淇县实验中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淇县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4

B .4

C .
D .
+
2. 给出下列命题:
①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3
中有三个是增函数;
②若log m 3<log n 3<0,则0<n <m <1;
③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;
④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.
其中假命题的个数为( )
A .1
B .2
C .3
D .4
3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )
A .
B .
C .2
D .3
4. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
5. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
6. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1
B .2
C .3
D .4
7. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
( )
A .2013
B .
2014 C .2015 D .20161111] 8. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1
B .2
C .3
D .4
9. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g
(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2
﹣3x+4
与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )
A .[3,4]
B .[2,4]
C .[1,4]
D .[2,3]
10.下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
11.已知等差数列的公差且成等比数列,则()
A.B.C.D.
12.已知2a=3b=m,ab≠0且a,ab,b成等差数列,则m=()
A.B.C.D.6
二、填空题
13.设函数f(x)=,则f(f(﹣2))的值为.
14.在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB 的距离是.
15.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值
是.
16.用“<”或“>”号填空:30.830.7.
17.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为.
18.若曲线f(x)=ae x+bsinx(a,b∈R)在x=0处与直线y=﹣1相切,则b﹣a=.
三、解答题
19.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;
(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.
20.已知函数
且f (1)=2.
(1)求实数k 的值及函数的定义域;
(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.
21.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C 的参数方程为⎩⎨⎧==α
α
sin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.
(1)将曲线C 的参数方程化为普通方程;
(2)求||||PB PA ⋅的最值.
22.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.
(1)求数列{a n }的通项公式;
(2)设
,T n 是数列{b n }的前n 项和,求:使得
对所有n ∈N *
都成立的最大正整数m .
23.已知函数f(x)=lnx的反函数为g(x).
(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;
(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.
24.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.
淇县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,
若存在θ∈R,使得xcosθ+ysinθ+1=0成立,
则(cosθ+sinθ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
2.【答案】A
【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,
1)上减,在(1,+∞)上增.函数y=x3是增函数.
∴有两个是增函数,命题①是假命题;
②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;
③若函数f(x)是奇函数,则其图象关于点(0,0)对称,
∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;
④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,
也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.
∴假命题的个数是1个.
故选:A.
【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.
3.【答案】D
【解析】解:∵a=,c=2,cosA=,
∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,
∴解得:b=3或﹣(舍去).
故选:D.
4.【答案】D
第Ⅱ卷(共90分)5.【答案】B
【解析】解:根据选项可知a≤0
a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],
∴2|b|=16,b=4
故选B.
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
6. 【答案】A
【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),
∴a n =5t 2
﹣4t=
﹣,
∴a n ∈

当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.
∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,
属于中档题.
7. 【答案】D 【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤
⎛⎫⎛

⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
()1
2201620162
=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()3115
33212
f x x x x =-+-的对称中心后再利用对称性和的.
第Ⅱ卷(非选择题共90分)
8. 【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2
﹣y=0,x ∈R ,y ∈R}═{(x ,y )
|} 将x 2﹣y=0代入x 2+y 2
=1, 得y 2
+y ﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个, 故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题
9. 【答案】D
【解析】解:∵m (x )=x 2
﹣3x+4与n (x )=2x ﹣3,
∴m (x )﹣n (x )=(x 2﹣3x+4)﹣(2x ﹣3)=x 2
﹣5x+7.
令﹣1≤x 2
﹣5x+7≤1,
则有,
∴2≤x ≤3. 故答案为D . 【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基
础题.
10.【答案】C
【解析】
考点:几何体的结构特征.
11.【答案】A
【解析】
由已知,,成等比数列,所以,即
所以,故选A
答案:A
12.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
二、填空题
13.【答案】﹣4.
【解析】解:∵函数f(x)=,
∴f(﹣2)=4﹣2=,
f(f(﹣2))=f()==﹣4.
故答案为:﹣4.
14.【答案】.
【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,
)、(﹣,),
故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,
所以O点到直线AB的距离是=,
故答案为:.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.
15.【答案】6.
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;
∴判断框中的条件为i<6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
16.【答案】>
【解析】解:∵y=3x是增函数,
又0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
17.【答案】3π.
【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图
∵球与三棱锥各条棱都相切,
∴该球是正方体的内切球,切正方体的各个面切于中心,
而这个切点恰好是三棱锥各条棱与球的切点
由此可得该球的直径为,半径r=
∴该球的表面积为S=4πr2=3π
故答案为:3π
【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.
18.【答案】2.
【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,
可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,
由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,
解得a=﹣1,b=1,
则b﹣a=2.
故答案为:2.
三、解答题
19.【答案】
【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.
再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).
(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.
函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值
时x的集合为{x|x=5kπ+,k∈z}.
(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即
y=3sin(x+)].
则由(x+m)﹣=x+,求得m=π,
把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.
【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.
20.【答案】
【解析】解:(1)f(1)=1+k=2;
∴k=1,,定义域为{x∈R|x≠0};
(2)为增函数;
证明:设x1>x2>1,则:
=
=;
∵x1>x2>1;
∴x1﹣x2>0,,;
∴f(x1)>f(x2);
∴f (x )在(1,+∞)上为增函数.
21.【答案】(1)
12
22
=+y x .(2)||||PB PA ⋅的最大值为,最小值为21. 【解析】

题解析:解:(1)曲线C 的参数方程为⎩⎨
⎧==α
αsin cos 2y x (α为参数),消去参数α
得曲线C 的普通方程为12
22
=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θ
θsin cos 1t y t x 代入1222
=+y x 得01cos 2)sin 2(cos 2
22=-++θθθt t (6分)
设B A ,对应的参数分别为21,t t ,则]1,2
1
[sin 11sin 2cos 1||||||2
2221∈+=+==⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为2
1
. (10分)
考点:参数方程化成普通方程. 22.【答案】
【解析】解:(1)由题意知:S n =n 2
﹣n ,
当n ≥2时,a n =S n ﹣S n ﹣1=3n ﹣2, 当n=1时,a 1=1,适合上式, 则a n =3n ﹣2;
(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+
﹣=1﹣,
∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,
要使T n>对所有n∈N*都成立,只需<,即m<15,
则最大的正整数m为14.
23.【答案】
【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).
∴g(x)=e x.,f(﹣x)=ln(﹣x),
则函数的导数g′(x)=e x,f′(x)=,(x<0),
设直线m与g(x)相切与点(x1,),
则切线斜率k2==,则x1=1,k2=e,
设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,
故k2k1=﹣×e=﹣1,则l⊥m.
(Ⅱ)不妨设a>b,
∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,
∵P﹣Q=g()﹣=﹣
==,
令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,
故φ(x)<φ(0)=0,
取x=,则a﹣b﹣+<0,∴P<Q,
⇔==1﹣
令t(x)=﹣1+,
则t′(x)=﹣=≥0,
则t(x)在(0,+∞)上单调递增,
故t(x)>t(0)=0,
取x=a﹣b,则﹣1+>0,
∴R>Q,
综上,P<Q<R,
【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.
24.【答案】
【解析】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,
又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1﹣=0,解得a=e.
(Ⅱ)f′(x)=1﹣,
①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;
②当a>0时,令f′(x)=0,得e x=a,x=lna,
x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,
则直线l:y=kx﹣1与曲线y=f(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k>1,此时g(0)=1>0,g()=﹣1+<0,
又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,
与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.
又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,
所以k的最大值为1.。

相关文档
最新文档