隰县第一中学校2018-2019学年高二上学期第一次月考试卷化学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隰县第一中学校2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 命题“存在实数x ,使x >1”的否定是( )
A .对任意实数x ,都有x >1
B .不存在实数x ,使x ≤1
C .对任意实数x ,都有x ≤1
D .存在实数x ,使x ≤1
2. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是(
)
A .S 18=72
B .S 19=76
C .S 20=80
D .S 21=84
3. 集合,,,则,
{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )
N P A . B . C .
D .M P N =⊆N P M =⊆M N P =⊆M P N
==4. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为(
)
A .1
B .﹣1
C .2
D .﹣2
5. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、2
2(0)y px p =>F 2
2
18
-=y x A 两点,若,且,则抛物线方程为( )
B >AF BF ||3AF =A .
B .
C .
D .2
y x =2
2y x =2
4y x =2
3y x
=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
6. 已知集合,则下列式子表示正确的有( )
{
}
2
|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个
B .2个
C .3个
D .4个
7. 经过点且在两轴上截距相等的直线是(
)
()1,1M A . B .20x y +-=10
x y +-=C .或
D .或1x =1y =20x y +-=0
x y -=8. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )
A .{x|x <﹣1或x >﹣lg2}
B .{x|﹣1<x <﹣lg2}
C .{x|x >﹣lg2}
D .{x|x <﹣lg2}
9. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是(
)
A .[1,6]
B .[﹣3,1]
C .[﹣3,6]
D .[﹣3,+∞)10.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )
A .
B .
C .
D .
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
11.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )
A .512个
B .256个
C .128个
D .64个
12.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离
心率的倒数之和的最大值为( )
A .2
B .
C .
D .4
二、填空题
13.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
14.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .
15.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,
M N 、2
4y x =F MN ,则直线的方程为_________.
||||10MF NF +=MN 16.已知(2x ﹣
)n 展开式的二项式系数之和为64,则其展开式中常数项是 .
17.某几何体的三视图如图所示,则该几何体的体积为
18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
三、解答题
19.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的
右顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.
20.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆
G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
21.(1)求z=2x+y的最大值,使式中的x、y满足约束条件
(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.
22.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.
23.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km 的部分2元/km.
(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;
(2)如果某人乘车行驶了30km,他要付多少车费?
24.根据下列条件,求圆的方程:
(1)过点A(1,1),B(﹣1,3)且面积最小;
(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).
隰县第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)
一、选择题
1. 【答案】C
【解析】解:∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C
2. 【答案】
【解析】选B.∵3a 8-2a 7=4,∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+=18(a 1+d )不恒为常数.
18×17d 2172
S 19=19a 1+=19(a 1+9d )=76,
19×18d 2
同理S 20,S 21均不恒为常数,故选B.3. 【答案】A 【解析】
试题分析:通过列举可知,所以.
{}{}2,6,0,2,4,6M P N ==±±=±±±L L M P N =⊆考点:两个集合相等、子集.14. 【答案】B
【解析】解:由z=y ﹣x 得y=x+z ,作出不等式组对应的平面区域如图:
平移直线y=x+z 由图象可知当直线y=x+z 经过点A 时,直线y=x+z 的截距最小,此时最小值为﹣2,即y ﹣x=﹣2,则x ﹣y ﹣2=0,当y=0时,x=2,即A (2,0),
同时A 也在直线kx ﹣y+2=0上,代入解得k=﹣1,故选:B
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.
5. 【答案】C
【解析】由已知得双曲线的一条渐近线方程为,设,则
,所以,
=y
00(,)A x y 02>p x 0
002
002322ì=ï
ï-ïïïï
+=íïï=ïïïïî
y p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322
->p p
03p <<2=p 24y x =6. 【答案】
C 【解析】
试题分析:,所以①③④正确.故选C.{}1,1A =-考点:元素与集合关系,集合与集合关系.7. 【答案】D 【解析】
考
点:直线的方程.8. 【答案】D
【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x <,由指数函数的值域为(0,+∞)一定有10x >﹣1,而10x <可化为10x <,即10x <10﹣lg2,
由指数函数的单调性可知:x <﹣lg2
故选:D
9. 【答案】C
【解析】解:y=x 2﹣4x+1=(x ﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6
∴函数y=x2﹣4x+1,x∈[2,5]的值域是[﹣3,6]
故选C
【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答
10.【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,
这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B.
