB=8,求CD的长.
14.(2015•黄陂区校级模拟)在△ABC中,∠A=90°,AB=3,AC=4.以点A为圆心,AC长为半径画弧交CB的延长线与点D,求CD的长.
15.(2015•江岸区校级模拟)如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C、D两点.
求证:AC=BD.
16.(2015•东西湖区校级模拟)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.
17.(2015•宝应县校级模拟)如图,过▱ABCD中的三个顶点A、B、D作⊙O,且圆心O在▱ABCD外部,AB=8,OD⊥AB于点E,⊙O的半径为5,求▱ABCD的面积.
18.(2015•高密市一模)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连结OA,此时有OA∥PE
(1)求证:AP=AO;
(2)若弦AB=12,求tan∠OPB的值.
19.(2015•武汉模拟)如图1,锐角△ABC内接于⊙O,∠BAC=60°,若⊙O的半径为2.
(1)求BC的长度;
(2)如图2,过点A作AH⊥BC于点H,若AB+AC=12,求AH的长度.
20.(2012•长春)如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.
21.(2012•怀远县校级模拟)如图,⊙O的弦AB垂直平分半径OC,若AB=2,求⊙O的半径.
22.(2012•长春模拟)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,﹣3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.
(1)求点B、C、D的坐标;
(2)如果一个二次函数图象经过B、C、D三点,求这个二次函数解析式.
23.(2011•怀化)如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.(1)求证:OF∥BC;
(2)求证:△AFO≌△CEB;
(3)若EB=5cm,CD=10cm,设OE=x,求x值及阴影部分的面积.
24.(2011•南昌)如图,已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点(B,C两点除外).
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
(参考数据:sin60°=,cos30°=,tan30°=.)
25.(2010•南充)如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.
26.(2010•河池)如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,,求∠BAC的度数;
(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.
27.(2010•武汉模拟)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
28.(2010•宁波模拟)已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.(1)求证:∠CAB=∠CEG;
(2)①求y与x之间的函数关系式.②x=时,点F是AB的中点;
(3)当x为何值时,点F是的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.
29.(2008•广安)如图,AB为⊙O的直径,OE交弦AC于点P,交于点M,且=.(1)求证:OP=BC;
(2)如果AE2=EP•EO,且AE=,BC=6,求⊙O的半径.
垂径定理专题试题精选二附答案
参考答案
一.解答题(共29小题)
1.;2.;3.;4.;5.(2,0 );2;π;6.;
7.;8.;9.;10.;11.;12.;
13.;14.;15.;16.;17.;
18.;19.;20.;21.;22.;
23.;24.;25.;26.;27.;
28.3;29.;。

相关文档
最新文档