冀教版初中数学九年级上册《27.3 反比例函数的应用》同步练习卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冀教新版九年级上学期《27.3 反比例函数的应用》
同步练习卷
一.选择题(共11小题)
1.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()
A.2B.4C.2D.4
2.如图,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过另外两个顶点C、D,且点D(4,n)(0<n<4),则k的值为()
A.12B.8C.6D.4
3.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=
4.如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()
A.B.
C.D.
5.如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形P AB的面积为()
A.3B.4C.D.5
6.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()
A.B.C.D.
7.如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.有下列三个结论:①△CEF与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是()
A.0B.1C.2D.3
8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()
A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n
9.已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上且OA⊥OB,则tan B为()
A.B.C.D.
10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()
A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8
11.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,P A∥x轴,下列说法正确的是()
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,
则S△ABP=16
A.①③B.②③C.②④D.③④
二.填空题(共10小题)
12.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.
13.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.
14.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y 时之间的函数解析式为.
15.在温度不变的情况下,通过对气缸顶部活塞的加压,测出每一次加压后,缸内气体体积x(mL)和气体对汽缸壁所产生的压强y(kPa)的值,如下表,则可以反应y与x之间的函数关系的式子是.
16.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.
17.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为;
若=2,则k=.
18.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.
19.如图,在平面直角坐标系中,函数(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为.
20.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,P n,它们的横坐标依次为1,2,3,4,…,n.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积分别为S1,S2,S3,…,S n,则S1+S2+S3+…+S10的值为.
21.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),
B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标.
三.解答题(共8小题)
22.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB 交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
23.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.
(1)求直线AB的解析式;
(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.
24.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);
(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
25.如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
26.如图,将透明三角形纸片P AB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,P A⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).
(1)k=;
(2)试说明AE=BF;
(3)当四边形ABCD的面积为时,求点P的坐标.
27.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?
28.如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△P AB的面积;
(2)设直线P A、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠P AQ与∠PBQ的大小,并说明理由.
29.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y 轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k=;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
冀教新版九年级上学期《27.3 反比例函数的应用》2019
年同步练习卷
参考答案与试题解析
一.选择题(共11小题)
1.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()
A.2B.4C.2D.4
【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.
【解答】解:连接AC,
∵OD=2,CD⊥x轴,
∴OD×CD=xy=4,
解得CD=2,由勾股定理,得OC==2,
由菱形的性质,可知OA=OC,
∵OC∥AB,
∵△OCE与△OAC同底等高,
∴S△OCE=S△OAC=×OA×CD=×2×2=2.
故选:C.
【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.
2.如图,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过另外两个顶点C、D,且点D(4,n)(0<n<4),则k的值为()
A.12B.8C.6D.4
【分析】过D作DE⊥x轴于E,FC⊥y轴于点F.可以证明△AOB≌△DEA,则可以利用n 表示出A,B的坐标,即可利用n表示出C的坐标,根据C,D满足函数解析式,即可求得n的值.进而求得k的值.
【解答】解:过D作DE⊥x轴于E,FC⊥y轴于点F,
∴∠DEA=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠DAE=∠ABO,
又∵AB=AD,
∴△ABO≌△DAE.
同理,△ABO≌△BCF.
∴OA=DE=n,OB=AE=OE﹣OA=4﹣n,
则A点的坐标是(n,0),B的坐标是(0,4﹣n).
∴C的坐标是(4﹣n,4).
由反比例函数k的性质得到:4(4﹣n)=4n,所以n=2.
则D点坐标为(4,2),所以k=2×4=8.
故选:B.
【点评】本题考查了正方形的性质与反比例函数的综合应用,体现了数形结合的思想.3.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=
【分析】利用三角形面积公式得出xy=10,进而得出答案.
【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,
∴xy=10,
∴y与x的函数关系式为:y=.
故选:C.
【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.
4.如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()
A.B.
C.D.
【分析】根据储存室的体积=底面积×高即可列出反比例函数关系,从而判定正确的结论.【解答】解:由储存室的体积公式知:104=Sd,
故储存室的底面积S(m2)与其深度d(m)之间的函数关系式为S=(d>0)为反比例函数.
故选:A.
【点评】本题考查了反比例函数的应用及反比例函数的图象,解题的关键是根据自变量的取值范围确定双曲线的具体位置,难度不大.
5.如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形P AB的面积为()
A.3B.4C.D.5
【分析】设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出P A、PB的值,根据三角形的面积公式求出即可.
