鹤山区第二中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鹤山区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题
1.sin3sin1.5cos8.5
,,的大小关系为()
A.sin1.5sin3cos8.5
<<B.cos8.5sin3sin1.5
<<
C.sin1.5cos8.5sin3
<<D.cos8.5sin1.5sin3
<<
2.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()
A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0
3.已知,其中i为虚数单位,则a+b=()
A.﹣1 B.1 C.2 D.3
4.是首项,公差的等差数列,如果,则序号等于()
A.667B.668C.669D.670
5.已知双曲线
22
22
:1(0,0)
x y
C a b
a b
-=>>,
12
,F F分别在其左、右焦点,点P为双曲线的右支上
的一点,圆M为三角形
12
PF F的内切圆,PM所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
近线平行且距离为
2
,则双曲线C的离心率是()
A B.2 C D.
2 6.棱长都是1的三棱锥的表面积为()
A.B. C. D.
7.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.
8.设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是()
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
9.已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为a n,则数列{a n}是()
A.公差为a的等差数列B.公差为﹣a的等差数列
C.公比为a的等比数列D.公比为的等比数列
10.已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( )
A.5
B.2 D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
11.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程
y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a 必过;④在吸烟
与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某
人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0
B .1
C .2
D .3
12.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )
A .∀x ≤0,都有x 2﹣x >0
B .∀x >0,都有x 2﹣x ≤0
C .∃x >0,使得x 2﹣x <0
D .∃x ≤0,使得x 2﹣x >0
二、填空题
13.当
时,4x
<log a x ,则a 的取值范围 .
14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
15.已知α为钝角,sin (
+α)=,则sin (
﹣α)= .
16.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 17.已知含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则 =+20042003b a .
18.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .
三、解答题
19.设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在
上的最大值与最小值.
20.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴
方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).
(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;
(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.
21.(本小题满分12分)已知函数()2
ln f x ax bx x =+-(,a b ∈R ).
(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求
出b 的值;若不存在,说明理由;
22.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.
(Ⅰ)当x∈[0,]时,求函数f(x)的值域;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),
求f(B)的值.
23.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从
某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试
成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
24.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且

(1)求A;
(2)若,求bc的值,并求△ABC的面积.
鹤山区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B 【解析】
试题分析:由于()cos8.5cos 8.52π=-,因为8.522
π
ππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,
∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较. 2. 【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0
∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7
∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣
2y+c=0.
3. 【答案】B
【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1
另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.
故选B .
【点评】本题考查复数相等的意义、复数的基本运算,是基础题.
4. 【答案】C
【解析】 由已知,由

,故选C
答案:C
5. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=的距离为
22=
,得a b =,则为等轴双曲
故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
6. 【答案】A
【解析】解:因为四个面是全等的正三角形,


故选A
7. 【答案】C
【解析】解:∵f (x )≤0⇔x 2﹣x ﹣2≤0⇔﹣1≤x ≤2, ∴f (x 0)≤0⇔﹣1≤x 0≤2,即x 0∈[﹣1,2], ∵在定义域内任取一点x 0, ∴x 0∈[﹣5,5], ∴使f (x 0)≤0的概率P==
故选C
【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键
8. 【答案】A
【解析】解:令f (x )=x 3


