涟水县二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涟水县二中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣1)<f(lg x)的解集是()
A.(0,10)B
.(,10)C
.(,+∞)D.(0
,)∪(10,+∞)
2.已知函数f(x)
=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范
围是()
A.(0,1) B.(1,+∞)C.(﹣1,0)D.(﹣∞,﹣1)
3.如果点P在平面区域
220,
210,
20
x y
x y
x y
-+≥


-+≤

⎪+-≤

上,点Q在曲线22
(2)1
x y
++=上,那么||
PQ的最小值为()
A
1B
1
-
C. 1D
1
4.如果执行如图所示的程序框图,那么输出的a=()
A.2 B
.C.﹣1 D.以上都不正确
5.已知命题“p:∃x>0,lnx<x”,则¬p为()
A.∃x≤0,lnx≥x B.∀x>0,lnx≥x C.∃x≤0,lnx<x D.∀x>0,lnx<x
6.
设实数,则a、b、c的大小关系为()
A.a<c<b B.c<b<a C.b<a<c D.a<b<c
7. 已知函数21
1,[0,)22
()13,[,1]
2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4 B
.1[8 C .31[,)162 D .3[,3)8
8. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
9. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1
D .﹣1
10.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )
A .AC BD ⊥
B .A
C B
D =
C.AC PQMN D .异面直线PM 与BD 所成的角为
45 11.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O
是坐标原点,且,那么实数
a 的取值范围是( ) A
. B

C .
D

12
.定义运算
,例如
.若已知
,则
=( )
A
. B
. C

D

二、填空题
13
()23k x =-+有两个不等实根,则的取值范围是 .
14.已知实数x,y满足,则目标函数z=x﹣3y的最大值为
15.已知集合M={x||x|≤2,x∈R},N={x∈R|(x﹣3)lnx2=0},那么M∩N=.
16.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中
所有正确的序号是___________
①②③④⑤
17.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被
抽到的概率都为,则总体的个数为.
18.已知直线l的参数方程是(t为参数),曲线C的极坐标方程是ρ=8cosθ+6sinθ,则曲线C上到直线l的距离为4的点个数有个.
三、解答题
19.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P在该圆上,求线段OP的最大值和最小值.
20.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方
程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.
21.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.
(1)求弦AB的中点M的轨迹方程
(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.
22.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当时,求f(x)的最值;
(Ⅱ)若,求的值.
23.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望 。

24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
涟水县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:因为f (x )为偶函数,所以f (x )=f (|x|),
因为f (x )在(﹣∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,
由f (﹣1)<f (lg x ),得|lg x|>1,即lg x >1或lg x <﹣1,解得x >10或0<x <.
故选:D . 【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础
题.
2. 【答案】A
【解析】解:函数f (x )=的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A
3. 【答案】A 【解析】
试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.
考点:线性规划求最值.
4.【答案】B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9

由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
5.【答案】B
【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.
故选:B.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
6. 【答案】A
【解析】解:∵,b=20.1>20
=1,0<<0.90
=1.
∴a <c <b . 故选:A .
7. 【答案】C 【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,由1324x +=,可得14x =,由2
13x =,可得3x =(负舍),即有121113,422x x ≤<≤≤,即221143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
8. 【答案】A
【解析】解:设A (x 1,x 12),B (x 2,x 22
),
将直线与抛物线方程联立得
, 消去y 得:x 2
﹣mx ﹣1=0,
根据韦达定理得:x 1x 2=﹣1,
由=(x1,x12),=(x2,x22),
得到=x1x2+(x1x2)2=﹣1+1=0,
则⊥,
∴△AOB为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
9.【答案】D
【解析】解:由zi=1+i,得,
∴z的虚部为﹣1.
故选:D.
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
10.【答案】B
【解析】
试题分析:因为截面PQMN是正方形,所以//,//
PQ MN QM PN,则//
PQ平面,//
ACD QM平面BDA,所以//,//
PQ AC QM BD,由PQ QM
⊥可得AC BD
⊥,所以A正确;由于//
PQ AC可得//
AC截面PQMN,所以C正确;因为PN PQ
⊥,所以AC BD
⊥,由//
BD PN,所以MPN
∠是异面直线PM与BD 所成的角,且为0
45,所以D正确;由上面可知//,//
BD PN PQ AC,所以,
PN AN MN DN
BD AD AC AD
==,而,
AN DN PN MN
≠=,所以BD AC
≠,所以B是错误的,故选B. 1
考点:空间直线与平面的位置关系的判定与证明.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.
11.【答案】A
【解析】解:设AB的中点为C,则
因为,
所以|OC|≥|AC|,
因为
|OC|=,|AC|2=1﹣|OC|2
, 所以2

