老河口市三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
老河口市三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2
)
C .(-12,+∞)
D .(-1
2,0)
2. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 3. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
4. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且
•
=4,则实数a
的值为( )
A .
或﹣
B .
或3
C .
或5
D .3或5
5. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=
,则
•=( )
A .﹣1
B .1
C .﹣
D .
6. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
7. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )
①f (x )=
,②f (x )=
,③f (x )=
,④f (x )=
.
A .4
B .3
C .2
D .1
8. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )
A .3
y x =
B . 2
1y x =-+
C .||1y x =+
D .2x
y -=
9. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)-
10.若复数z=2﹣i ( i 为虚数单位),则=( )
A .4+2i
B .20+10i
C .4﹣2i
D .
11.在ABC ∆中,b =
3c =,30B =,则等于( )
A B . C 或 D .2 12.已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )
A .n ≤8?
B .n ≤9?
C .n ≤10?
D .n ≤11?
二、填空题
13.已知复数
,则1+z 50+z 100
= .
14.已知函数,则__________;的最小值为__________.
15.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .
16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
17.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.
18.用“<”或“>”号填空:30.830.7.
三、解答题
19.(本小题满分12分)某市拟定2016年城市建设,,
A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,
A B C三项重点工程竞标成功的概率分
别为a,b,1
4()
a b
,已知三项工程都竞标成功的概率为
1
24
,至少有一项工程竞标成功的概率为3
4
.
(1)求a与b的值;
(2)公司准备对该公司参加,,
A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
20.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
21.已知函数()f x =1
21
x
a +- (1)求()f x 的定义域.
(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
(3)在(2)的条件下,令3
()()g x x f x =,求证:()0g x >
22.在数列{a n }中,a 1=1,a n+1=1﹣,b n =
,其中n ∈N *
.
(1)求证:数列{b n }为等差数列;
(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;
(3)证明:1++
+…+
≤2
﹣1(n ∈N *
)
23.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,
2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2
,
(Ⅰ)求数列{b n }的通项公式;
(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.
24.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.
老河口市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e x -e -x )(-12x +1+1
2)
=(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
2. 【答案】B 【解析】
考
点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
3. 【答案】 D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣
=
,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
4.【答案】C
【解析】解:圆x2
+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.
∵•=4,∴2•2cos∠ACB=4
∴cos∠ACB=,
∴∠ACB=60°
∴圆心到直线的距离为,
∴=,
∴a=或5.
故选:C.
5.【答案】B
【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,
即有||2+||2=||2,
可得△OAB为等腰直角三角形,
则,的夹角为45°,
即有•=||•||•cos45°=1××=1.
故选:B.
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
6.【答案】A
【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.
A、{x|x≥0}={x|x≥0}=A,故本选项正确;
B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;
D、给出的集合是R,不合题意,故本选项错误.
故选:A.
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.
7.【答案】C
【解析】解:由区间G上的任意两点x1,x2和任意实数λ(0,1),
总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),
等价为对任意x∈G,有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),
①f(x)=的导数f′(x)=,f″(x)=,故在(2,3)上大于0恒成立,故①为“上进”函数;
②f(x)=的导数f′(x)=,f″(x)=﹣•<0恒成立,故②不为“上进”函数;
③f(x)=的导数f′(x)=,f″(x)=
<0恒成立,
故③不为“上进”函数;
④f(x)=的导数f′(x)=,f″(x)=,当x∈(2,3)时,f″(x)>0恒成立.
故④为“上进”函数.
故选C.
【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.
8.【答案】C
【解析】
试题分析:函数3
=-+是偶函数,但是在区间()
y x
y x
=为奇函数,不合题意;函数21
0,+∞上单调递减,不合题意;函数2x
=为非奇非偶函数。
故选C。
y-
考点:1.函数的单调性;2.函数的奇偶性。
9.【答案】A
【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
10.【答案】A
【解析】解:∵z=2﹣i ,
∴==
=
=
,
∴
=10•
=4+2i ,
故选:A .
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
11.【答案】C 【解析】
考
点:余弦定理.
12.【答案】B
【解析】解:n=1,满足条件,执行循环体,S=1+1=2
n=2,满足条件,执行循环体,S=1+1+2=4
n=3,满足条件,执行循环体,S=1+1+2+3=7
n=10,不满足条件,退出循环体,循环满足的条件为n≤9,
故选B.
【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.
二、填空题
13.【答案】i.
【解析】解:复数,
所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;
故答案为:i.
【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.
14.【答案】
【解析】【知识点】分段函数,抽象函数与复合函数
【试题解析】
当时,
当时,
故的最小值为
故答案为:
15.【答案】[1,)∪(9,25].
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得
9<a≤25,
当a<0时,不符合条件,
综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.16.【答案】(﹣1,1].
【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:
由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1]
17.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
18.【答案】>
【解析】解:∵y=3x是增函数,
又0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
三、解答题
19.【答案】
【解析】(1)由题意,得1
1424
131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=
⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,
则X 的值可以为0,2,4,6,8,10,12.…………5分
而4
1
433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=
; 1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=
; 1111
(12)23424
P X ==⨯⨯=
.…………………9分 所以X 的分布列为:
于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12
=
.……………12分 20.【答案】
【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1 f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2, 由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题 因此,1≤m <2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
21.【答案】 【解析】
试
题解析:(1)由210x
-≠得:0x ≠
∴()f x 的定义域为{}
0x x ≠------------------------------2分
(2)由于()f x 的定义域关于原点对称,要使()f x 是奇函数,则对于定义域{}
0x x ≠内任意一个x ,都有
()()f x f x -=-即:112121x x
a a -⎛
⎫+
=-+ ⎪--⎝
⎭ 解得:1
2
a =
∴存在实数1
2
a =
,使()f x 是奇函数------------------------------------6分 (3)在(2)的条件下,12a =,则3
311()()221x g x x f x x ⎛⎫==+ ⎪-⎝⎭
()g x 的定义域为{}0x x ≠关于原点对称,且33()()()()()g x x f x x f x g x -=--==
则()g x 为偶函数,其图象关于y 轴对称。
当0x >时,21x
>即210x
->又210x
+>,3
0x >
∴331
121()02212(21)x x x
g x x x +⎛⎫=+=> ⎪--⎝⎭
g 当0x <时,由对称性得:()0g x >分
综上:()0g x >成立。
--------------------------------------------10分. 考点:1.函数的定义域;2.函数的奇偶性。
22.【答案】
【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b1=1.∴数列{b n}为
等差数列,首项为1,公差为1.
(2)解:由(1)可得:b n=n.
c n=b n+1•()=(n+1).
∴数列{c n}的前n项和为T n=+3×++…+(n+1).
=+3×+…+n+(n+1),
∴T n=+++…+﹣(n+1)=+﹣(n+1),
可得T n=﹣.
(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.
∵=<=2(k=2,3,…).
∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.
∴1+++…+≤2﹣1(n∈N*).
23.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
24.【答案】
【解析】解:(1)∵f(4)=0,
∴4|4﹣m|=0
∴m=4,
(2)f(x)=x|x﹣4|=图象如图所示:
由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.
(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,
由图可知k∈(0,4).。