∵f ′(x )=3x 2
﹣ln =3x 2+ln2>0,
∴f (x )=x 3

在R 上单调递增;
又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,
∴f (x )=x 3

的零点在(0,1),
∵函数y=x3与y=()x的图象的交点为(x0,y0),
∴x0所在的区间是(0,1).
故答案为:A.
9.【答案】A
【解析】解:∵,
∴a n=S(n)﹣s(n﹣1)=
=
∴a n﹣a n﹣1==a
∴数列{a n}是以a为公差的等差数列
故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
10.【答案】A.
【解析】
11.【答案】C
【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;
对于②,设有一个回归方程y=3﹣5x,变量x增加一个单位时,y应平均减少5个单位,②错误;
对于③,线性回归方程y=bx+a必过样本中心点,正确;
对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,
我们说某人吸烟,那么他有99%的可能患肺病,错误;
综上,其中错误的个数是2.
故选:C.
12.【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x>0,使得x2﹣x<0,
故选:C.
【点评】本题主要考查含有量词的命题的否定,比较基础.
二、填空题
13.【答案】.
【解析】解:当时,函数y=4x的图象如下图所示
若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)
∵y=log a x的图象与y=4x的图象交于(,2)点时,a=
故虚线所示的y=log a x的图象对应的底数a应满足<a<1
故答案为:(,1)
14.【答案】(1,2).
【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,
即y=2x2.
由ρcosθ=1,得x=1.
联立,解得:.
∴曲线C1与C2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
15.【答案】﹣.
【解析】解:∵sin(+α)=,
∴cos(﹣α)=cos[﹣(+α)]
=sin(+α)=,
∵α为钝角,即<α<π,
∴<﹣,
∴sin(﹣α)<0,
∴sin(﹣α)=﹣
=﹣
=﹣,
故答案为:﹣.
【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.
16.【答案】
【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,
即(-x)(e-x+a e x)=x(e x+a e-x),
∴a(e x+e-x)=-(e x+e-x),∴a=-1.
答案:-1
17.【答案】-1
【解析】
试题分析:由于{}2,,1,,0b a a a b a ⎧⎫
=+⎨⎬⎩⎭
,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

考点:集合相等。

18.【答案】 ﹣3<a <﹣1或1<a <3 .
【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2
=1相交,两圆圆心距d=|a|, ∴2﹣1<|a|<2+1, ∴﹣3<a <﹣1或1<a <3. 故答案为:﹣3<a <﹣1或1<a <3.
【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2
=4和以原点为圆心,1为半径的圆x 2+y 2
=1相交,属中档题.
三、解答题
19.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合 【试题解析】(Ⅰ)因为

所以函数
的最小正周期为.
(Ⅱ)由(Ⅰ),得.
因为,
所以, 所以.
所以

且当时,取到最大值;
当时,取到最小值.
20.【答案】
【解析】
【专题】计算题;直线与圆;坐标系和参数方程.
【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.
【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,
可化为直角坐标方程x2+y2﹣2x+4y+4=0,
即圆(x﹣1)2+(y+2)2=1;
曲线C2的参数方程为(t为参数),
可化为普通方程为:3x+4y﹣15=0.
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.
则由点到直线的距离公式可得d==4,
则切线长为=.
故这条切线长的最小值为.
【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.
21.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当0a =时,()ln f x bx x =-.
假设存在实数b ,使()(]()
ln 0,e g x bx x x =-∈有最小值3,
11()bx f x b x x
-'=-
=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4
()e 13,f x f be b e
==-==(舍去).………8分 ②当10e b <
<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤
⎥⎝⎦
上单调递增, ∴2
min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭
,满足条件.……………………………10分
③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4
()e e 13,e
f x
g b b ==-==(舍去),………11分
综上,存在实数2
e b =,使得当(]0,e x ∈时,函数()
f x 最小值是3.……………………………12分
22.【答案】
【解析】解:(Ⅰ)f (x )=4
sinxcosx ﹣5sin 2
x ﹣cos 2x+3=2sin2x ﹣
+3=2
sin2x+2cos2x=4sin (2x+
).
∵x∈[0,],
∴2x+∈[,],
∴f(x)∈[﹣2,4].
(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),
∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),
化简得sinC=2sinA,
由正弦定理得:c=2a,
又b=,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,
故解得:A=,B=,C=,
∴f(B)=f()=4sin=2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
23.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
24.【答案】
【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,
∴B+C=,
则A=;
(2)∵a=2,b+c=4,cosA=﹣,
∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,
解得:bc=4,
则S
△ABC
【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解
本题的关键.。

相关文档
最新文档