)2
≥1,
所以a ≤﹣1或a ≥1,
因为
<1
,所以﹣
<a


所以实数a
的取值范围是,
故选:A .
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
12.【答案】D
【解析】
解:由新定义可得,
=
=
=
=

故选:D .
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
二、填空题
13.【答案】53,124⎛⎤
⎥⎝
⎦ 【解析】
试题分析:
作出函数y =
()23y k x =-+的图象,
如图所示,
函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
224
k -=
=+,当直线()23y k x =-+
2=,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦
.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.
14.【答案】5
【解析】解:由z=x﹣3y得y=,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=,
由图象可知当直线y=经过点C时,直线y=的截距最小,
此时z最大,
由,解得,即C(2,﹣1).
代入目标函数z=x﹣3y,
得z=2﹣3×(﹣1)=2+3=5,
故答案为:5.
15.【答案】{1,﹣1}.
【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},
N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},
则M∩N={1,﹣1},
故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
16.【答案】①②③④
【解析】
因为只有是中的最小项,所以,,所以,故①②③正
确;
,故④正确;
,无法判断符号,故⑤错误,
故正确答案①②③④
答案:①②③④
17.【答案】300.
【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷=300.
故答案为:300.
【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
18.【答案】2
【解析】解:由,消去t得:2x﹣y+5=0,
由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,
化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.
又圆心到直线l的距离是,
故曲线C上到直线l的距离为4的点有2个,
故答案为:2.
【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.
三、解答题
19.【答案】
【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.
化为:x2+y2﹣4x﹣4y+6=0.
(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.
圆心C(2,2),半径r=.
|OP|==2.
∴线段OP的最大值为2+=3.
最小值为2﹣=.
20.【答案】
【解析】解:(I)曲线C1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos2θ﹣sin2θ)+3=0,可得直角坐标方程:x2﹣y2+3=0.
曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x﹣2y﹣m=0.
(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,
∴△=16m2﹣12(m2+3)>0,解得m<﹣3或m>3,
∴m<﹣3或m>3.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.
21.【答案】
【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,
两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,
∴=,
∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),
∴,
化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣
(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)
由已知OA⊥OB得:x1x2+y1y2=0,
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①

所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②
联立①②得:k2+1=0无解
所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
22.【答案】
【解析】(本题满分为13分)
解:(Ⅰ)∵=,…
∵T=2,∴,…
∴,…
∵,
∴,
∴,…
∴,…
当时,f(x)有最小值,当时,f(x)有最大值2.…
(Ⅱ)由,
所以,
所以,…
而,…
所以,…
即.…
23.【答案】
【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得
P(A1)=0。

1+0。

2+0。

3=0。

6,P(A2)=0。

1+0。

4=0。

5,
P(A1)>P(A2), 甲应选择L i
P (B 1)=0。

1+0。

2+0。

3+0。

2=0。

8,P (B 2)=0。

1+0。

4+0。

4=0。

9,
P (B 2) >P (B 1),
乙应选择L 2。

(2)A,B 分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知
,又由题意知,A,B 独立,
24.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--' 令0f x '=得1,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减
所以()()()min 28613213f x f k k ==-++⋅+= 符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()322min 3
13132
f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='--
对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥。

相关文档
最新文档