遗传算法代码汇总
python遗传算法代码
![python遗传算法代码](https://img.taocdn.com/s3/m/a8144c71842458fb770bf78a6529647d26283451.png)
python遗传算法代码遗传算法是一种基于生物进化原理的优化算法,适用于解决复杂问题。
在Python中,可以使用遗传算法库DEAP (Distributed Evolutionary Algorithms in Python)来实现遗传算法。
DEAP是一个灵活且易于使用的遗传算法框架,提供了用于定义和执行遗传算法的工具。
下面介绍如何使用DEAP库来实现一个简单的遗传算法。
首先,需要安装DEAP库。
可以使用以下命令来安装:```pip install deap```接下来,我们开始编写遗传算法的代码示例。
下面是一个寻找函数f(x)的最小值的例子:```pythonimport randomfrom deap import base, creator, tools# 定义目标函数def f(x):return x**2 + 4*x + 4# 创建遗传算法的环境creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin)# 初始化遗传算法的参数toolbox = base.Toolbox()toolbox.register("attr_float", random.uniform, -10, 10) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=1)toolbox.register("population", tools.initRepeat, list,toolbox.individual)# 定义评估函数def evaluate(individual):x = individual[0]return f(x),# 定义遗传算法的操作toolbox.register("evaluate", evaluate)toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("mate", tools.cxTwoPoint)toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)# 设置遗传算法的参数population_size = 100n_generations = 100cxpb = 0.5mutpb = 0.2# 创建初始种群population = toolbox.population(n=population_size)# 进化for generation in range(n_generations):offspring = toolbox.select(population, len(population))offspring = [toolbox.clone(ind) for ind in offspring]for child1, child2 in zip(offspring[::2], offspring[1::2]):if random.random() < cxpb:toolbox.mate(child1, child2)del child1.fitness.valuesdel child2.fitness.valuesfor mutant in offspring:if random.random() < mutpb:toolbox.mutate(mutant)del mutant.fitness.valuesinvalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fitpopulation[:] = offspring# 输出最优解best_individual = tools.selBest(population, k=1)[0]best_fitness = evaluate(best_individual)[0]print("Best individual:", best_individual)print("Best fitness:", best_fitness)```在上面的代码中,首先定义了目标函数f(x),然后创建了遗传算法的环境,包括创建适应度函数和个体类,以及注册遗传算法的操作。
遗传算法详解(含MATLAB代码)
![遗传算法详解(含MATLAB代码)](https://img.taocdn.com/s3/m/8acbe008ae45b307e87101f69e3143323968f59c.png)
遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。
本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。
在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。
因此,这些猴子需要“无限的时间"。
而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。
当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。
下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。
之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。
这里就直接用框架。
把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。
遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )
![遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )](https://img.taocdn.com/s3/m/c5eb6e2a1711cc7930b71655.png)
GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。
它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。
它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。
从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。
如此模仿生命的进化进行不断演化,直到满足期望的终止条件。
运算流程:Step 1:对遗传算法的运行参数进行赋值。
参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。
Step 2:建立区域描述器。
根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。
Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step 4:执行比例选择算子进行选择操作。
Step 5:按交叉概率对交叉算子执行交叉操作。
Step 6:按变异概率执行离散变异操作。
Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。
运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。
目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。
实际上,GADS就是大家所看到的Matlab中自带的工具箱。
我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。
因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。
(完整版)遗传算法c语言代码
![(完整版)遗传算法c语言代码](https://img.taocdn.com/s3/m/b5210cf8561252d381eb6e5f.png)
}
}
}
//拷贝种群
for(i=0;i<num;i++)
{
