椒江区三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椒江区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若a <b <0,则下列不等式不成立是( )
A .

B .>
C .|a|>|b|
D .a 2>b 2
2. 某几何体的三视图如图所示,则该几何体为( )
A .四棱柱
B .四棱锥
C .三棱台
D .三棱柱
3. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.7
4. 已知a=,b=20.5,c=0.50.2
,则a ,b ,c 三者的大小关系是( ) A .b >c >a B .b >a >c C .a >b >c D .c >b >a
5. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )
A .﹣2或﹣1
B .1或2
C .±2或﹣1
D .±1或2
6. 若复数
2b i
i
++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )
13 (D ) 12
-
7. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D .
8. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3)
C .(,2)
D .(,0)
9. 已知双曲线

=1的一个焦点与抛物线y 2=4
x 的焦点重合,且双曲线的渐近线方程为y=±x ,则
该双曲线的方程为( )
A .

=1
B .
﹣y 2=1 C .x 2﹣
=1 D .﹣=1
10.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,26
11.函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )
A .F ′(x 0)=0,x=x 0是F (x )的极大值点
B .F ′(x 0)=0,x=x 0是F (x )的极小值点
C .F ′(x 0)≠0,x=x 0不是F (x )极值点
D .F ′(x 0)≠0,x=x 0是F (x )极值点 12.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .4495
二、填空题
13.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
14.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫

⎬⎩⎭
项中
的最大值为_________.
15.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:
①y=x+1 ②y=2 ③y=x ④y=2x+1
是“单曲型直线”的是 .
16.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函
数,函数()22
x
a g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为3
2,则a 的值
为______.
17.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例
如:1=++,1=+++,1=++++,…依此方法可得:
1=++
+++
+
+
+
+
+
+
+
,其中m ,n ∈N *
,则m+n= .
18.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .
三、解答题
19.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.
(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.
20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,
您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
21.已知函数f(x)=ax2﹣2lnx.
(Ⅰ)若f(x)在x=e处取得极值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的单调区间;
(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.22.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,
(1)求证:直线BC 1∥平面D 1AC ; (2)求直线BC 1到平面D 1AC 的距离.
23.(本小题满分12分)
设p :实数满足不等式39a ≤,:函数()()32331
932
a f x x x x -=+
+无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;
(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛
⎫-+++> ⎪ ⎪⎝⎭⎝
⎭,若是t ⌝的必要不充分
条件,求正整数m 的值.
24.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100. (1)求数列{a n },{b n }的通项公式
(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .
椒江区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A 【解析】解:∵a <b <0,
∴﹣a >﹣b >0,
∴|a|>|b|,a 2>b 2

即,
可知:B ,C ,D 都正确, 因此A 不正确. 故选:A .
【点评】本题考查了不等式的基本性质,属于基础题.
2. 【答案】A 【解析】
试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图
【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 3. 【答案】C 【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

故选C 。

考点:1.集合间关系;2.新定义问题。

4. 【答案】A
【解析】解:∵a=0.50.5,c=0.50.2
, ∴0<a <c <1,b=20.5
>1,
∴b >c >a , 故选:A .
【解析】解:由题设知a 1≠0,当q=1时,S 4=4a 1≠10a 1=5S 2;q=1不成立.
当q ≠1时,S n =

由S 4=5S 2得1﹣q 4=5(1﹣q 2),(q 2﹣4)(q 2
﹣1)=0,(q ﹣2)(q+2)(q ﹣1)(q+1)=0,
解得q=﹣1或q=﹣2,或q=2.
=
=q ,
∴=﹣1或=±2.
故选:C .
【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.
6. 【答案】C
【解析】
b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =1
3.故选C.
7. 【答案】
D
【解析】
古典概型及其概率计算公式. 【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得
结论.
【解答】解:从9个数中任取3个数共有C 93
=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D .
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较
简单.
【解析】解:由题意作出其平面区域,
将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,
使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x上但不在阴影区域内,
故不成立;
故选D.
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
9.【答案】B
【解析】解:已知抛物线y2
=4x的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0),
即c=,
又因为双曲线的渐近线方程为y=±x,
则有a2+b2=c2=10和=,
解得a=3,b=1.
所以双曲线的方程为:﹣y2=1.
故选B.
【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.
10.【答案】C
【解析】解:从30件产品中随机抽取6件进行检验,
采用系统抽样的间隔为30÷6=5,
只有选项C中编号间隔为5,
故选:C.
11.【答案】B
【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),
∴F'(x)=f'(x)﹣f′(x0)
∴F'(x0)=0,
又由a<x0<b,得出
当a<x<x0时,f'(x)<f′(x0),F'(x)<0,
当x0<x<b时,f'(x)<f′(x0),F'(x)>0,
∴x=x0是F(x)的极小值点
故选B.
【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.
12.【答案】
C
【解析】
【专题】排列组合.
【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.
【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,
再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.
另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,
再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.
综上可知,可得不同三角形的个数为1372+1764=3136.
故选:C.
【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.
二、填空题
13.【答案】﹣2.
【解析】解:∵曲线y=x n+1(n∈N*),
∴y′=(n+1)x n,∴f′(1)=n+1,
∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),
该切线与x轴的交点的横坐标为x n=,
∵a n=lgx n,
∴a n=lgn﹣lg(n+1),
∴a1+a2+…+a99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)
=lg1﹣lg100=﹣2.
故答案为:﹣2.
14.【答案】
【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,n n a a d n S 五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公
式在解题中起到变量代换作用,而1,a d 是等差数列的两个基本量,用它们表示已知和未知是常用方法. 15.【答案】 ①② .
【解析】解:∵|PM|﹣|PN|=6∴点P 在以M 、N 为焦点的双曲线的右支上,即,(x >0).
对于①,联立
,消y 得7x 2
﹣18x ﹣153=0,
∵△=(﹣18)2
﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.
对于②,联立,消y 得x 2
=
,∴y=2是“单曲型直线”.
对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.
对于④,联立,消y 得20x 2
+36x+153=0,
∵△=362
﹣4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②. 故答案为:①②.
【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.
16.【答案】
52
【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,
ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,
又()22x
a g x e a =-+,令x
t e =,则()[]2,1,32
a g t t a t =-+
∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2
min 2
a g t g a ==,
则()()max min 312g t g t a -=-=,则5
2
a =,
(2)当3a >时,()()2max
112a g t g a ==-+,()()2
min 332
a g t g a ==-+,
则()()max min 2g t g t -=,舍。