【解答】解:∵点P在y=上,
∴|x p|×|y p|=|k|=1,
∴设P的坐标是(a,)(a为正数),
∵P A⊥x轴,
∴A的横坐标是a,
∵A在y=﹣上,
∴A的坐标是(a,﹣),
∵PB⊥y轴,
∴B的纵坐标是,
∵B在y=﹣上,
∴代入得:=﹣,
解得:x=﹣2a,
∴B的坐标是(﹣2a,),
∴P A=|﹣(﹣)|=,PB=|a﹣(﹣2a)|=3a,
∵P A⊥x轴,PB⊥y轴,x轴⊥y轴,
∴P A⊥PB,
∴△P AB的面积是:P A×PB=××3a=.
故选:C.
【点评】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.
6.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()
A.B.C.D.
【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣1,1)得到k=﹣1,即反
比例函数解析式为y=﹣,且OB=AB=1,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.
【解答】解:如图,
∵点A坐标为(﹣1,1),
∴k=﹣1×1=﹣1,
∴反比例函数解析式为y=﹣,
∵OB=AB=1,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(﹣,t),
∵PB=PB′,
∴t﹣1=|﹣|=,
整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),
∴t的值为.
故选:A.
【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.
7.如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.有下列三个结论:①△CEF与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是()
A.0B.1C.2D.3
【分析】设D(x,),得出F(x,0),根据三角形的面积求出△DEF的面积,同法求出△CEF的面积,即可判断①;根据全等三角形的判定判断②即可;证出平行四边形BDFE 和平行四边形ACEF,得到BD=AC即可.
【解答】解:①设D(x,),则F(x,0),
由图象可知x>0,k>0,
∴△DEF的面积是××x=k,
同理可知:△CEF的面积是k,
∴△CEF的面积等于△DEF的面积,
∴①正确;
②条件不足,无法证出两三角形全等的条件,
∴②错误;
③∵△CEF的面积等于△DEF的面积,
∴边EF上的高相等,
∴CD∥EF,
∵BD∥EF,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
同理EF=AC,
∴AC=BD,
∴③正确;正确的有2个.
故选:C.
【点评】本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定等知识点的运用,关键是检查学生综合运用定理进行推理的能力,题目具有一定的代表性,有一定的难度,是一道比较容易出错的题目.
8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()
A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n
【分析】过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.【解答】解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,
∵∠OAB=30°,
∴OA=OB,
设点B坐标为(a,),点A的坐标为(b,),
则OE=﹣a,BE=,OF=b,AF=,
∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,
∴∠OBE=∠AOF,
又∵∠BEO=∠OF A=90°,
∴△BOE∽△OAF,
∴==,即==,
解得:m=﹣ab,n=,
故可得:m=﹣3n.
故选:A.
【点评】本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大.
9.已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上且OA⊥OB,则tan B为()
A.B.C.D.
【分析】首先设出点A和点B的坐标分别为:(x1,)、(x2,﹣),设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,然后根据OA⊥OB,得到k1k2=•(﹣)=﹣1,然后利用正切的定义进行化简求值即可.
【解答】解:法一:
设点A的坐标为(x1,),点B的坐标为(x2,﹣),
设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,
则k1=,k2=﹣,
∵OA⊥OB,
∴k1k2=•(﹣)=﹣1
整理得:(x1x2)2=16,
∴tan B=====
==.
法二:过点A作AM⊥y轴于点M,过点B作BN⊥y轴于点N,
∴∠AMO=∠BNO=90°,
∴∠AOM+∠P AM=90°,
∵OA⊥OB,
∴∠AOM+∠BON=90°,
∴∠AOM=∠BON,
∴△AOM∽△OBN,
∵点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上,
∴S△AOM:S△BON=1:4,
∴AO:BO=1:2,
∴tan B=.
故选:B.
【点评】本题考查的是反比例函数综合题,解题的关键是设出A、B两点的坐标,然后利用互相垂直的两条直线的比例系数互为负倒数求解.
10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()
A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8
【分析】先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=﹣x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.
【解答】解:∵点C(1,2),BC∥y轴,AC∥x轴,
∴当x=1时,y=﹣1+6=5,
当y=2时,﹣x+6=2,解得x=4,
∴点A、B的坐标分别为A(4,2),B(1,5),
根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,
设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,
则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,
∵1≤x≤4,
∴当x=3时,k值最大,
此时交点坐标为(3,3),
因此,k的取值范围是2≤k≤9.
故选:A.
【点评】本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.
11.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,P A∥x轴,下列说法正确的是()
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,
则S△ABP=16
A.①③B.②③C.②④D.③④
【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.