grouptemp[i].adapt=group[i].adapt;
grouptemp[i].p=group[i].p;
for(j=0;j<cities;j++)
grouptemp[i].city[j]=group[i].city[j];
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
}
for(i=0;i<num;i++)
group[i].p=group[i].p/biggestp;
//求最佳路劲
bestsolution=0;
for(i=0;i<num;i++)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
遗传算法代码
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>
#define cities 10 //城市的个数
实数编码的遗传算法代码
![实数编码的遗传算法代码](https://img.taocdn.com/s3/m/dbc71dcb89eb172ded63b7ff.png)
function GA_real_coded_min% ±¾ÀýΪʵÊý±àÂëÒÅ´«Ëã·¨Çóº¯Êý×îСֵµÄÓÅ»¯ÎÊÌâ% Ä¿±êº¯ÊýΪ J = x1^2 + x2^2% ÆäÖÐ x1 µÄ·¶Î§Îª [-10,10], x2 µÄ·¶Î§Îª [-10,10]Size = 200;% the value of populationCodeL = 2;MinX(1) = -10;MaxX(1) = 10;MinX(2) = -10;MaxX(2) = 10;E(:,1) = MinX(1) + (MaxX(1)-MinX(1))*rand(Size,1);E(:,2) = MinX(2) + (MaxX(2)-MinX(2))*rand(Size,1);G = 100;% the max generation%---------------StartRunning---------------------------------------------for kg = 1 : Gtime(kg) = kg;%----------------------step 1: Evaluate BestJ-------------------------for i = 1 : Sizexi = E(i,:);x1 = xi(1);x2 = xi(2);% ÏÂÃæµÄ FÓÃÓÚ¼ÆËã¸öÌåµÄÊÊÓ¦¶ÈÖµ£¬ÊÊÓ¦¶Èº¯Êý¸ù¾ÝÄ¿±êº¯Êý½øÐÐÁËÏßÐԱ任F(i) = 1/(x1^2 + x2^2);% ¼ÆËãÊÊÓ¦¶ÈÖµ£¬Ô½´óÔ½ºÃJi = x1^2 + x2^2;% ¼ÆËãÄ¿±êÖµ£¬Ô½Ð¡Ô½ºÃBsJi(i) = min(Ji);end[OrderJi,IndexJi] = sort(BsJi);BestJ(kg) = OrderJi(1);Ji = BsJi + eps;% Avoiding deviding zerofi = F;[Orderfi,Indexfi] = sort(fi); % Arranging fi small to biggerBestfi = Orderfi(Size); % Let Bestfi=max(fi)BestS = E(Indexfi(Size),:); % Let BestS=E(m),m is the Indexfi belongs to max(fi)bfi(kg) = Bestfi;kgBestS%--------------------Step 2:Select and Reproduct Operation------------ fi_sum = sum(fi);fi_Size = (Orderfi/fi_sum)*Size;fi_S = floor(fi_Size); % Selecting Bigger fi valuer = Size - sum(fi_S);Rest = fi_Size - fi_S;[RestValue,Index] = sort(Rest);for i = Size : -1 : Size-r+1fi_S(Index(i)) = fi_S(Index(i)) + 1;% Adding rest to equal Size endk = 1;for i = Size : -1 : 1for j = 1 : fi_S(i)TempE(k,:) = E(Indexfi(i),:); % Selecting and Reproducek = k + 1; % k is used to reproduce endend%---------------------Step 3: Crossover Operation--------------------- Pc = 0.90;for i = 1 : 2 : Size-1temp = rand;if Pc > tempalfa = rand;TempE(i,:) = alfa*E(i+1,:) + (1-alfa)*E(i,:);TempE(i+1,:) = alfa*E(i,:) + (1-alfa)*E(i+1,:);endendTempE(Size,:) = BestS;E = TempE;%---------------------Step 4: Mutation Operation---------------------- Pm = 0.10 - [1:Size]*(0.01)/Size; % Bigger fi,smaller PmPm_rand = rand(Size,CodeL);Mean = (MaxX+MinX)/2;Dif = MaxX - MinX;for i = 1 : Sizefor j = 1 : CodeLif Pm(i) > Pm_rand(i,j);TempE(i,j) = Mean(j) + Dif(j)*(rand-0.5);endendend% Guarantee TempE(Size,:) belong to the best individualTempE(Size,:) = BestS;E = TempE;end%-------------------------------------------------------------------------BestSBestfifigure(1);plot(time,BestJ,'b');xlabel('Generations'); ylabel('Best Objective');% the value of objective figure(2);plot(time,bfi,'b');xlabel('Generations'); ylabel('Best Fitness');% the value of fitness。
遗传算法MATLAB完整代码(不用工具箱)
![遗传算法MATLAB完整代码(不用工具箱)](https://img.taocdn.com/s3/m/d0cca22b7dd184254b35eefdc8d376eeafaa1750.png)
遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。
遗传算法C语言源代码(一元函数和二元函数)
![遗传算法C语言源代码(一元函数和二元函数)](https://img.taocdn.com/s3/m/f8ff4be652d380eb63946d8c.png)
C语言遗传算法代码以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。