11.【答案】D
【解析】解:经过2个小时,总共分裂了=6次,
则经过2小时,这种细菌能由1个繁殖到26=64个.
故选:D.
【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.
12.【答案】C
【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|MF1|=r1,|MF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1MF2=,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=
,
即
+≤
,当且仅当e 1=,e 2=
时取等号.即取得最大值且为.
故选C .
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.
二、填空题
13.【答案】
【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
14.【答案】 a ≤0或a ≥3 .
【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B ,∴B ⊆A ,
则有a+1≤1或a ≥3,解得:a ≤0或a ≥3,故答案为:a ≤0或a ≥3.
15.【答案】20
x y --=【解析】解析: 设,那么,,∴线段1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN 的中点坐标为.由,两式相减得,而
,∴(4,2)2
114y x =2
224y x =121212()()4()y y y y x x +-=-12
22
y y +=,∴直线的方程为,即.
12
12
1y y x x -=-MN 24y x -=-20x y --=16.【答案】 60 .
【解析】解:由二项式系数的性质,可得2n =64,解可得,n=6;(2x ﹣
)6的展开式为为T r+1=C 66﹣r •(2x )6﹣r •(﹣
)r =(﹣1)r •26﹣r •C 66﹣r •
,
令6﹣r=0,可得r=4,
则展开式中常数项为60.
故答案为:60.
【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.
17.【答案】 26
【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:
三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.
∴几何体的体积V==26.
故答案为:26.
【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.
18.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,
又∵直线x﹣y﹣2=0经过椭圆的右顶点,
∴右顶点为(2,0),即a=2,c=,b=1,…
∴椭圆方程为:.…
(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)
联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…
则,
于是…
又直线OM、MN、ON的斜率依次成等比数列.
∴…
由m≠0得:
又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2
显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,
直线OM、ON中至少有一个斜率不存在,与已知矛盾)…
设原点O到直线的距离为d,则
∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…
【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.
20.【答案】
【解析】解:(Ⅰ)由已知得,c=,,
解得a=,又b2=a2﹣c2=4,
所以椭圆G的方程为.
(Ⅱ)设直线l的方程为y=x+m,
由得4x2+6mx+3m2﹣12=0.①
设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),
则x0==﹣,
y0=x0+m=,
因为AB是等腰△PAB的底边,
所以PE⊥AB,
所以PE的斜率k=,
解得m=2.
此时方程①为4x2+12x=0.
解得x1=﹣3,x2=0,
所以y1=﹣1,y2=2,
所以|AB|=3,此时,点P(﹣3,2).
到直线AB:y=x+2距离d=,
所以△PAB的面积s=|AB|d=.
21.【答案】
【解析】解:(1)由题意作出可行域如下,
,
结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,
,
根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d有最大值时,|z|有最大值,即z有最值;
结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,
联立方程化简可得,
116x2﹣100zx+25z2﹣400=0,
故△=10000z2﹣4×116×(25z2﹣400)=0,
故z2=116,
故z=2x+y的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.
22.【答案】
【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,
所以4x2﹣3(x2+y2)i=4﹣12i,
所以,解得,
所以a=1+i,b=1﹣i;
或a=1﹣i,b=1+i;
或a=﹣1+i,b=﹣1﹣i;
或a=﹣1﹣i,b=﹣1+i.
【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.
23.【答案】
【解析】解:(1)依题意得:
当0<x≤4时,y=10;…(2分)
当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…
当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)
∴…(9分)
(2)x=30,y=2×30﹣5=55…(12分)
【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.
24.【答案】
【解析】解:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,
∴圆心坐标为(0,2),半径r=|AB|==×=,
∴所求圆的方程为x2+(y﹣2)2=2;
(2)由圆与y轴交于点A(0,﹣4),B(0,﹣2)可知,圆心在直线y=﹣3上,
由,解得,
∴圆心坐标为(2,﹣3),半径r=,
∴所求圆的方程为(x﹣2)2+(y+3)2=5. 。