【解答】解:∵点P是动点,
∴BP与AP不一定相等,
∴△BOP与△AOP不一定全等,故①不正确;
设P(m,n),
∴BP∥y轴,
∴B(m,),
∴BP=|﹣n|,
∴S△BOP=|﹣n|×m=|12﹣mn|
∵P A∥x轴,
∴A(,n),
∴AP=|﹣m|,
∴S△AOP=|﹣m|×n=|12﹣mn|,
∴S△AOP=S△BOP,故②正确;
如图,过点P作PF⊥OA于F,PE⊥OB于E,
∴S△AOP=OA×PF,S△BOP=OB×PE,
∵S△AOP=S△BOP,
∴OB×PE=OA×PF,
∵OA=OB,
∴PE=PF,
∵PE⊥OB,PF⊥OA,
∴OP是∠AOB的平分线,故③正确;
如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,
∴四边形OMPN是矩形,
∵点A,B在双曲线y=上,
∴S△AMO=S△BNO=6,
∵S△BOP=4,
∴S△PMO=S△PNO=2,
∴S矩形OMPN=4,
∴mn=4,
∴m=,
∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,
∴S△APB=AP×BP=×2|n|×=8,故④错误;
∴正确的有②③,
故选:B.
【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.
二.填空题(共10小题)
12.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.
【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.
【解答】解:由题意可得:sh=3×2×1,
则s=.
故答案为:s=.
【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.13.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图
象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.
【分析】要求出|P2007Q2007|的值,就要先求|Qy2007﹣Py2007|的值,因为纵坐标分别是1,3,
5 …,共2007个连续奇数,其中第2007个奇数是2×2007﹣1=4013,所以P2007的坐
标是(Px2007,4013),那么可根据P点都在反比例函数y=上,可求出此时Px2007的值,那么就能得出P2007的坐标,然后将P2007的横坐标代入y=中即可求出Qy2007的值.那么|P2007Q2007|=|Qy2007﹣Py2007|,由此可得出结果.
【解答】解:由题意可知:P2007的坐标是(Px2007,4013),
又∵P2007在y=上,
∴Px2007=.
而Qx2007(即Px2007)在y=上,所以Qy2007===,
∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.
故答案为:.
【点评】本题的关键是找出P点纵坐标的规律,以这个规律为基础求出P2007的横坐标,进而求出Q2007的值,从而可得出所求的结果.
14.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y
时之间的函数解析式为y=.
【分析】根据速度=路程÷时间,即可得出y与x的函数关系式.
【解答】解:∵速度=路程÷时间,
∴y=
故答案为:y=.
【点评】本题考查了根据实际问题抽象反比例函数关系式,解答本题的关键是掌握:速度=路程÷时间.
15.在温度不变的情况下,通过对气缸顶部活塞的加压,测出每一次加压后,缸内气体体积x(mL)和气体对汽缸壁所产生的压强y(kPa)的值,如下表,则可以反应y与x之间的函数关系的式子是y=.
【分析】利用表格中数据得出函数关系,进而求出即可.
【解答】解:由表格数据可得:100×60=80×75=60×100= (6000)
故此函数是反比例函数,设解析式为:y=,
则xy=k=6000,
故y与x之间的关系的式子是y=,
故答案为:y=.
【点评】此题主要考查了根据实际问题列反比例函数关系式,得出正确的函数关系是解题关键.
16.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为4.
【分析】设OM的长度为a,利用反比例函数解析式表示出AM的长度,再求出OC的长度,然后利用三角形的面积公式列式计算恰好只剩下k,然后计算即可得解.
【解答】解:设OM=a,
∵点A在反比例函数y=,
∴AM=,
∵OM=MN=NC,
∴OC=3a,
∴S△AOC=•OC•AM=×3a×=k=6,
解得k=4.
故答案为:4.
【点评】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM的长度表示出AM、OC的长度,相乘恰好只剩下k是解题的关键,本题设计巧妙,是不错的好题.
17.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为(,0);
若=2,则k=12.
【分析】根据题意得到直线BC的解析式,令y=0,得到点C的坐标;根据直线AO和直线BC的解析式与双曲线y=联立求得A,B的坐标,再由已知条件=2,从而求出k 值.
【解答】解:∵将直线y=x向下平移个6单位后得到直线BC,
∴直线BC解析式为:y=x﹣6,
令y=0,得x﹣6=0,
∴C点坐标为(,0);
∵直线y=x与双曲线y=(x>0)交于点A,
∴A(,),
又∵直线y=x﹣6与双曲线y=(x>0)交于点B,且=2,
∴B(+,),将B的坐标代入y=中,得
(+)=k,
解得k=12.
故答案为:(,0),12.
【点评】此题考查一次函数与反比例函数的性质,联立方程求出点的坐标,同时还考查学生的计算能力.
18.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.
【分析】设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a 的值,继而得出k的值.