+++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++#include <>#include<>#include<>#include<>#define POPSIZE 1000#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define chromlength length1 //染色体长度//注意,你是求最大值还是求最小值int functionmode=minimization;//变量的上下限的修改开始float min_x1=-2;//变量的下界float max_x1=-1;//变量的上界//变量的上下限的修改结束int popsize; //种群大小int maxgeneration; //最大世代数double pc; //交叉率double pm; //变异率struct individual{char chrom[chromlength+1];double value;double fitness; //适应度};int generation; //世代数int best_index;int worst_index;struct individual bestindividual; //最正确个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( ) //种群初始化{int i,j;for (i=0;i<popsize; i++){for(j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%20<10)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation() //生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation() //评价个体,求最正确个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue() //计算函数值{int i;long temp1,temp2;double x1;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;//目标函数修改开始population[i].value=(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1);//目标函数修改结束}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最正确个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>){bestindividual=population[i];best_index=i;}else if (population[i].fitness<){worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(>=){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (>){currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for (j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for(j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}void input() //数据输入{ //printf("初始化全局变量:\n");//printf(" 种群大小(50-500):");//scanf("%d", &popsize);popsize=500;if((popsize%2) != 0){//printf( " 种群大小已设置为偶数\n");popsize++;};//printf(" 最大世代数(100-300):");//scanf("%d", &maxgeneration);maxgeneration=200;//printf(" 交叉率(0.2-0.99):");//scanf("%f", &pc);pc=0.95;//printf(" 变异率(0.001-0.1):");//scanf("%f", &pm);pm=0.03;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main() //主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration)generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf(" 统计结果: ");printf("\n");//printf("最大函数值等于:%f\n",);printf("其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;printf("x1=%lf\n",x1);//这是需要修改的地方printf("最优值等于:%f\n",(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1));}+++++++++++++++++++++++++二元函数代码+++++++++++++++++++++++++++++++++++++++++ #include <>#include<>#include<>#include<>#define POPSIZE 500#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define length2 20#define chromlength length1+length2 //染色体长度//-----------求最大还是最小值int functionmode=maximization;//-----------//-----------变量上下界float min_x1=0;float max_x1=3;float min_x2=1;float max_x2=5;//-----------int popsize; //种群大小int maxgeneration; //最大世代数double pc; //交叉率double pm; //变异率struct individual{char chrom[chromlength+1];double value;double fitness; //适应度};int generation; //世代数int best_index;int worst_index;struct individual bestindividual; //最正确个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( ) //种群初始化{int i,j;for (i=0;i<popsize; i++){for(j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%40<20)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation() //生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation() //评价个体,求最正确个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue() //计算函数值{int i;long temp1,temp2;double x1,x2;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);temp2=decodechromosome(population[i].chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;//-----------函数population[i].value=x1*x1+sin(x1*x2)-x2*x2;//-----------}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最正确个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>){bestindividual=population[i];best_index=i;}else if (population[i].fitness<){worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(>=){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (>){currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for (j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for(j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf("初始化全局变量:\n");//printf(" 种群大小(50-500):");//scanf("%d", &popsize);popsize=200;if((popsize%2) != 0){//printf( " 种群大小已设置为偶数\n");popsize++;};//printf(" 最大世代数(100-300):");//scanf("%d", &maxgeneration);maxgeneration=200;//printf(" 交叉率(0.2-0.99):");//scanf("%f", &pc);pc=0.9;//printf(" 变异率(0.001-0.1):");//scanf("%f", &pm);pm=0.003;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main() //主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf(" 统计结果: ");printf("\n");//printf("最大函数值等于:%f\n",);printf("其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);temp2=decodechromosome(currentbest.chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;printf("x=%lf,y=%lf\n",x1,x2);//-----------修改函数printf("最大值=%f\n",x1*x1+sin(x1*x2)-x2*x2);//-----------}。
遗传算法解释及代码(一看就懂)
![遗传算法解释及代码(一看就懂)](https://img.taocdn.com/s3/m/68125b8abceb19e8b8f6bad4.png)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法介绍并附上Matlab代码
![遗传算法介绍并附上Matlab代码](https://img.taocdn.com/s3/m/f18e5ffaa21614791611289d.png)
1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。
谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。
2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。
但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。
本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。
那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。
而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。
3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。
那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。
那么个体究竟是什么呢?在我们这个问题中自然就是x值了。
其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。
遗传算法matlab代码
![遗传算法matlab代码](https://img.taocdn.com/s3/m/bbe7eecd69dc5022aaea009f.png)
function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]') end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。
遗传算法 c语言代码
![遗传算法 c语言代码](https://img.taocdn.com/s3/m/ba32865315791711cc7931b765ce050876327534.png)
以下是一个简单的遗传算法的C语言代码示例:c#include <stdio.h>#include <stdlib.h>#include <time.h>#include <math.h>#define POPULATION_SIZE 100#define GENE_LENGTH 10#define MAX_GENERATIONS 1000#define MUTATION_RATE 0.01#define CROSSOVER_RATE 0.8typedef struct Individual {char genes[GENE_LENGTH];double fitness;} Individual;double calculate_fitness(Individual* individual) {// 计算适应度函数,这里使用简单的二进制字符串中1的个数作为适应度 int count = 0;for (int i = 0; i < GENE_LENGTH; i++) {if (individual->genes[i] == '1') {count++;}}return count;}void initialize_population(Individual* population) {// 初始化种群for (int i = 0; i < POPULATION_SIZE; i++) {for (int j = 0; j < GENE_LENGTH; j++) {population[i].genes[j] = rand() % 2 ? '0' : '1';}population[i].fitness = calculate_fitness(&population[i]); }}void selection(Individual* population, Individual* parents) {// 选择操作,采用轮盘赌算法选择两个父代个体double total_fitness = 0;for (int i = 0; i < POPULATION_SIZE; i++) {total_fitness += population[i].fitness;}double rand1 = rand() / (double)RAND_MAX * total_fitness;double rand2 = rand() / (double)RAND_MAX * total_fitness;double cumulative_fitness = 0;int parent1_index = -1, parent2_index = -1;for (int i = 0; i < POPULATION_SIZE; i++) {cumulative_fitness += population[i].fitness;if (rand1 < cumulative_fitness && parent1_index == -1) {parent1_index = i;}if (rand2 < cumulative_fitness && parent2_index == -1) {parent2_index = i;}}parents[0] = population[parent1_index];parents[1] = population[parent2_index];}void crossover(Individual* parents, Individual* offspring) {// 交叉操作,采用单点交叉算法生成两个子代个体int crossover_point = rand() % GENE_LENGTH;for (int i = 0; i < crossover_point; i++) {offspring[0].genes[i] = parents[0].genes[i];offspring[1].genes[i] = parents[1].genes[i];}for (int i = crossover_point; i < GENE_LENGTH; i++) {offspring[0].genes[i] = parents[1].genes[i];offspring[1].genes[i] = parents[0].genes[i];}offspring[0].fitness = calculate_fitness(&offspring[0]);offspring[1].fitness = calculate_fitness(&offspring[1]);}void mutation(Individual* individual) {// 变异操作,以一定概率翻转基因位上的值for (int i = 0; i < GENE_LENGTH; i++) {if (rand() / (double)RAND_MAX < MUTATION_RATE) {individual->genes[i] = individual->genes[i] == '0' ? '1' : '0'; }}individual->fitness = calculate_fitness(individual);}void replace(Individual* population, Individual* offspring) {// 替换操作,将两个子代个体中适应度更高的一个替换掉种群中适应度最低的一个个体int worst_index = -1;double worst_fitness = INFINITY;for (int i = 0; i < POPULATION_SIZE; i++) {if (population[i].fitness < worst_fitness) {worst_index = i;worst_fitness = population[i].fitness;}}if (offspring[0].fitness > worst_fitness || offspring[1].fitness > worst_fitness) {if (offspring[0].fitness > offspring[1].fitness) {population[worst_index] = offspring[0];} else {population[worst_index] = offspring[1];}}}。
人工智能遗传算法及python代码实现
![人工智能遗传算法及python代码实现](https://img.taocdn.com/s3/m/aa1de9e9d05abe23482fb4daa58da0116c171f9f.png)
人工智能遗传算法及python代码实现人工智能遗传算法是一种基于生物遗传进化理论的启发式算法,常用于求解复杂的优化问题。
它的基本思想是通过自然选择和基因交叉等机制,在种群中不断进化出适应性更强的个体,最终找到问题的最优解。
遗传算法通常由以下几个步骤组成:1. 初始化种群:从问题空间中随机生成一组解作为初始种群。
2. 评价适应度:利用一个适应度函数来评价每个解的适应性,通常是优化问题的目标函数,如最小化代价、最大化收益等。
3. 选择操作:从种群中选择一些具有较高适应度的个体用于产生新的种群。
选择操作通常采用轮盘赌选择方法或精英选择方法。
4. 交叉操作:将两个个体的染色体进行交叉、重组,生成新的子代个体。
5. 变异操作:对新产生的子代个体随机变异一些基因,以增加种群的多样性。
6. 生成新种群:用选择、交叉和变异操作产生新的种群,并进行适应度评价。
7. 终止条件:如果达到终止条件,算法停止,否则返回步骤3。
遗传算法的优点是可以适应各种优化问题,并且求解精度较高。
但由于其需要进行大量的随机操作,因此效率相对较低,也较容易陷入局部最优解。
在实际应用中,遗传算法常与其他算法结合使用,以求得更好的结果。
以下是使用Python实现基本遗传算法的示例代码:import randomimport math# 定义适应度函数,用于评价每个个体的适应程度def fitness_func(x):return math.cos(20 * x) + math.sin(3 * x)# 执行遗传算法def genetic_algorithm(pop_size, chrom_len, pcross, pmutate, generations):# 初始化种群population = [[random.randint(0, 1) for j in range(chrom_len)] for i in range(pop_size)]# 迭代指定代数for gen in range(generations):# 评价种群中每个个体的适应度fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]# 选择操作:轮盘赌选择roulette_wheel = []for i in range(pop_size):fitness = fits[i]roulette_wheel += [i] * int(fitness * 100)parents = []for i in range(pop_size):selected = random.choice(roulette_wheel)parents.append(population[selected])# 交叉操作:单点交叉for i in range(0, pop_size, 2):if random.uniform(0, 1) < pcross:pivot = random.randint(1, chrom_len - 1)parents[i][pivot:], parents[i+1][pivot:] = parents[i+1][pivot:], parents[i][pivot:]# 变异操作:随机翻转一个基因for i in range(pop_size):for j in range(chrom_len):if random.uniform(0, 1) < pmutate:parents[i][j] = 1 - parents[i][j]# 生成新种群population = parents# 返回种群中适应度最高的个体的解fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]best = fits.index(max(fits))return sum(population[best]) / (chrom_len * 1.0)# 测试遗传算法print("Result: ", genetic_algorithm(pop_size=100, chrom_len=10, pcross=0.9, pmutate=0.1, generations=100))上述代码实现了遗传算法,以优化余弦函数和正弦函数的和在某个区间内的最大值。
遗 传 算 法 详 解 ( 含 M A T L A B 代 码 ) ( 2 0 2 0 )
![遗 传 算 法 详 解 ( 含 M A T L A B 代 码 ) ( 2 0 2 0 )](https://img.taocdn.com/s3/m/a8cc30227fd5360cba1adbc4.png)
遗传算法原理简介及其MATLAB实践遗传算法简介遗传算法的深入理解:遗传算法的MATLAB实现【例】BP神经网络初始权值和阈值优化遗传算法简介遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J. Holland教授于1967年提出。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
因此,第一步需要实现从表现型到基因型的映射即编码工作。
初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度 (fitness)大小选择个体,借助于自然遗传学的遗传算子(genetic operators)进行组合交叉和变异,产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样,后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
