舒城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
舒城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.已知函数,,若,则()
A1
B2
C3
D-1
2.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()
A.b>c>a B.b>a>c C.a>b>c D.c>b>a
3.在△ABC中,若A=2B,则a等于()
A.2bsinA B.2bcosA C.2bsinB D.2bcosB
4.数列{a n}满足a n+2=2a n+1﹣a n,且a2014,a2016是函数f(x)=+6x﹣1的极值点,则log2(
a2000+a2012+a2018+a2030)的值是()
A.2B.3C.4D.5
5.设集合()
A.B.C.D.
6.命题“∃x∈R,使得x2<1”的否定是()
A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1
C.∃x∈R,使得x2≥1D.∀x∈R,都有x≤﹣1或x≥1
7.函数f(x)=ax2+bx与f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()
A .
B .
C .
D .
8. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )
A .1
B .
C .
D .
9. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实
数m 的取值范围是( )
A .(
)B .(,]
C .(
)
D .(
]
10.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )
A .0
B .1
C .2
D .3
11.在中,,那么一定是( )
ABC ∆2
2
tan sin tan sin A B B A =A
A ABC ∆A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
12.已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若
4
sin
π
21F F 、P ,则双曲线的离心率等于( )2
1
cos 21=
∠PF F A . B .
C .
D .
25
2
6
2
7二、填空题
13.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .
14.已知圆,则其圆心坐标是_________,的取值范围是________.2
2
240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
15.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .
16.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.
ABC
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的
▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
三、解答题
19.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
20.某农户建造一座占地面积为36m 2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m ,墙高为2m ,鸡舍正面的造价为40元/m 2,鸡舍侧面的造价为20元/m 2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y 表示成x 的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
21.
22.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
23.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C的标准方程.
(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.
24.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.
舒城县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】g(1)=a﹣1,
若f[g(1)]=1,
则f(a﹣1)=1,
即5|a﹣1|=1,则|a﹣1|=0,
解得a=1
2.【答案】A
【解析】解:∵a=0.50.5,c=0.50.2,
∴0<a<c<1,b=20.5>1,
∴b>c>a,
故选:A.
3.【答案】D
【解析】解:∵A=2B,
∴sinA=sin2B,又sin2B=2sinBcosB,
∴sinA=2sinBcosB,
根据正弦定理==2R得:
sinA=,sinB=,
代入sinA=2sinBcosB得:a=2bcosB.
故选D
4.【答案】C
【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,
∵a2014,a2016是函数f(x)=+6x﹣1的极值点,
∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.
数列{a n}中,满足a n+2=2a n+1﹣a n,
可知{a n}为等差数列,
∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,
从而log2(a2000+a2012+a2018+a2030)=log216=4.
故选:C.
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
5.【答案】B
【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,
集合B中的解集为x>,
则A∩B=(,+∞).
故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
6.【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,
故选:D.
【点评】本题主要考查含有量词的命题的否定,比较基础.
7.【答案】D
【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;
B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;
C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;
D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义
域上是减函数,D正确.
【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.
8.【答案】B
【解析】解:由约束条件作出可行域如图,
由图可知A(a,a),
化目标函数z=2x+y为y=﹣2x+z,
由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.
故选:B.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
9.【答案】A
【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),
∴函数f(x)关于x=m对称,
若φ∈(,),
则sinφ>cosφ,
则由f(sinφ)=f(cosφ),
则=m,
即m==(sinφ×+cosαφ)=sin(φ+)
当φ∈(,),则φ+∈(,),
则<sin(φ+)<,
则<m<,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
10.【答案】C
【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2.故选:C .
【点评】本题考查集合的基本运算,交集的意义,是基础题.
11.【答案】D 【解析】
试题分析:在中,,化简得
,解得ABC ∆2
2
tan sin tan sin A B B A =A A 22sin sin sin sin cos cos A B
B A A B
=A ,即,所以或,即sin sin sin cos sin cos cos cos B A
A A
B B A B
=⇒=sin 2sin 2A B =22A B =22A B π=-A B =或,所以三角形为等腰三角形或直角三角形,故选D .
2
A B π
+=
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试
sin 2sin 2A B =A B =2
A B π
+=题的一个难点,属于中档试题.12.【答案】C 【解析】
试题分析:设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,,,且不妨设
1a 2a c 2m PF =1n PF =2,由,得,,又,由余弦定理可知:n m >12a n m =+22a n m =-21a a m +=21a a n -=2
1
cos 21=
∠PF F ∴,,,设双曲线的离心率为,则
,解mn n m c -+=22242
221234a a c +=∴432
221=+∴c a c a 432
2122=+e
)(得.故答案选C .
2
6
=e 考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径
P 、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示
1PF 2PF 21,a a ,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题2
1cos 21=
∠PF F 21,a a 2
c
在选择填空中以考查定义和几何性质为主.
二、填空题
13.【答案】 .
【解析】解:由题意,函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数满足条件.
∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,
∴a 取1时,b 可取2,3,4,5,6;a 取2时,b 可取4,5,6;a 取3时,b 可取6,共9种∵(a ,b )的取值共36种情况∴所求概率为=
.
故答案为:
.
14.【答案】,.
(1,2)-(,5)-∞【解析】将圆的一般方程化为标准方程,,∴圆心坐标,2
2
(1)(2)5x y m -++=-(1,2)-而,∴的范围是,故填:,.505m m ->⇒<m (,5)-∞(1,2)-(,5)-∞15.【答案】 30° .
【解析】解:取AD 的中点G ,连接EG ,GF 则EG DC=2,GF
AB=1,
故∠GEF 即为EF 与CD 所成的角.
又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.故答案为:30°
【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
16.
【解析】
17.【答案】必要而不充分
【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
18.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,
所以a1=1,a3=4.
设等比数列{a n}的公比为q,则,所以q=2.
则.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.
三、解答题
19.【答案】
【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1
f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,
由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题
因此,1≤m<2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
20.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
21.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P(X=0)=×()3=;
P(X=1)=×()2×=;
P(X=2)=×()×()2=;
P(X=3)=×()3=,
∴X的分布列为:
X0123
P
即E(X)=0×=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力
22.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
23.【答案】
【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).
∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.
∴,2a=4,解得a=2,c=1.
∴b2=a2﹣c2=3.
∴椭圆C的标准方程为.
(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x(k≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,同理可得|OQ|2=,
∴=+=为定值.
当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.
因此=为定值.
(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.
OP⊥OQ不一定成立.下面给出证明.
证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件
.
当直线OP或OQ的斜率都存在时,
设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,
同理可得|OQ|2=,
∴=+=.
化为(kk′)2=1,
∴kk′=±1.
∴OP⊥OQ或kk′=1.
因此OP⊥OQ不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
24.【答案】
【解析】解:若p为真,则△=4﹣4m<0,即m>1 …
若q为真,则,即m≤﹣2 …
∵p∧q为假命题,p∨q为真命题,则p,q一真一假
若p真q假,则,解得:m>1 …
若p假q真,则,解得:m≤﹣2 …
综上所述:m≤﹣2,或m>1 …。