容城县二中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

容城县二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.


,且
,则λ与μ的值分别为( )
A

B .5,2
C

D .﹣5,﹣2
2. 集合{}1,2,3的真子集共有( )
A .个
B .个
C .个
D .个 3. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 4.
如果
(m ∈R ,i 表示虚数单位),那么m=( )
A .1
B .﹣1
C .2
D .0
5. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( ) A

B

C

D
. =0.08x+1.23
6. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 7. “x ≠0”是“x >0”是的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 8. 与函数 y=x 有相同的图象的函数是( ) A .
B .
C .
D .
9. 若函数2
()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(]
[),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞
10
.已知=(2,﹣3,1
),=(4,2,x
),且
⊥,则实数x 的值是( )
A .﹣2
B .2
C
.﹣
D

11
.在二项式的展开式中,含x 4
的项的系数是( )
A .﹣10
B .10
C .﹣5
D .5
12.“2
4
x π
π
-
<≤
”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
二、填空题
13.若函数f (x )=3sinx ﹣4cosx ,则f ′(
)= .
14.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,
3=AC ,32===BD CD BC ,则球O 的表面积为 .
15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.
16.数据﹣2,﹣1,0,1,2的方差是 .
17.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .
18.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{
}的前10项的和为 .
三、解答题
19.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C 的极坐标方程;
(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3
,射线OM :θ=
与圆C 的交点为O ,P ,与直线l
的交点为Q ,求线段PQ 的长.
20.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式
,独立性检验临界值表:
P (K 2≥k 0)
0.50 0.25 0.15 0.05 0.025 0.01 0.005 k 0 0.455 1.323 2.072 3.841 5.024 6.635
7.879
21.数列{a n }满足a 1=
,a n ∈(﹣

),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD
CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
23.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,斜率为11A x y (,)
和22B x y (,)(12x x <)两点,且9
2
AB =

(I)求该抛物线C的方程;
(II)如图所示,设O为坐标原点,取C上不同于O的点S,以OS为直径作圆与C相交另外一点R,
求该圆面积的最小值时点S的坐标.
24.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.
(1)求椭圆E的标准方程;
(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.
容城县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
2.【答案】C
【解析】
考点:真子集的概念.
3.【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用.
4.【答案】A
【解析】解:因为,
而(m∈R,i表示虚数单位),
所以,m=1.
故选A.
【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.
5.【答案】C
【解析】解:法一: 由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 将x=4分别代入A 、B 、C ,其值依次为8.92、9.92、5,排除A 、B
法二:
因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C 满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
6. 【答案】A 【解析】
试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .
考点:点、线、面之间的距离的计算.1
【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 7. 【答案】B
【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .
8. 【答案】D
【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误
B :与y=x 的对应法则不一样,故B 错误
C :
=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误
D :,与y=x 是同一个函数,则函数的图象相同,故D 正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题
9. 【答案】A 【解析】
试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8
k
x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:
58k ≤或88
k
≥,所以40k ≤或64k ≥。

故选A 。

考点:二次函数的图象及性质(单调性)。

10.【答案】A
【解析】解:∵ =(2,﹣3,1),=(4,2,x ),且⊥,

=0,
∴8﹣6+x=0; ∴x=﹣2; 故选A .
【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x 的方程求出x 的值.
11.【答案】B
【解析】解:对于,
对于10﹣3r=4, ∴r=2, 则x 4的项的系数是C 52(﹣1)2
=10
故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
12.【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A.
二、填空题
13.【答案】 4 .
【解析】解:∵f ′(x )=3cosx+4sinx ,
∴f ′()=3cos +4sin =4.
故答案为:4.
【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.
14.【答案】
16π
【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==
15.【答案】 60° °.
【解析】解:连结BC 1、A 1C 1,
∵在正方体ABCD ﹣A 1B 1C 1D 1中,A 1A 平行且等于C 1C , ∴四边形AA 1C 1C 为平行四边形,可得A 1C 1∥AC ,
因此∠BA 1C 1(或其补角)是异面直线A 1B 与AC 所成的角, 设正方体的棱长为a ,则△A 1B 1C 中A 1B=BC 1=C 1A 1
=a ,
∴△A 1B 1C 是等边三角形,可得∠BA 1C 1=60°,
即异面直线A 1B 与AC 所成的角等于60°.
故答案为:60°.
【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
16.【答案】 2 .
【解析】解:∵数据﹣2,﹣1,0,1,2,
∴=,
∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,
故答案为2;
【点评】本题考查方差的定义与意义:一般地设n个数据,x
,x2,…x n的平均数,是一道基础题;
1
17.【答案】
【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,
三角形AB
D1的面积为4,设点A1到平面AB1D1的距离等于h,则,
1
则h=
故点A1到平面AB1D1的距离为.
故答案为:.
18.【答案】.
【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),
∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.
当n=1时,上式也成立,
∴a n=.
∴=2.
∴数列{}的前n项的和S n=
=
=.
∴数列{}的前10项的和为.
故答案为:.
三、解答题
19.【答案】
【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.
把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.
(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.
可得普通方程:直线l,射线OM.
联立,解得,即Q.
联立,解得或.
∴P.
∴|PQ|==2.
【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.
20.【答案】
【解析】解:(1)
(2)
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的
21.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.
22.【答案】
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.

DE DC BC BA =BC AB
=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12
BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒, ∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==. 23.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ⎛
⎫=-+ ⎪⎝⎭
,所以221222256323264y y y =++≥=, 当且仅当2222
256y y =即22y =16,24y =?时等号成立. 圆的直径OS
=
因为21y ≥64,所以当21y =64即1y =±8
时,min OS =,所以所求圆的面积的最小时,点S 的坐标为
168±(,). 24.【答案】
【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=
,…1分 c=e •a=×
=, 故b=
==,…4分
所以,椭圆E 的方程为
,即x 2+3y 2=5…6分 (2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分
设A (x 1,y 1),B (x 2,y 2),M (m ,0),则
x 1+x 2=﹣,x 1x 2=;…8分
∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));
∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2
=m2+2m﹣﹣,
要使上式与k无关,则有6m+14=0,解得m=﹣;
∴存在点M(﹣,0)满足题意…13分
【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.。

相关文档
最新文档