遗传算法有三个基本操作:选择(Selection)、交叉(Crossover)和变异(Mutation)。
(1)选择。
选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁衍子孙。
根据各个个体的适应度值,按照一定的规则或方法从上一代群体中选择出一些优良的个体遗传到下一代种群中。
选择的依据是适应性强的个体为下一代贡献一个或多个后代的概率大。
(2)交叉。
通过交叉操作可以得到新一代个体,新个体组合了父辈个体的特性。
将群体中的各个个体随机搭配成对,对每一个个体,以交叉概率交换它们之间的部分染色体。
(3)变异。
对种群中的每一个个体,以变异概率改变某一个或多个基因座上的基因值为其他的等位基因。
同生物界中一样,变异发生的概率很低,变异为新个体的产生提供了机会。
遗传算法java代码
![遗传算法java代码](https://img.taocdn.com/s3/m/0a4e6575effdc8d376eeaeaad1f34693daef10fa.png)
遗传算法java代码遗传算法(Genetic Algorithm)是一种基于生物进化的启发式算法,通过模拟自然选择、交叉和突变等基因操作来优化问题的解。
以下是一个基于Java的遗传算法示例代码:```javaimport java.util.ArrayList;import java.util.List;import java.util.Random;//假设我们要求解的问题是求一个二进制序列的最大值,这个序列的长度为10public class GeneticAlgorithm//染色体长度private static final int CHROMOSOME_LENGTH = 10;//种群大小private static final int POPULATION_SIZE = 100;//迭代次数private static final int MAX_GENERATIONS = 100;//交叉概率private static final double CROSSOVER_RATE = 0.8;//变异概率private static final double MUTATION_RATE = 0.1; //随机数生成器private static final Random RANDOM = new Random(; //个体类private static class Individual//染色体private int[] chromosome;//适应度private double fitness;public Individuachromosome = new int[CHROMOSOME_LENGTH];fitness = 0.0;}//初始化染色体public void initializeChromosomfor (int i = 0; i < CHROMOSOME_LENGTH; i++) chromosome[i] = RANDOM.nextInt(2);}}//计算个体的适应度public void calculateFitnesint decimalValue = 0;for (int i = CHROMOSOME_LENGTH - 1; i >= 0; i--) decimalValue += chromosome[i] * Math.pow(2, CHROMOSOME_LENGTH - i - 1);}fitness = decimalValue;}//获取个体的适应度public double getFitnesreturn fitness;}//获取染色体public int[] getChromosomreturn chromosome;}//设置染色体public void setChromosome(int[] chromosome)this.chromosome = chromosome;}}//生成初始种群private static List<Individual> createInitialPopulatioList<Individual> population = new ArrayList<>(;for (int i = 0; i < POPULATION_SIZE; i++)Individual individual = new Individual(;individual.initializeChromosome(;population.add(individual);}return population;}//选择父母个体private static Individual selectParent(List<Individual> population)double sumFitness = 0.0;for (Individual individual : population)sumFitness += individual.getFitness(;}double randomFitness = RANDOM.nextDouble( * sumFitness;double cumulativeFitness = 0.0;for (Individual individual : population)cumulativeFitness += individual.getFitness(;if (cumulativeFitness > randomFitness)return individual;}}return population.get(0);}//交叉操作private static Individual crossover(Individual parent1, Individual parent2)Individual offspring = new Individual(;int[] parent1Chromosome = parent1.getChromosome(;int[] parent2Chromosome = parent2.getChromosome(;int crossoverPoint = RANDOM.nextInt(CHROMOSOME_LENGTH - 1) + 1;int[] offspringChromosome = new int[CHROMOSOME_LENGTH];System.arraycopy(parent1Chromosome, 0, offspringChromosome, 0, crossoverPoint);System.arraycopy(parent2Chromosome, crossoverPoint, offspringChromosome, crossoverPoint, CHROMOSOME_LENGTH - crossoverPoint);offspring.setChromosome(offspringChromosome);return offspring;}//变异操作private static void mutate(Individual individual)int[] chromosome = individual.getChromosome(;for (int i = 0; i < CHROMOSOME_LENGTH; i++)if (RANDOM.nextDouble( < MUTATION_RATE)chromosome[i] = chromosome[i] == 0 ? 