温水乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温水乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)在下列各数中,无理数是()
A. ﹣
B. ﹣0.1
C.
D. 36【答案】C
【考点】无理数的认识
【解析】【解答】解:A、是分数,是有理数,不符合题意;
B、是分数,是有理数,不符合题意;
C、是无理数,符合题意;
D、是整数,是有理数,不符合题意.
故答案为:C.
【分析】无理数是无限不循环小数和开方开不尽的数,不能写作两整数之比;得到正确选项.
2、(2分)下列命题是假命题的是()
A. 对顶角相等
B. 两直线平行,同旁内角相等
C. 平行于同一条直线的两直线平行
D. 同位角相等,两直线平行
【答案】B
【考点】命题与定理
【解析】【解答】解:A.对顶角相等是真命题,故本选项正确,A不符合题意;
B.两直线平行,同旁内角互补,故本选项错误,B符合题意;
C.平行于同一条直线的两条直线平行是真命题,故本选项正确,C不符合题意;
D.同位角相等,两直线平行是真命题,故本选项正确,D不符合题意.
故答案为:B.
【分析】本题是让选假命题,也就是在题设的条件下得到错误的结论. 两直线平行同旁内角互补而不是相等.
3、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()
A. 35°
B. 45°
C. 55°
D. 65°
【答案】C
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.
【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.
4、(2分)小亮在解不等式组时,解法步骤如下:
解不等式①,得x>3,…第一步;
解不等式②,得x>﹣8,…第二步;
所有原不等式组组的解集为﹣8<x<3…第三步.
对于以上解答,你认为下列判断正确的是()
A. 解答有误,错在第一步
B. 解答有误,错在第二步
C. 解答有误,错在第三步
D. 原解答正确无误
【答案】A
【考点】解一元一次不等式组
【解析】【解答】解:解不等式①,得x>3,
解不等式②,得x>﹣8,
所以原不等式组的解集为x>3.
故答案为:C
【分析】不等式组取解集时:同大取大,即都是大于时,取大于大的那部分解集,也可以在数轴上表示出来两个解集,取公共部分.
5、(2分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;
④- 是17的平方根。

其中正确的有()
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】平方根,立方根及开立方,有理数及其分类,无理数的认识
【解析】【解答】①带根号的数不一定是无理数,能够开方开得尽的并不是无理数,而是有理数,所以错误;
②不带根号的数不一定是有理数,比如含有π的数,或者看似有规律实则没有规律的一些数,所以错误;
③负数有一个负的立方根,所以错误;
④一个正数有两个平方根,这两个平方根互为相反数,所以正确。

故答案为:B
【分析】无限不循环小数是无理数,无理数包括开方开不尽的数,含有π的数,看似有规律实则没有规律的一些数,正数有一个正的平方根,负数有一个负的平方根,零的平方根是零,一个正数有两个平方根,这两个平方根互为相反数。

6、(2分)已知x,y满足关系式2x+y=9和x+2y=6,则x+y=()
A. 6
B. ﹣1
C. 15
D. 5
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:2x+y=9即2x+y﹣9=0……①,
x+2y=6即x+2y﹣6=0……②,
①×2﹣②可以得3x﹣12=0,
∴x=4,代入①式得y=1,
∴x+y=5,故答案为:D.
【分析】观察方程组中同一未知数的系数特点,求出方程组的解,再求出x+y的值即可;或将两方程相加除以3,即可得出结果。

7、(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。

8、(2分)图中,同旁内角的对数为()
A. 14
B. 16
C. 18
D. 20【答案】B
【考点】同位角、内错角、同旁内角
【解析】【解答】解:①直线AD与直线BC被直线AB所截,形成2对同旁内角;
②直线AD与直线BC被直线CD所截,形成2对同旁内角;
③直线AB与直线CD被直线AD所截,形成2对同旁内角;
④直线AB与直线CD被直线BC所截,形成2对同旁内角;
⑤直线AB与直线CD被直线AC所截,形成2对同旁内角;
⑥直线AD与直线BC被直线AC所截,形成2对同旁内角;
⑦直线AB与直线BC被直线AC所截,形成2对同旁内角;
⑧直线AD与直线CD被直线AC所截,形成2对同旁内角;
∴一共有16对同旁内角,故答案为:B.
【分析】观察图形可抽象出8个基本图形,每个基本图形有2对同旁内角,即可得出答案。

