宝安区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝安区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.下列说法正确的是()
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
2.如图,三行三列的方阵中有9个数a ij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()
A.B.C.D.
3.已知△ABC是锐角三角形,则点P(cosC﹣sinA,sinA﹣cosB)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中
的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()
A.B.C.2 D.3
5.如图可能是下列哪个函数的图象()
A.y=2x﹣x2﹣1 B.y=
C.y=(x2﹣2x)e x D.y=
6.复数z=(其中i是虚数单位),则z的共轭复数=()
A.﹣i B.﹣﹣i C.+i D.﹣+i
7.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()
A.7 B.14 C.28 D.56
8.若复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,则a=()
A.3 B.6 C.9 D.12
9.若a>b,则下列不等式正确的是()
A.B.a3>b3C.a2>b2D.a>|b|
10.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()
A.①②B.①C.③④D.①②③④11.已知M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则实数a的取值范围为()
A.(﹣∞,1)B.(﹣∞,1] C.(﹣∞,0)D.(﹣∞,0]
x=-,则输出的结果为()
12.执行下面的程序框图,若输入2016
A.2015 B.2016 C.2116 D.2048
二、填空题
13.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 14.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
15.若函数f (x )=
﹣m 在x=1处取得极值,则实数m 的值是 .
16.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
17.曲线y=x+e x 在点A (0,1)处的切线方程是 .
18.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在3
2
x = 处的导数302f ⎛⎫
'<
⎪⎝⎭,则13f ⎛⎫
= ⎪⎝⎭
___________. 三、解答题
19.2008年奥运会在中国举行,某商场预计2008年从1日起前x 个月,顾客对某种奥运商品的需求总量p (x )
件与月份x 的近似关系是
且x ≤12),该商品的进价q (x )元与月份x 的近似关系是q (x )=150+2x ,(x ∈N*且x ≤12). (1)写出今年第x 月的需求量f (x )件与月份x 的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月
利润预计最大是多少元?
20.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.
21.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
22.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
23.已知函数f(x)=(log2x﹣2)(log4x﹣)
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.
24.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;
(2)画出函数f(x)在R上的图象;
(3)写出它的单调区间.
宝安区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】
考点:几何体的结构特征.
2.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
3.【答案】B
【解析】解:∵△ABC是锐角三角形,
∴A+B>,
∴A>﹣B,
∴sinA>sin(﹣B)=cosB,
∴sinA﹣cosB>0,
同理可得sinA﹣cosC>0,
∴点P在第二象限.
故选:B
4.【答案】B
【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,
当1、2同行或同列时,这个数表的“特征值”为;
当1、3同行或同列时,这个数表的特征值分别为或;
当1、4同行或同列时,这个数表的“特征值”为或,
故这些可能的“特征值”的最大值为.
故选:B.
【点评】题考查类比推理和归纳推理,属基础题.
5.【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,
∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=e x>0恒成立,
∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;
∴C中的函数满足条件;
D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y=<0,∴D中函数不满足条件.
故选:C.
【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.
6.【答案】C
【解析】解:∵z==,
∴=.
故选:C.
【点评】本题考查了复数代数形式的乘除运算,是基础题.
7.【答案】C
【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.
∴函数f(x)关于直线x=1对称,
∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),
∴a6+a23=2.
则{a n}的前28项之和S28==14(a6+a23)=28.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.
8.【答案】A
【解析】解:复数z===.
由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,
解得a=3.
故选:A.
【点评】本题考查复数的代数形式的混合运算,考查计算能力.
9.【答案】B
【解析】解:∵a>b,令a=﹣1,b=﹣2,代入各个选项检验可得:
=﹣1,=﹣,显然A不正确.
a3=﹣1,b3=﹣6,显然B正确.
a2 =1,b2=4,显然C不正确.
a=﹣1,|b|=2,显然D 不正确.
故选B.
【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
10.【答案】A
【解析】

点:斜二测画法. 11.【答案】D 【解析】解:如图,
M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅, 则a ≤0.
∴实数a 的取值范围为(﹣∞,0]. 故选:D .
【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.
12.【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图.
二、填空题
13.【答案】 m ≥2 .
【解析】解:集合A={x|x+m ≥0}={x|x ≥﹣m},全集U=R ,所以C U A={x|x <﹣m}, 又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2. 故答案为m ≥2.
14.【答案】 .
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
15.【答案】
﹣2
【解析】解:函数f(x)=﹣m的导数为f′(x)=mx2+2x,
由函数f(x)=﹣m在x=1处取得极值,
即有f′(1)=0,
即m+2=0,解得m=﹣2,
即有f′(x)=﹣2x2+2x=﹣2(x﹣1)x,
可得x=1处附近导数左正右负,为极大值点.
故答案为:﹣2.
【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.
16.【答案】4
【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,
所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
17.【答案】2x﹣y+1=0.
【解析】解:由题意得,y′=(x+e x)′=1+e x,
∴点A(0,1)处的切线斜率k=1+e0=2,
则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,
故答案为:2x﹣y+1=0.
【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.
18.【答案】12
【解析】

点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫
'< ⎪⎝⎭
来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭
.1
三、解答题
19.【答案】
【解析】解:(1)当x=1时,f (1)=p (1)=37.
当2≤x ≤12时,
且x ≤12)
验证x=1符合f (x )=﹣3x 2+40x ,∴f (x )=﹣3x 2
+40x (x ∈N*且x ≤12).该商场预计销售该商品的月利润为
g (x )=(﹣3x 2+40x )(185﹣150﹣2x )=6x 3﹣185x 2+1400x ,(x ∈N*且x ≤12),
令h (x )=6x 3﹣185x 2+1400x (1≤x ≤12),h'(x )=18x 2
﹣370x+1400,令h'(x )=0,解得
(舍
去).>0;当5<x ≤12时,h'(x )<0.
∴当x=5时,h (x )取最大值h (5)=3125.max =g (5)=3125(元).
综上,5月份的月利润最大是3125元.
【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.
20.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
21.【答案】
【解析】解:(1)设双曲线的方程为y2﹣x2=λ(λ≠0),
代入点P(﹣3,4),可得λ=﹣16,
∴所求求双曲线的标准方程为
(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,
又由双曲线的几何性质知|d1﹣d2|=2a=6,
∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,
又|F1F2|=2c=10,
∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2
∴cos∠F1PF2=
【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.
22.【答案】
【解析】解:(1)设抽取x人,则,解得x=2,
即年龄在20:39岁之间应抽取2人.
(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,
随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,
年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,
则对应的概率P=.
【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.23.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g(t)=t+﹣,t∈[2,4],
∴g(t)=t+﹣=(t+)﹣,
∵g(t)=t+﹣在[2,4]上为增函数,
∴当t=2时,g(t)min=g(2)=0,
∴m<0.
24.【答案】
【解析】解:(1)若x>0,则﹣x<0…(1分)
∵当x<0时,f(x)=()x.
∴f(﹣x)=()﹣x.
∵f(x)是定义在R上的奇函数,
f(﹣x)=﹣f(x),
∴f(x)=﹣()﹣x=﹣2x.…(4分)
(2)∵(x)是定义在R上的奇函数,
∴当x=0时,f(x)=0,
∴f(x)=.…(7分)
函数图象如下图所示:
(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)
无增区间…(12分)
【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.。

相关文档
最新文档