1 : 0;}}individual.setChromosome(chromosome);}//遗传算法主函数public static void main(String[] args)List<Individual> population = createInitialPopulation(;for (int generation = 0; generation < MAX_GENERATIONS; generation++)for (Individual individual : population)individual.calculateFitness(;}Individual bestIndividual = population.get(0);for (Individual individual : population)if (individual.getFitness( > bestIndividual.getFitness() bestIndividual = individual;}}System.out.println("Generation: " + generation + " Best Individual: " + bestIndividual.getFitness();List<Individual> newPopulation = new ArrayList<>(;while (newPopulation.size( < POPULATION_SIZE)Individual parent1 = selectParent(population);Individual parent2 = selectParent(population);Individual offspring = crossover(parent1, parent2);mutate(offspring);newPopulation.add(offspring);}population = newPopulation;}}```以上示例代码实现了一个简单的二进制序列的最大化遗传算法。
遗传算法matlab代码0304190947
![遗传算法matlab代码0304190947](https://img.taocdn.com/s3/m/b17afef10c22590102029da9.png)
tmpind=tmprnd if ~any(difind) difind(1)=1; end
difind=[0,diff(tmpieind(logical(difind)); fatherrand=fatherrand(:,childind); generation=generation+1; end % score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat % properties F2 and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if (max(F2)>1450)||(min(F2)<=900) error('DATA property F2 exceed it''s range (900,1450]') end % get group property F1 of data, according to F2 value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; % 这里有待优化 for k=1:N FF4k=FF4rnd(:,k); for ite=1:11
(完整版)遗传算法简介及代码详解
![(完整版)遗传算法简介及代码详解](https://img.taocdn.com/s3/m/5edb2b8414791711cd79175e.png)
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法matlab程序代码
![遗传算法matlab程序代码](https://img.taocdn.com/s3/m/ff39a10979563c1ec5da7180.png)
function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。
GA-遗传算法-C#代码
![GA-遗传算法-C#代码](https://img.taocdn.com/s3/m/98f27a9e48d7c1c709a1458a.png)
using System;using System.IO;using System.Collections;using System。
Collections.Generic;using System.Text;using System。
ComponentModel;using System.Data;using System。
Data。
OleDb;namespace ConsoleApplication1{public class Genetic_Algorithm{Random rand=new Random();int MaxTime;//最大运行时间int popsize;//种群数量int ChromosomeLength;//染色体长度double CrossRate;//交叉率double MutateRate;//变异率double[] f;//适应度值int[] selected;//定义selected数组,用于表示需要进行交叉操作的染色体序号double[] wheel;//轮盘int[,] pregeneration;//上一代int[,] nextgeneration;//下一代int[] Best;//定义当前最优解int convergence;//定义当前最优解的已持续代数int[,] timeconstrait;public Genetic_Algorithm(int populationsize,int chromolength)//GA——构造函数,变量初始化{rand = new Random(System。
DateTime。
lisecond);MaxTime = 50;popsize=populationsize;ChromosomeLength = chromolength;CrossRate = 0.8;MutateRate = 0.2;f = new double[2*popsize];selected = new int[popsize];wheel = new double[popsize + 1];pregeneration = new int[popsize, ChromosomeLength];//当前的染色体种群nextgeneration = new int[popsize, ChromosomeLength];//下一代(子代)染色体种群Best = new int[ChromosomeLength];convergence = 1;timeconstrait = new int[20, 2] { { 2, 6 }, { 1, 2 },{ 3, 4 }, { 1, 4 }, { 4, 7 }, { 3, 5 }, { 2, 6 }, { 3, 5 }, { 1, 4 }, { 3, 7 }, { 5, 7 }, { 2, 7 }, { 2, 4 }, { 4, 5 }, { 2, 5 },{ 4, 6 }, { 3, 5 }, { 1, 4 },{ 1, 5 },{ 3, 6 } };}public void RunGA()//运行{int i;CreateFirstPop();//产生初始种群i = 0;bool quit = true;while (quit){for (; i 〈 MaxTime; i++){Console.WriteLine("The {0}th Generation。
遗传算法代码汇总
![遗传算法代码汇总](https://img.taocdn.com/s3/m/bc8aeedd33d4b14e85246814.png)
% 求下列函数的最小值%% y=20+x(1).^2+x(2).^2-10*(cos(2*pi.*x(1))+cos(2*pi.*x(2))) %%思路:可以转化为y=10+x.^2-10*cos(2*pi.*x),循环两次,求y值和。
%% 将x 的值用一个14位的二值形式表示为二值问题,一个14位的二值数提供的分辨率是每为(10-0)/(2^14-1)≈0.001 。
%% 将变量域[-5,5] 离散化为二值域[0,16383], x=0+10*b/16383, 其中 b 是[0, 16383] 中的一个二值数。
%% %%--------------------------------------------------------------------------------------------------------------%%--------------------------------------------------------------------------------------------------------------%% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