9、(2分)如图,由下列条件不能得到∥的是()
A. =
B. =
C. + =
D. =
【答案】B
【考点】平行线的判定
【解析】【解答】解:A由∠3 = ∠4推出AB∥CD,故A符合题意;
B 、由∠1 = ∠2推出AD∥CB,故B不符合题意;
C 、由∠B + ∠B C
D = 180 °推出AB∥CD,故C不符合题意;
D 、由∠B = ∠5 推出AB∥CD,故D不符合题意;
故应选:B.
【分析】由内错角相等二直线平行由∠3 = ∠4推出AB∥CD;由∠1 = ∠2推出AD∥CB,由同旁内角互补,两直线平行、由∠B + ∠B C D = 180 °推出AB∥CD;由同位角相等两直线平行由∠B = ∠5 推出AB ∥CD;即可得出答案。

10、(2分)a是非负数的表达式是()
A.a>0
B.≥0
C.a≤0
D.a≥0
【答案】D
【考点】不等式及其性质
【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,
故答案为:D.
【分析】正数和0统称非负数,根据这个定义作出判断即可。

11、(2分)如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC中,相互平行的线段有()
A. 4组
B. 3组
C. 2组
D. 1组
【答案】B
【考点】平行线的判定
【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);
∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);
则AE∥CD,
∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).
则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.
故答案为:C.
【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE
是内错角,内错角相等,两直线平行;
12、(2分)估计30的算术平方根在哪两个整数之间()
A. 2与3
B. 3与4
C. 4与5
D. 5与6【答案】D
【考点】估算无理数的大小
【解析】【解答】解:∵25<30<36,
∴5<<6,
故答案为:D.
【分析】由25<30<36,根据算术平方根计算即可得出答案.
二、填空题
13、(1分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=________
【答案】130°
【考点】平行线的性质
【解析】【解答】解:如图,
∵l1∥l2,
∴∠3=∠1=50°,
∵∠α=∠β,
∴AB∥CD,
∴∠2+∠3=180°,
∴∠2=180°﹣∠3=180°﹣50°=130°.
故答案为:130°
【分析】由已知可知AE//CD ,所以延长AE交于点B,利用平行线的性质,可知∠2+∠3=,即可求出∠2的值.
14、(1分)若,且,则的取值范围是________.
【答案】
【考点】不等式及其性质
【解析】【解答】解:∵,且,
∴k-5<0,
∴k<5.
故答案为:k<5.
【分析】根据不等式的性质③:不等式的两边都乘以或除以同一个负数,不等号的方向改变。

可知k-5<0,然后再解不等式即可。

15、(1分)比较大小-5 ________ -4 (用“>”、“<”或“=”填空)
【答案】<
【考点】实数大小比较
【解析】【解答】解:∵,,∴,∴.故答案为:<.
【分析】因为5=,4=,5048,所以4,根据负数的绝对值大的反而小可得,− 5< −4。

16、(1分)实数a在数轴上的位置如图,则|a﹣3|=________.
【答案】3﹣a
【考点】实数在数轴上的表示
【解析】【解答】由数轴上点的位置关系,得
a<3.
|a﹣3|=3﹣a,
故答案为:3﹣a.
【分析】由数轴上点的位置关系可得a<3,即a-3<3=0,根据绝对值的性质可得原式=3﹣a。

17、(1分)已知二元一次方程组则________
【答案】11
【考点】解二元一次方程组
【解析】【解答】解:
由得:2x+9y=11
故答案为:11
【分析】观察此二元一次方程的特点,将两方程相减,就可得出2x+9y的值。

