雨湖区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雨湖区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )
A .2+
B .1+
C .
D .
2. 如图,棱长为的正方体中,是侧面对角线上一点,若 1111D ABC A B C D -,E F 11,BC AD 1BED F 是菱形,则其在底面上投影的四边形面积( )
ABCD
A .
B .
C.
D 1
2
3
43. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( )
A .a >1且b <1
B .a >1且b >0
C .0<a <1且b >0
D .0<a <1且b <0
4. 设a=0.5,b=0.8
,c=log 20.5,则a 、b 、c 的大小关系是(

A .c <b <a
B .c <a <b
C .a <b <c
D .b <a <c
5. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调
查结果如下表所示.
杂质高
杂质低旧设备37121新设备
22
202
根据以上数据,则(

A .含杂质的高低与设备改造有关
B .含杂质的高低与设备改造无关
C .设备是否改造决定含杂质的高低
D .以上答案都不对
6. 命题“∃x ∈R ,使得x 2<1”的否定是( )
A .∀x ∈R ,都有x 2<1
B .∃x ∈R ,使得x 2>1
C .∃x ∈R ,使得x 2≥1
D .∀x ∈R ,都有x ≤﹣1或x ≥1
7. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是(

A .(0,1)
B .(0,]
C .(0,

D .[
,1)
8. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段
间隔为( )1111]A . B .
C .
D .10512030
9. (﹣6≤a ≤3)的最大值为(

A .9
B .
C .3
D .
10.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )
A .∅
B .{x|x >0}
C .{x|x <1}
D .{x|0<x <1}
可.
11.已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )
A .垂直
B .平行
C .重合
D .相交但不垂直
12.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )
A .5
B .4
C .3
D .2
二、填空题
13.
的展开式中
的系数为 (用数字作答).
14.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2
)a n +sin 2
,则该数列的前16项和为 .
15.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .
16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.
17.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .18.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的
▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
三、解答题
19.(14分)已知函数,其中m ,a 均为实数.
1
()ln ,()e x x f x mx a x m g x -=--=(1)求的极值; 3分
()g x (2)设,若对任意的,恒成立,求的最小值; 1,0m a =<12,[3,4]x x ∈12()x x ≠212111
()()()()
f x f x
g x g x -<-a 5分
(3)设,若对任意给定的,在区间上总存在,使得 成立,
2a =0(0,e]x ∈(0,e]1212,()t t t t ≠120()()()f t f t g x ==
m
求的取值范围.6分
20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
21.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,
x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.
22.(本小题满分10分)选修4­1:几何证明选讲.
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D.(1)求证:CD=DA;
(2)若CE=1,AB=,求DE的长.
2
23.(本小题满分10分)
已知集合{}
B x x
=-<<.
14
2131
=-<<+,集合{}
A x a x a
(1)若A B
⊆,求实数的取值范围;
(2)是否存在实数,使得A B
=?若存在,求出的值;若不存在,请说明理由.
24.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.
(Ⅰ)求证:EF⊥平面DCE;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°. 
雨湖区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】A
【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,
且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,
∴直角梯形ABCD 的面积为,
故选:A .
2. 【答案】B 【解析】
试题分析:在棱长为的正方体中,,
1111D ABC A B C D -11BC AD ==AF x =x -=
解得,即菱形,则在底面上的投影四边形是底边
x =
1BED F =1BED F ABCD 为,高为的平行四边形,其面积为,故选B.343
4
考点:平面图形的投影及其作法.3. 【答案】B
【解析】解:∵函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0,故选:B
4. 【答案】B
【解析】解:∵a=0.5,b=0.8,
∴0<a<b,
∵c=log20.5<0,
∴c<a<b,
故选B.
【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.
5.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37121158
新设备22202224
合计59323382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
6.【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,
故选:D.
【点评】本题主要考查含有量词的命题的否定,比较基础.
7.【答案】C
【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,
∵=0,
∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.
又M点总在椭圆内部,
∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.
∴e 2=
<,∴0<e <

故选:C .
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 
8. 【答案】D 【解析】
试题分析:分段间隔为,故选D.5030
1500
考点:系统抽样9. 【答案】B
【解析】解:令f (a )=(3﹣a )(a+6)=﹣+
,而且﹣6≤a ≤3,由此可得函数f
(a )的最大值为,
故(﹣6≤a ≤3)的最大值为
=

故选B .
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题. 
10.【答案】D
【解析】解:由已知M={x|﹣1<x <1},N={x|x >0},则M ∩N={x|0<x <1},
故选D .
【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题, 
11.【答案】A
【解析】解:由题意可得直线l 1的斜率k 1=
=1,
又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1,显然满足k 1•k 2=﹣1,∴l 1与l 2垂直故选A
12.【答案】A
【解析】解:函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[﹣2,2],
函数的最大值为:5.
故选:A.
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
二、填空题
13.【答案】20
【解析】【知识点】二项式定理与性质
【试题解析】通项公式为:令12-3r=3,r=3.
所以系数为:
故答案为:
14.【答案】 546 .
【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;
当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.
∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)
=(1+2+...+8)+(2+22+ (28)
=+
=36+29﹣2
=546.
故答案为:546.
【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.
15.【答案】 25 
【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,
由正弦定理可得AC==25km,
故答案为:25.
【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.
16.【答案】
2 2,
3⎛⎫- ⎪⎝⎭
【解析】
17.【答案】 [1,)∪(9,25] .
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为


