苏家屯区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏家屯区第二中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.命题:“∀x>0,都有x2﹣x≥0”的否定是()
A.∀x≤0,都有x2﹣x>0 B.∀x>0,都有x2﹣x≤0
C.∃x>0,使得x2﹣x<0 D.∃x≤0,使得x2﹣x>0
2.一个几何体的三视图如图所示,则该几何体的体积为()
A. B. C. D.
3.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()
A.6
B.9
C.12
D.18
4.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()
A.7 B.9 C.11 D.13
5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线
段记为,,将线段竖直放置在同一水平线上,则大致的图形是()
A
B
C
D
6.已知函数f(x+1)=3x+2,则f(x)的解析式是()
A.3x﹣1 B.3x+1 C.3x+2 D.3x+4
7.设x∈R,则x>2的一个必要不充分条件是()
A.x>1 B.x<1 C.x>3 D.x<3
8.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()
A
. B
.C

D

9. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )
A
. B
. C
. D

10.已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L
,若5
L ≥e 的取值范围是( )
(A ) ⎥⎦⎤
⎝⎛550, ( B )
0⎛ ⎝⎦
(C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤

⎛5540, 11
.已知两不共线的向量
,,若对非零实数m ,n 有
m
+n
与﹣
2
共线,则=( )
A .﹣2
B .2
C
.﹣
D

12.若数列{a n}的通项公式a n=5()2n﹣2﹣4()n﹣1(n∈N*),{a n}的最大项为第p项,最小项为第q项,则q﹣p等于()
A.1 B.2 C.3 D.4
二、填空题
13.在复平面内,复数与对应的点关于虚轴对称,且,则____.
14.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.
15.已知数列的前项和是, 则数列的通项__________
16.直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为.
17.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.
18.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是.
三、解答题
19.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线
MA与MB的斜率分别为k1,k2,且k1k2=﹣.
(1)求椭圆E的方程;
(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P
是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.
20.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立
平面直角坐标系,直线的参数方程是243x t
y t =-+⎧⎨=⎩
(为参数).
(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.
21.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨
⎧==α
αsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.
(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.
22.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.
(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;
(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]
24.(本题10分)解关于的不等式2(1)10ax a x -++>.
苏家屯区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x>0,使得x2﹣x<0,
故选:C.
【点评】本题主要考查含有量词的命题的否定,比较基础.
2.【答案】B
【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,
它们的底面直径均为2,故底面半径为1,
圆柱的高为1,半圆锥的高为2,
故圆柱的体积为:π×12×1=π,
半圆锥的体积为:×=,
故该几何体的体积V=π+=,
故选:B
3.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a=54,b=18,r=0.
∴输出a=18,故选D.
4.【答案】A
【解析】解:∵x+x﹣1=3,
则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
5.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);
E的坐标为(4,3,12)
(1)l1长度计算
所以:l1=|AE|==13。

(2)l2长度计算
将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:
A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);
显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。

设AE与的延长线与平面A2B2C2D2相交于:E2(x E2,y E2,24)
根据相识三角形易知:
x E2=2x E=2×4=8,
y E2=2y E=2×3=6,
即:E2(8,6,24)
根据坐标可知,E2在长方形A2B2C2D2内。

6.【答案】A
【解析】∵f(x+1)=3x+2=3(x+1)﹣1
∴f(x)=3x﹣1
故答案是:A
【点评】考察复合函数的转化,属于基础题.
7.【答案】A
【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,
x<1是x>2的既不充分也不必要条件,
x>3是x>2的充分条件,
x<3是x>2的既不充分也不必要条件,
故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
8.【答案】B
【解析】解:∵y=f (|x|)是偶函数, ∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,
x <0部分的图象关于y 轴对称而得到的.
故选B .
【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.
9. 【答案】A
【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,
则这个椭圆的短半轴为:R ,长半轴为:
=,
∵a 2=b 2+c 2
,∴c=

∴椭圆的离心率为:e==. 故选:A .
【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.
10.【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =≥
解得216
5d ≤。

又因为
d =2116,15k ≤+解得2
14k ≥。

于是222
222211c c e a b c k
===++,所以2
40,5e <≤解得0e <≤故选B . 11.【答案】C
【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,
∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,