5
2
a ∴=。

17.【答案】 33 .
【解析】解:∵1=+++++
+
+
+
+
+
+
+

∵2=1×2, 6=2×3, 30=5×6, 42=6×7, 56=7×8, 72=8×9, 90=9×10, 110=10×11, 132=11×12,
∴1=+++++
+
+++
+
+
+
=(1﹣)+++(﹣
)+

+=
=﹣+
﹣=
, ∴m=20,n=13, ∴m+n=33, 故答案为:33
【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.
18.【答案】 ﹣2 .
【解析】解:由(1﹣2i )(a+i )=(a+2)+(1﹣2a )i 为纯虚数,

,解得:a=﹣2.
故答案为:﹣2.
三、解答题
19.【答案】 【解析】
【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;
(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;
方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,
,再利用基本不等式,可求四边形PMQN面积的最大值;
方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,
则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN
面积的最大值.
【解答】解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,
所以
解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为,…(6分)
所以,∠POQ=120°,…(7分)
所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)
又,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)
由题意得:…(7分)
因为=x1•x2+y1•y2=﹣2,
又,
所以x1•x2+y1•y2=,…(8分)
化简得:﹣5k2﹣3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.
因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即
…(13分)
当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)
当直线l的斜率k≠0时,设
则,代入消元得(1+k2)x2+2kx﹣3=0
所以
同理得到.…(11分)
=…(12分)
因为,
所以,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)
20.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P(η=0)=,
P(η=1)=,
P(η=2)=,
P(η=3)=,
∴Eη=.
∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24,
∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
21.【答案】
【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.经检验,a=符合题意.
(Ⅱ)
1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.
2)当a>0时,
①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;
②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.
综上所述,当a≤时,f(x)的减区间是(0,e],
当a>时,f(x)的减区间是,增区间是.
(Ⅲ)当时,由(Ⅱ)知f(x)的最小值是f()=1+lna;
易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna;
注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0,
故由题设知,
解得<a<e2.
故a的取值范围是(,e2)
22.【答案】
【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,
故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,
故直线BC1平行于平面DA1C;
(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)
以△ABC为底面的三棱锥D1﹣ABC的体积V,可得
而△AD 1C 中,
,故
所以以△AD 1C 为底面的三棱锥B ﹣﹣AD 1C 的体积,
即直线BC 1到平面D 1AC 的距离为.
【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题.
23.【答案】(1){}
125a a a <<≤或;(2)1m =.
【解析】
(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2
115a a a a ≤⎧⇒<⎨
<>⎩或.………………………………5分 若为真命题,p 为假命题,则2
2515a a a >⎧⇒<≤⎨
≤≤⎩
.……………………………………6分
于是,实数的取值范围为{}
或.……………………………………7分
<<≤
a a a
125
考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.
24.【答案】
【解析】解:(1)设a1=a,由题意可得,
解得,或,
当时,a n=2n﹣1,b n=2n﹣1;
当时,a n=(2n+79),b n=9•;
(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,
∴c n==,
∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,
精选高中模拟试卷
第 21 页,共 21 页
∴T n =1
•+3
•+5
•+7
•+…+(2n ﹣3)
•+(2n ﹣1)
•,
∴T n
=2+
+
+
++…
+﹣(2n ﹣1)
•=3
﹣, ∴T n =6
﹣.。

相关文档
最新文档