时,只需满足,
解得;若
,只需满足,
解得9<a ≤25,
当a <0时,不符合条件,综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题. 
18.【答案】必要而不充分【解析】
试题分析:充分性不成立,如2
y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
三、解答题
19.【答案】解:(1),令,得x = 1. e(1)
()e x
x g x -'=()0g x '=列表如下:
∵g (1) = 1,∴y =()g x 的极大值为1,无极小
值.
3分
(2)当时,,.
1,0m a =<()ln 1f x x a x =--(0,)x ∈+∞∵在恒成立,∴在上为增函数. 设,∵> 0()0x a f x x -'=>[3,4]()f x [3,4]1e ()()e x
h x g x x ==12e (1)()x x h x x --'=
在恒成立,
[3,4]∴在上为增函数. 设,则等价()h x [3,4]21x x >212111
()()()()
f x f x
g x g x -<
-
于,2121()()()()f x f x h x h x -<-即.
2211()()()()f x h x f x h x -<-设,则u (x )在为减函数.
1e ()()()ln 1e x
u x f x h x x a x x
=-=---⋅[3,4]∴在(3,4)上恒成立. ∴恒成立.
21e (1)()10e x a x u x x x -'=--⋅≤11
e e x x a x x
---+≥设,∵=,x ∈[3,4],11e ()e x x v x x x --=-+11
2
e (1)()1e x x x v x x ---'=-+121131e [(]24
x x ---+∴,∴< 0,为减函数.
1221133
e [()e 1244
x x --+>>()v x '()v x ∴在[3,4]上的最大值为v (3) = 3 -.
()v x 22
e 3
∴a ≥3 -,∴的最小值为3 -. 8分
22e 3a 22
e 3(3)由(1)知在上的值域为. ()g x (0,e](0,1]∵,,
()2ln f x mx x m =--(0,)x ∈+∞当时,在为减函数,不合题意.
0m =()2ln f x x =-(0,e]当时,,由题意知在不单调,0m ≠2()
()m x m f x x
-'=
()f x (0,e]所以,即.①
20e m <<2
e
m >此时在上递减,在上递增,
()f x 2(0,m 2
(,e)m
∴,即,解得.②
(e)1f ≥(e)e 21f m m =--≥3
e 1
m -≥x (-∞,1)
1(1,+∞)
()
g x '+0-g (x )

极大值

由①②,得. 3
e 1
m -≥
∵,∴成立.
1(0,e]∈2
((1)0f f m =≤下证存在,使得≥1.
2
(0,]t m
∈()f t 取,先证,即证.③
e m t -=e 2
m m
-<2e 0m m ->设,则在时恒成立.
()2e x w x x =-()2e 10x w x '=->3
[,)e 1
+∞-∴在时为增函数.∴,∴③成立.
()w x 3[,)e 1+∞-3
e ))01
((w x w ->≥再证≥1.
()e m f -∵,∴时,命题成立. e e 3()1e 1m m f m m m --+=>>-≥
3
e 1
m -≥
综上所述,的取值范围为. 14分
m 3
[,)e 1
+∞-20.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A ,B ,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C ,D ,E ,F ,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:
(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,
则事件M 包含的基本事件有:(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方
图和列举法的合理运用.
21.【答案】
【解析】解:(1)∵直线l的参数方程为(t为参数),
∴直线l的普通方程为.
∵曲线C的极坐标方程是ρ=4,∴ρ2=16,
∴曲线C的直角坐标系方程为x2+y2=16.
(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:
d==2,
∴cos,
∵0,∴,
∴.
22.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC,
∴DC=DE,
∴CD=DA.
(2)∵CA是⊙O的切线,AB是直径,
∴∠CAB=90°,
由勾股定理得CA 2=CB 2-AB 2,又CA 2=CE ×CB ,CE =1,AB =,2∴1·CB =CB 2-2,
即CB 2-CB -2=0,解得CB =2,∴CA 2=1×2=2,∴CA =.2由(1)知DE =CA =,12
22
所以DE 的长为.
22
23.【答案】(1)[](2]01a ∈-∞- ,,;(2)不存在实数,使A B =.【解析】
试题分析:(1)对集合A 可以分为A =∅或A ≠∅两种情况来讨论;(2)先假设存在实数,使A B =,则必
有2110
3141
a a a a -=-=⎧⎧⇒⎨⎨+==⎩⎩,无解.

点:集合基本运算.24.【答案】
【解析】证明:(Ⅰ)在△BCE 中,BC ⊥CF ,BC=AD=,BE=3,∴EC=

∵在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE 由已知条件知,DC ⊥平面EFCB ,
∴DC ⊥EF ,又DC 与EC 相交于C ,∴EF ⊥平面DCE 解:(Ⅱ)
方法一:过点B 作BH ⊥EF 交FE 的延长线于H ,连接AH .
由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,
AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△CEF中,因为EF=2,CF=4.EC=
∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,

由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,
所以当时,二面角A﹣EF﹣C的大小为60°
方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .
设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,
设平面AEF的法向量为,由得,,取x=1,
则,即,
不妨设平面EFCB的法向量为,
由条件,得
解得.所以当时,二面角A﹣EF﹣C的大小为60°.
【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 。

相关文档
最新文档