高考物理万有引力与航天题20套(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理万有引力与航天题20套(带答案)
一、高中物理精讲专题测试万有引力与航天
1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的
Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为
M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离
为r 时,地球与卫星组成的系统的引力势能为p GMm
E r
=-(取无穷远处的引力势能为
零),忽略地球自转和喷气后飞船质量的変化,问:
(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?
(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度
3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引
力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GM
R
【解析】 【分析】
(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;
(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】
(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动
即:2
2mM v G m R R
=
则飞船的动能为2122k GMm
E mv R
=
=; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守
恒可知动能的减少量等于势能的増加量:
221211()22GMm GMm mv mv R h R
-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:
22122GM GM
v v R h R
=+
-
+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312
Mm G
mv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GM
v R
=. 【点睛】
本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.
2.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;
(2)从这个星球上发射卫星的第一宇宙速度.
【答案】(1)202v h
(2) 02v R h
【解析】
本题考查竖直上抛运动和星球第一宇宙速度的计算.
(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则2
02v g h ='
解得,该星球表面的重力加速度20
2v g h
'=
(2) 卫星贴近星球表面运行,则2
v mg m R
'=
解得:星球上发射卫星的第一宇宙速度0
2R v g R v h
=
='
3.地球同步卫星,在通讯、导航等方面起到重要作用。
已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;
(2)同步卫星距离地面的高度h 。
【答案】(1) (2)
【解析】
【详解】
(1)地球表面的物体受到的重力等于万有引力,即:mg=G
解得地球质量为:M=;
(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:
解得:;
【点睛】
本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.
4.某双星系统中两个星体A、B 的质量都是m,且A、B 相距L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论
值T0,且 k (),于是有人猜测这可能是受到了一颗未发现的星体C 的影响,并认为C 位于双星A、B 的连线中点.求:
(1)两个星体 A、B组成的双星系统周期理论值;
(2)星体C的质量.
【答案】(1);(2)
【解析】
【详解】
(1)两星的角速度相同,根据万有引力充当向心力知:
可得:
两星绕连线的中点转动,则
解得:
(2)因为C的存在,双星的向心力由两个力的合力提供,则
再结合:= k
可解得:
故本题答案是:(1);(2)
【点睛】
本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.
5.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .
(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.
【答案】(1) 2r T π;(2) 23224r T R π;23
2
4r
T R
π【解析】 【详解】
(1)嫦娥三号做匀速圆周运动线速度:
2r
v r T
πω==
(2)由重力等于万有引力:
2
GMm
mg R =
对于嫦娥三号由万有引力等于向心力:
222
4GMm m r
r T π=
联立可得:
23224r g T R
π=
(3)第一宇宙速度为沿月表运动的速度:
2
2
GMm mv mg R R
== 可得月球的第一宇宙速度:
v ==
6.我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.
(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度0v 竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量
M 月
【答案】(2)20
2v r Gt . 【解析】 【详解】
(1)设地球的质量为M ,月球的质量为M 月,地球表面的物体质量为m ,月球绕地球运动的轨道半径R ',根据万有引力定律提供向心力可得:
2
22()MM G
M R R T
π=''月月
2Mm
mg G
R
= 解得:
R '= (2)设月球表面处的重力加速度为g ',根据题意得:
02
g t v '=
02
GM m g r
m '=
月 解得:
2
02v r M Gt
=月
7.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 。
【答案】(1) 2022hv g x = (2) 22022hv R M Gx = (3) v =【解析】(1)由平抛运动规律得:水平方向0x v t = 竖直方向212
h g t =
' 解得: 2
02
2hv g x '=
(2)星球表面上质量为m 的物体受到万有引力近似等于它的重力,即
2
GMm
mg R
=' 得: 2
g R M G
='
代入数据解得: 22
022hv R M Gx =
(3)2
v mg m R
'=;解得v =
代入数据得: v =
点睛:平抛运动与万有引力联系的桥梁是重力加速度g .运用重力等于万有引力,得到g=GM/R 2,这个式子常常称为黄金代换式,是求解天体质量常用的方法,是卡文迪许测量地球质量的原理.
8.宇航员乘坐宇宙飞船靠近某星球,首先在距离该星球球心r 的圆轨道上观察星球表面,他发现宇宙飞船无动力绕星球的周期为T ;安全降落到星球表面后,他做了一个实验:如图所示,在倾角θ=30º的斜面上,以一定的初速度v 0沿水平方向抛出一个小物体,测得落点与抛出点间的距离为L ,已知引力常量为G 。
求: (1)该星球的质量M ; (2)该星球的半径R 。
【答案】
【解析】(1)在半径为r 的圆轨道运动时,对宇宙飞船,根据向心力公式有
解得:
(2)设星球表面的加速度为g ,平抛时间为t ,有:
解得:
对星球表面物体有:
解得:。
点睛:此题是万有引力定律和平抛运动的结合题目,解题的关键是通过平抛运动问题求解星球表面的重力加速度,然后结合万有引力求解.
9.航天专家叶建培透露,中国将在2020年发射火星探测器,次年登陆火星.中国火星探测系统由环绕器和着陆巡视器组成.环绕器环绕火星的运动可看作匀速圆周运动,它距火星表面的高度为h ,火星半径为R ,引力常量为G .
(1)着陆巡视器的主要功能为实现在火星表面开展巡视和科学探索.着陆巡视器第一次落到火星时以v 0的速度竖直弹起后经过t 0时间再次落回火星表面.求火星的密度. (2)“环绕器”绕火星运动的周期T . 【答案】(1)0032v RGt π(20
()2()2R h t R h R v π++【解析】
(1)根据竖直上抛运动的基本规律可知,火星表面重力加速度
00
0022
v v g t t =
=;
根据火星表面万有引力等于重力得2
'
'Mm G
m g R =②, 火星密度
343
M M V R
ρπ=
=③,由①②③解得0032v RGt ρπ=; (2)根据万有引力提供向心力公式得:2
2
24G ()()Mm m R h R h T
π=++
解得:2T ==
10.已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,不考虑地球自转的影响.
(1)求卫星环绕地球运行的第一宇宙速度v 1;
(2)若卫星绕地球做匀速圆周运动且运行周期为T ,求卫星运行半径r ;
【答案】(1
2
)r 【解析】
试题分析:(1)地表的物体受到的万有引力与物体的重力近似相等即:2
GMm
mg R
= 若发射成卫星在地表运动则卫星的重力提供向心力即:2
v mg m R
=
解得:v =
(2)由卫星所需的向心力由万有引力提供可得2
2
24GMm m r r T
=π 又2
GMm
mg R
=
解得:r 考点:万有引力定律的应用
名师点睛:卫星所受的万有引力等于向心力、地面附近引力等于重力是卫星类问题必须要考虑的问题,本题根据这两个关系即可列式求解.。