18、(2分)若两个无理数的和是有理数,则这两个无理数可以是:________ ________.
【答案】﹣;
【考点】实数的运算
【解析】【解答】∵﹣+ =0,0是有理数,
∴这两个无理数可以是﹣和,
故答案为:﹣;.
【分析】(答案不唯一)由题意两个无理数的和是有理数,可得这两个数互为相反数,只要两个数互为相反数即可。

三、解答题
19、(10分)若关于x、y的二元一次方程组的解满足x - y >-8.
(1)用含m的代数式表示.
(2)求满足条件的m的所有正整数值.
【答案】(1)解:①-②得,x-y=-2m+3-4=-2m-1
(2)解:由题意,得-2m-1>-8,解得.
∵m为正整数,∴m=1,2,3.
【考点】解二元一次方程,解一元一次不等式
【解析】【分析】(1)用第一个方程减去等二个方程可得;(2)由(1)与x-y>-8可得关于m的不等式,解此不等式可求解.
20、(20分)计算:
(1)
(2)
(3)
(4)(用乘法公式)
【答案】(1)解:原式=2+1-8=-5
(2)解:原式=a5(-8a3)+a69a2
=-8a8+9a8
(3)解:
(4)解:原式=2018 2−(2018-1)×(2018+1)
=20182-20182+1
=1
【考点】实数的运算,整式的混合运算,含乘方的有理数混合运算
【解析】【分析】(1)先算乘方运算,再算加减法即可。

(2)先算乘方运算,再算乘法,然后再合并同类项即可求解。

(3)利用多项式除以单项式的法则,求解即可。

(4)将2017×2019转化为(2018-1)×(2018+1),利用平方差公式计算即可。

21、(10分)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.
(1)用含有α的代数式表示∠COE的度数;
(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.
【答案】(1)解:∵CB∥OA,∴∠C+∠AOC=180°.
∵∠C=100°,∴∠AOC=80°.
∴∠EOB=∠EOF+∠FOB= ∠COF+ ∠FOA
= (∠COF+∠FOA)= ∠AOC=40°.
又OE平分∠COF,
∴∠COE=∠FOE=40°﹣α;
(2)解:∠OBC:∠OFC的值不发生改变.
∵BC∥OA,
∴∠FBO=∠AOB,
又∵∠BOF=∠AOB,
∴∠FBO=∠BOF,
∵∠OFC=∠FBO+∠FOB,
∴∠OFC=2∠OBC,
即∠OBC:∠OFC=∠OBC:2∠OBC=1:2= .
【考点】角的平分线,平行线的性质,平移的性质
【解析】【分析】(1)根据CB∥OA,可得∠C与∠OCA的关系,再根据∠C=∠OAB=100°,根据∠FOB=∠AOB,OE平分∠COF,即可得到∠EOB=∠BOF+∠EOF,及可求得答案;
(2)根据∠FOB=∠AOB,即可得到∠AOB:∠AOF=1:2,再根据CB∥OA,可得∠AOB=∠OBF,∠AOF=∠OFC,进而得出结论.
22、(5分)如图,已知AD平分∠CAE,CF∥AD,∠2=80°,求∠1的度数.
【答案】解:∵CF∥AD,
∴∠CAD=∠2=80°,∠1=∠DAE,
∵AD平分∠CAE,
∴∠DAE=∠CAD=80°,
∴∠1=∠DAE=80°
【考点】角的平分线,平行线的性质
【解析】【分析】根据平行线的性质证明∠CAD=∠2=80°,∠1=∠DAE,再根据角平分线的定义,求出∠DAE 的度数,即可求出∠1的度数。

23、(5分)
【答案】解:,
(2)+(3)得:
5x=2,
∴x=,
由(2)得:
y=x+3z-4 (4),
将(4)代入(1)得:
2x-3(x+3z-4 )+4z=12,
解得:z=-,
将x=,z=-代入(4)得:
y=-,
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】(2)+(3)可解得x值,由(2)变形得:y=x+3z-4 (4),将(4)代入(1)可解得z的
值,将x、z的值代入(4)可求得y的值,从而得出原方程组的解.
24、(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平
移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.
【答案】解:由题意知阴影部分的面积=梯形ABEH的面积
根据平移的性质知DE=AB=10
又∵DH=4
∴HE=6
∵平移距离为6
∴BE=6
∴阴影部分的面积=梯形ABEH的面积=(AB+EH)BE÷2=(10+6)×6÷2=48.
【考点】平移的性质
【解析】【分析】根据平移的性质得出阴影部分的面积=梯形ABEH的面积,然后根据梯形面积计算方法计算即可。