,或

则=﹣. 故选:C .
【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.12.【答案】A
【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),
∴a n=5t2﹣4t=﹣,
∴a n∈,
当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.
∴q﹣p=2﹣1=1,
故选:A.
【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】-2
【解析】【知识点】复数乘除和乘方
【试题解析】由题知:
所以
故答案为:-2
14.【答案】5.
【解析】二项式定理.
【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利
用(x)n(n∈N+)的通项公式讨论即可.
【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,
当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;
当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;
当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;
当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;
当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.
15.【答案】
【解析】
当时,
当时,,
两式相减得:
令得,所以
答案:
16.【答案】.
【解析】解:∵△AOB是直角三角形(O是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d==,
整理得a2+2b2=2,
则点P(a,b)与点Q(1,0)之间距离d==≥,
∴点P(a,b)与点(1,0)之间距离的最小值为.
故答案为:.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.
17.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C是最大角
根据余弦定理,得cosC==>0
∵C∈(0,π),∴角C是锐角,
由此可得A、B也是锐角,所以△ABC是锐角三角形
故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
18.【答案】
【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,
则由题意知,点F(﹣12,0)是双曲线的左焦点,
所以a2+b2=c2=144,
又双曲线的一条渐近线方程是y=x,
所以=,
解得a2=36,b2=108,
所以双曲线的方程为.
故答案为:.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.
三、解答题
19.【答案】
【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,
即n 2=b 2•

由k 1k 2=﹣,即
•=﹣

即有
=﹣

即为a 2=2b 2,又c 2=a 2﹣b 2
=1, 解得a 2=2,b 2
=1.
即有椭圆E 的方程为+y 2=1;
(2)证明:设点P (2,t ),切点C (x 1,y 1),D (x 2,y 2),
则两切线方程PC ,PD 分别为:
+y 1y=1,
+y 2y=1,
由于P 点在切线PC ,PD 上,故P (2,t )满足+y 1y=1,
+y 2y=1,
得:x 1+y 1t=1,x 2+y 2t=1,
故C (x 1,y 1),D (x 2,y 2)均满足方程x+ty=1, 即x+ty=1为CD 的直线方程. 令y=0,则x=1, 故CD 过定点(1,0).
【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.
20.【答案】(1)参数方程为1cos sin x y θθ
=+⎧⎨=⎩,3460x y -+=;(2)14
5.
【解析】
试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:
(1)曲线C 的普通方程为2
2cos ρρθ=,∴2
2
20x y x +-=,
∴2
2
(1)1x y -+=,所以参数方程为1cos sin x y θ
θ=+⎧⎨=⎩

直线的普通方程为3460x y -+=.
(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为
33cos 4sin 65sin()914555
d θθθϕ+-+++=
=≤,所以曲线C 上任意一点到直线的距离的最大值为14
5.
考点:1.极坐标方程;2.参数方程.
21.【答案】(1)
12
22
=+y x .(2)||||PB PA ⋅的最大值为,最小值为21. 【解析】

题解析:解:(1)曲线C 的参数方程为⎩⎨
⎧==α
αsin cos 2y x (α为参数),消去参数α
得曲线C 的普通方程为12
22
=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θ
θsin cos 1t y t x 代入1222
=+y x 得01cos 2)sin 2(cos
222
=-++θθθt t (6分)
设B A ,对应的参数分别为21,t t ,则]1,2
1
[sin 11sin 2cos 1||||||2
2221∈+=+==⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为2
1
. (10分) 考点:参数方程化成普通方程. 22.【答案】
【解析】解:(I )由题意可知,抛物线y 2
=2px (p >0)的焦点坐标为
,准线方程为

所以,直线l 的方程为

由消y 并整理,得…
设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=3p ,
又|AB|=|AF|+|BF|=x 1+x 2+p=4, 所以,3p+p=4,所以p=1…
(II )由(I )可知,抛物线的方程为y 2
=2x .
由题意,直线m 的方程为y=kx+(2k ﹣1).…
由方程组
(1) 可得ky 2
﹣2y+4k ﹣2=0(2)… 当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y 2
=2x ,得

这时.直线m 与抛物线只有一个公共点
.…
当k ≠0时,方程(2)得判别式为△=4﹣4k (4k ﹣2). 由△>0,即4﹣4k (4k ﹣2)>0,亦即4k 2
﹣2k ﹣1<0.
解得.
于是,当
且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这
时,直线m 与抛物线有两个不同的公共点,…
因此,所求m 的取值范围是
.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
23.【答案】(1)13|{<<-x x 或}3>x ;(2). 【




题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)
(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m
∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1
24.【答案】当1a >时,),1()1,(+∞-∞∈ a
x ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,
),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1
(a
x ∈.

点:二次不等式的解法,分类讨论思想.。

相关文档
最新文档