浦江县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦江县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设为虚数单位,则
( )
A .
B .
C .
D .
2. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若
数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56 3. 已知点P (1
,﹣),则它的极坐标是( )
A
.
B
.
C
.
D
.
4. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( ) A
.= B
.0S = C .0122S S S =+ D .20122S S S =
5. 设复数z 满足(1﹣i )z=2i ,则z=( )
A .﹣1+i
B .﹣1﹣i
C .1+i
D .1﹣i
6. α
是第四象限角,,则sin α=( )
A
.
B
.
C
.
D
.
7. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}01
2
|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
8. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则7
4
S a =( ) A .
74 B .14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
9.
不等式组在坐标平面内表示的图形的面积等于( ) A
. B
.
C
.
D
.
10.在极坐标系中,圆
的圆心的极坐标系是( )。
A
B
C D
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
11.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15
12.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
二、填空题
13.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 .
14.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.
15.【泰州中学2018届高三10月月考】设二次函数()2
f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',
对任意x R ∈,不等式()()f x f x ≥'恒成立,则222
b a
c +的最大值为__________.
16.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
17.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 . 18.在△ABC
中,已知=2,b=2a ,那么cosB 的值是 .
三、解答题
19.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238
20.已知f ()=﹣x ﹣1.
(1)求f (x );
(2)求f (x )在区间[2,6]上的最大值和最小值.
21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
22.已知函数f (x )=Asin (ωx+φ)(x ∈R ,A >0,ω>0,0<φ<)图象如图,P 是图象的最高点,Q 为
图象与x 轴的交点,O 为原点.且|OQ|=2,|OP|=,|PQ|=
.
(Ⅰ)求函数y=f (x )的解析式;
(Ⅱ)将函数y=f (x )图象向右平移1个单位后得到函数y=g (x )的图象,当x ∈[0,2]时,求函数h (x )=f (x )•g (x )的最大值.
23.(本小题满分12分)
已知函数()
23cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1
()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2
y
y a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.
浦江县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C 2. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.
∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),
∴a 6+a 23=2.
则{a n }的前28项之和S 28
==14(a 6+a 23)=28.
故选:C .
【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.
3. 【答案】C
【解析】解:∵点P
的直角坐标为,∴ρ
=
=2.
再由1=ρcos θ
,﹣
=ρsin θ
,可得
,结合所给的选项,可取θ=
﹣
,
即点P 的极坐标为 (2
,),
故选 C .
【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.
4. 【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h S a S a h
S '⎧=⎪+⎪
⎨'⎪=+⎪⎩
,解得=A . 考点:棱台的结构特征.
5. 【答案】A
【解析】解:∵复数z 满足z (1﹣i )=2i ,
∴
z==﹣1+i
故选A .
【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.
6. 【答案】B
【解析】解:∵α
是第四象限角, ∴sin α
=,
故选B .
【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.
7. 【答案】
C
8. 【答案】C.
【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d
=+⇒+=+++,化简得1a d =-,∴17
4
176
7142732a d
S d a a d d
⋅+
===+,故选C.
9. 【答案】B
【解析】解:作出不等式组对应的平面区域, 则对应的平面区域为矩形OABC , 则B (3,0),
由
,解得
,即C
(
,),
∴矩形OABC 的面积S=2S △0BC =2
×
=,
故选:B
【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.
10.【答案】B
【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
11.【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B.
12.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.二、填空题
13.【答案】.
【解析】解:如图,
∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,
∴三棱柱为正三棱柱,且其中心为球的球心,设为O,
再设球的半径为r ,由球O 的表面积为7π,得4πr 2
=7π,∴
r=
.
设三棱柱的底面边长为a
,则上底面所在圆的半径为
a ,且球心O 到上底面中心H 的距离
OH=,
∴r 2=
()2
+
(
a )2,即
r=a ,
∴
a=.
则三棱柱的底面积为
S=
=
.
∴
=
=.
故答案为:.
【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.
14.【答案】19
【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19. 15.
【答案】2
【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()2
20ax b a x c b +-+-≥在R
上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:22
2222241441c b ac a a
a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫
+ ⎪⎝⎭
,
令1,(0)c t t a =->
,24422222t y t t t t
==≤=++++,故22
2
b a
c +
的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 16.【答案】 (1,2) .
【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2
θ=ρsin θ,
即y=2x 2
.
由ρcos θ=1,得x=1.
联立
,解得:
.
∴曲线C 1与C 2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.17.【答案】A<G.
【解析】解:由题意可得A=,G=±,
由基本不等式可得A≥G,当且仅当a=b取等号,
由题意a,b是互异的负数,故A<G.
故答案是:A<G.
【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.
18.【答案】.
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
20.【答案】
【解析】解:(1)令t=,则x=,
∴f(t)=,
∴f(x)=(x≠1)…
(2)任取x1,x2∈[2,6],且x1<x2,
f (x 1)﹣f (x 2)=﹣=,
∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0, ∴f (x 1)﹣f (x 2)>0, ∴f (x )在[2,6]上单调递减,…
∴当x=2时,f (x )max =2,当x=6时,f (x )min =…
21.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n .
考
点:等差,等比数列通项公式,数列求和. 22.【答案】
【解析】解:(Ⅰ)由余弦定理得cos ∠POQ==
,…
∴sin ∠POQ=,得P 点坐标为(,1),∴A=1, =4(2﹣),∴ω=
. …
由f ()=sin (
+φ)=1 可得 φ=
,∴y=f (x ) 的解析式为 f (x )=sin (
x+
).…
(Ⅱ)根据函数y=Asin (ωx+∅)的图象变换规律求得 g (x )=sin x ,…
h (x )=f (x )g (x )=sin (x+
) sin
x=
+
sin
xcos
x
=
+
sin
=sin (﹣)+.…
当x ∈[0,2]时,∈[﹣,
],
∴当
,
即 x=1时,h max (x )
=.…
【点评】本题主要考查由函数y=Asin (ωx+∅)的部分图象求函数的解析式,函数y=Asin (ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.
23.【答案】(1)332⎡⎤⎢⎥⎣⎦
,;(2). 【解析】
试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦
,;(2)易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦
,,,⇒ 2233226
32k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为
. 考
点:三角函数的图象与性质.
24.【答案】
【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.。