25、(15分)六(1)班期中测试成绩统计如
下.
(1)考试成绩中有哪几个等级评价?哪个等级的人数最多?
(2)图中的圆表示什么,图中各扇形分别表示什么?
(3)从统计图中,你能知道各等级成绩的人数吗?为什么?
【答案】(1)解:优秀,良好,合格;优秀等级的人数最多
(2)解:参加考试的全体学生;优秀等级人数占总人数的73%,良好等级人数占总人数的22%,合格的人数占总人数的5%.
(3)解:不能,因为不知道全班的总人数
【考点】扇形统计图
【解析】【分析】此题是考查如何从扇形统计图获取信息,并根据所获取的信息进行有关计算等;关键是明白:扇形统计图中把总体看成单位“1”,较易表示出各部分占总体的百分之几
26、(20分)某次篮球联赛中,大海队与高山队要争夺一个出线权(获胜场数多的队出线;两队获胜场数相等时,根据他们之间的比赛结果确定出线队),大海队目前的战绩是14胜10负(其中有1场以3分之差负于高山队),后面还要比赛6场(其中包括再与高山队比赛1场);高山队目前的战绩是12胜13负,后面还要比赛5场.
讨论:
(1)为确保出线,大海队在后面的比赛中至少要胜多少场?
(2)如果大海队在后面对高山队1场比赛中至少胜高山队4分,那么他在后面的比赛中至少胜几场就一定能出线?
(3)如果高山队在后面的比赛中3胜(包括胜大海队1场)2负,那么大海队在后面的比赛中至少要胜几场才能确保出线?
(4)如果大海队在后面的比赛中2胜4负,未能出线,那么高山队在后面的比赛中战果如何?
【答案】(1)解:为确保出线,设大海队在后面的比赛中要胜x场,∵高山队目前的战绩是12胜13负,后面还要比赛5场,
∴高山队最多能胜17场,
∴为确保出线,设大海队在后面的比赛中要获胜:14+x>17,
解得;x>3,
答:为确保出线,大海队在后面的比赛中至少要胜4场
(2)解:设他在后面的比赛中胜y场就一定能出线。

∵大海队在后面对高山队1场比赛中至少胜高山队4分,
即大海队15胜10负,高山队12胜14负。

高山队还比赛5−1=4(场),
最多胜12+4=16(场),
∴15+y>16,
即y>1.
∵y为整数,
∴y取2.
答:那么他在后面的比赛中至少胜2场就一定能出线。

(3)解:∵高山队在后面的比赛中3胜(包括胜大海队1场)2负,∴高山队一共获胜15场,
∴大海队在后面的比赛中至少要胜2场才能确保出线
(4)解:∵大海队在后面的比赛中2胜4负,未能出线,
∴高山队在后面的比赛中战果可能是5胜0负,可能是4胜1负(胜大海队比赛),4胜1负(负大海队少于3分).【考点】一元一次不等式的应用
【解析】【分析】(1)为确保出线,设大海队在后面的比赛中要胜x场,由题意可知大海队共胜(14+x)场,高山队最多胜17场,根据获胜场数多的队出线可列出不等式,然后解不等式即可。

(2)设他在后面的比赛中胜y场就一定能出线,由题意可知大海队共胜(15+y)场,高山队最多胜(12+4)场,根据获胜场数多的队出线可列出不等式,然后解不等式即可。

(3)根据大海队两场都负高山队可知大海队获胜场数大于高山队获胜场数,进而得出结论。

(4)根据大海队在后面的比赛中2胜4负,未能出线,可知高山队比大海队获胜的场数多,进而可得高山队在后面的比赛中战果。

相关文档
最新文档