% 求下列函数的最小值%% y=20+x(1).^2+x(2).^2-10*(cos(2*pi.*x(1))+cos(2*pi.*x(2))) %%思路:可以转化为y=10+x.^2-10*cos(2*pi.*x),循环两次,求y值和。
%% 将x 的值用一个14位的二值形式表示为二值问题,一个14位的二值数提供的分辨率是每为(10-0)/(2^14-1)≈0.001 。
%% 将变量域[-5,5] 离散化为二值域[0,16383], x=0+10*b/16383, 其中 b 是[0, 16383] 中的一个二值数。
%% %%--------------------------------------------------------------------------------------------------------------%%--------------------------------------------------------------------------------------------------------------%% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。
这样产生的初始种群。
% 2.2 计算目标函数值% 2.2.1 将二进制数转化为十进制数(1)%遗传算法子程序%Name: decodebinary.m%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2); %求pop1的每行之和% 2.2.2 将二进制编码转化为十进制数% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置% (对于多个变量而言,如有两个变量,采用20为表示,每个变量为10,则第一个变量从1开始,另一个变量从11开始。
本例为1),% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序%Name: decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);% 2.2.3 计算目标函数值% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序%Name: calobjvalue.m%实现目标函数的计算function [objvalue]=calobjvalue(pop)temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数x=temp1*10/16383; %将二值域中的数转化为变量域中的数objvalue=10+x.^2-10*cos(2*pi.*x); %计算目标值函数% 2.3 计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值function fitvalue=calfitvalue(objvalue)global Cmin;Cmin=0;[px,py]=size(objvalue);for i=1:pxif objvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue';% 2.4 选择复制% 选择或复制操作是决定哪些个体可以进入下一代。
程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程pi=fi/∑fi=fi/fsum ,选择步骤:% 1)在第t 代,由(1)式计算fsum 和pi% 2)产生{0,1} 的随机数rand( .),求s=rand( .)*fsum% 3)求∑fi≥s 中最小的k ,则第k 个个体被选中% 4)进行N 次2)、3)操作,得到N 个个体,成为第t=t+1 代种群%遗传算法子程序%Name: selection.m%选择复制function [newpop]=selection(pop,fitvalue)totalfit=sum(fitvalue); %求适应值之和fitvalue=fitvalue/totalfit; %单个个体被选择的概率fitvalue=cumsum(fitvalue); %如fitvalue=[1 2 3 4],则cumsum(fitvalue)=[1 3 6 10][px,py]=size(pop);ms=sort(rand(px,1)); %从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend% 2.5 交叉% 交叉(crossover),群体中的每个个体之间都以一定的概率pc 交叉,即两个个体从各自字符串的某一位置% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。
例如,假设2个父代个体x1,x2为:% x1=0100110% x2=1010001% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:% y1=0100001% y2=1010110% 这样2个子代个体就分别具有了2个父代个体的某些特征。
利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序%Name: crossover.m%交叉function [newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend% 2.6 变异% 变异(mutation),基因的突变普遍存在于生物的进化过程中。
变异是指父代中的每个个体的每一位都以概率pm 翻转,即由“1”变为“0”,% 或由“0”变为“1”。
遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序%Name: mutation.m%变异function [newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i)=pop(i);if any(newpop(i,mpoint))==0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend% 2.7 求出群体中最大得适应值及其个体%遗传算法子程序%Name: best.m%求出群体中适应值最大的值function [bestindividual,bestfit]=best(pop,fitvalue)[px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)<bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend% 2.8 主程序%遗传算法主程序%Name:genmain05.mclearclfpopsize=80; %群体大小chromlength=14; %字符串长度(个体长度)pc=0.8; %交叉概率pm=0.001; %变异概率for j=1:2pop=initpop(popsize,chromlength); %随机产生初始群体for i=1:200 %200为迭代次数[objvalue]=calobjvalue(pop); %计算目标函数fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度[newpop]=selection(pop,fitvalue); %复制[newpop]=crossover(pop,pc); %交叉[newpop]=mutation(pop,pc); %变异[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=i;pop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*10/16383;pop=newpop;endfplot('10+x.^2-10*cos(2*pi.*x)',[-5 5])hold onplot(x,y,'r*')hold off[z index]=min(y); %计算最大值及其位置x5=x(index)%计算最大值对应的x值y=z;endsum(y)。