【解答】解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),
∵四边形ABCD是平行四边形,
∴AC与BD的中点坐标相同,
∴(,)=(,),
则x=a﹣1,y=,
代入y=,可得:k=2a﹣2a2 ①;
在Rt△AOB中,AB==,
∴BC=2AB=2,
故BC2=(0﹣a)2+(﹣2)2=(2)2,
整理得:a4+k2﹣4ka=16a2,
将①k=2a﹣2a2,代入后化简可得:a2=4,
∵a<0,
∴a=﹣2,
∴k=﹣4﹣8=﹣12.
故答案为:﹣12.
方法二:
因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)
根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,
整理得2a+ab=b+ab,
解得b=2a.
过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,
由已知易得AD=2,AH=a,DH=b=2a.
AD2=AH2+DH2,即20=a2+4a2,
得a=2.
所以D坐标是(﹣3,4)
所以|K|=12,由函数图象在第二象限,
所以k=﹣12.
【点评】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.
19.如图,在平面直角坐标系中,函数(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为.
【分析】由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式求出k=2,然后得到AC=2.设B点的横坐标是m,则AC边上的高是(m﹣1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
【解答】解:∵函数y=(x>0、常数k>0)的图象经过点A(1,2),
∴把(1,2)代入解析式得到2=,
∴k=2,
设B点的横坐标是m,
则AC边上的高是(m﹣1),
∵AC=2
∴根据三角形的面积公式得到×2•(m﹣1)=3,
∴m=4,把m=4代入y=,
∴B的纵坐标是,
∴点B的坐标是(4,).
故答案为:(4,).
【点评】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
20.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,P n,它们的横坐标依次为1,2,3,4,…,n.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积分别为S1,S2,S3,…,S n,则S1+S2+S3+…+S10的值为5.
【分析】分别把x=1、x=2、…代入反比例函数的解析式,求出y的值,根据矩形的面积公式代入,即可求出结果.
【解答】解:∵根据矩形的面积等于长乘以宽,
∴矩形的长都是1,宽依次是﹣,﹣,﹣,…﹣,
即S1+S2+S3+…+S10的值为:1×(﹣)+1×(﹣)+1×(﹣)+…+1×(﹣)
=﹣+﹣++…+﹣
=﹣
=5.
故答案为:5.
【点评】本题考查了反比例函数的应用,解此题的关键是根据求出结果得出规律,题目比较典型,但是一道容易出错的题目.
21.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标(3,).
【分析】由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m,BC边上的高是2﹣n=2﹣,根据三角形的面积公式得到关于m的方程,解方程即可求出m,然后把m的值代入y=,即可求得B的纵坐标,最后就求出点B的坐标.
【解答】解:∵函数y=(x>0常数k>0)的图象经过点A(1,2),
∴把(1,2)代入解析式得2=,
∴k=2
∵B(m,n)(m>1),
∴BC=m,当x=m时,n=,
∴BC边上的高是2﹣n=2﹣,
而S△ABC=m(2﹣)=2,
∴m=3,
∴把m=3代入y=,
∴n=,
∴点B的坐标是(3,).
故答案为:(3,).
【点评】本题主要考查了用已知坐标系中点的坐标表示图象中线段的长度及三角形的面积,解题时要注意数形结合.
三.解答题(共8小题)
22.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB 交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
【分析】(1)把点A坐标代入y=(x>0),即可求出k的值;
(2)先求出直线AB的解析式,设M(t,),N(t,t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;
(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方
程组求出M的坐标,即可得出结果.
【解答】解:(1)把点A(8,1)代入反比例函数y=(x>0)得:
k=1×8=8,y=,
∴k=8;
(2)设直线AB的解析式为:y=kx+b,
根据题意得:,
解得:k=,b=﹣3,
∴直线AB的解析式为:y=x﹣3;
设M(t,),N(t,t﹣3),
则MN=﹣t+3,
∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,
∴△BMN的面积S是t的二次函数,
∵﹣<0,
∴S有最大值,
当t=3时,△BMN的面积的最大值为;
(3)∵MA⊥AB,
∴设直线MA的解析式为:y=﹣2x+c,
把点A(8,1)代入得:c=17,
∴直线AM的解析式为:y=﹣2x+17,
解方程组得:或(舍去),
∴M的坐标为(,16),
∴t=.
【点评】本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,
解方程组才能得出结果.
23.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.
(1)求直线AB的解析式;
(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.
【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;
(2)由Rt△DEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;
(3)设F(t,﹣t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式.
【解答】解:(1)设直线AB的解析式为y=kx+b,
∵A(4,0),B(0,4),
∴,
解得:,
∴直线AB的解析式为:y=﹣x+4;
(2)∵在Rt△DEF中,∠EFD=30°,ED=2,。

相关文档
最新文档