基于 DSP 的 SVG 无功补偿装置研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:无功功率补偿,静止无功功率发生器(SVG), 大学硕士学位论文
Research on SVG Reactive Power Compensator Based on DSP
ABSTRACT
In the design and operation in the field of AC power, reactive power is an important factor to consider; at the same time in the field of electrical technology it also plays a very important role. Along with the rapid development of power industry, our country has gradually formed a w ide range of high voltage power transmission network, at the same time the requirement of reactive power of power grid is more strict. Reactive power for power generation, transmission and distribution is extremely important, the normal operation of the reactive power on the system load is equally very important. In this paper, the reactive power generation and physical meaning, and the two kinds of reactive power theory and the conventional reactive power theory and instantaneous reactive power theory are analyzed. Through the research on the principle of SVG, the basic work of the main circuit topology and the current voltage characteristics, focusing on the real- time detection method of reactive current calculation method and direct current control strategy is studied. The model of MATLAB/Simulink to build the simulation for SVG system, and the different nature load simulation experiment were carried out to verify the correctness of the theory. Based on the TMS320F2812 chip of TI Company as a core, the hardware and software design of static var generator parts are finished. The hardware part mainly includes the three-phase power supply and load, the main circuit, the signal detection circuit and the control circuit; The software includes the main program initialization module, protection module, A/D sampling module, voltage zero crossing detection module, dq transform and inverse transform module, digital PI controller module and PWM Modulation method. Finally, the experiment verifies the theory and simulation of SVG. KEY WORDS : Reactive Power Compensation, Static Var Generator, Reactive Current Detection, Direct Current Control, DSP
北方工业大学硕士学位论文
基于 DSP 的 SVG 无功补偿装置研究
摘 要
在交流电力领域的设计与运行中,无功功率是需要考虑的一个重要因素, 因其在电气技术 领域里发挥着非常重要的作用。伴随着电力工业的飞速发展,我国已经逐步形成了大范围的高 压输电网络,对电网当中的无功功率要求也更加严格。无功功率对发电、输电和配电三方都是 极其重要的,对于电力系统当中负载的正常运行也是十分重要的。 本文对无功功率的产生以及物理意义进行了阐述,并对两种无功功率理论进行了分析,一 种是传统意义的无功功率理论,另一种是瞬时无功功率理论。通过对 SVG 基本工作原理、主 电路拓扑结构以及电压电流特性的研究, 重点对系统无功电流的检测方法 ip - iq 运算方法和电流 直接控制策略进行了研究, 并依此为理论依据, 使用 MATLAB/Simulink 搭建了 SVG 系统的仿 真模型,并针对不同性质的负载进行了仿真实验,验证了理论以及所选控制策略的科学性。选 择 Texas Instruments 公司的 TMS320F2812 控制芯片为设计核心,设计了静止无功功率发生器 的硬件部分与软件部分。其中硬件部分主要包括三相电源及负载、主电路、信号检测调理电路 以及控制电路;软件部分大体分为主程序初始化模块、系统保护模块、A/D 采样模块、电压过 零检测模块、dq 变换与反变换模块、数字 PI 调节器模块和 PWM 调制方式。最后综合理论、 仿真参数、硬件电路和软件部分对 SVG 整体系统进行统一调试和实验,实验验证了 SVG 的相 关理论和仿真。
II
北方工业大学硕士学位论文
目
录
基于 DSP 的 SVG 无功补偿装置研究 .................................................................................................I 摘 要.....................................................................................................................................................I Research on SVG Reactive Power Compensator Based on DSP ......................................................... II 1 引言.................................................................................................................................................... 1 1.1 课题研究背景及意义............................................................................................................. 1 1.2 无功补偿装置发展历程......................................................................................................... 2 1.2.1 同步调相机(Synchronous Compensator) .............................................................. 2 1.2.2 并联电容器(Shunt Capacitor) ................................................................................ 2 1.2.3 静止无功补偿器(Static Var Compensator) ............................................................ 2 1.2.4 静止无功发生器(Static Var Generator) ................................................................. 3 1.3 SVG 无功补偿装置国内外研究概况 ..................................................................................... 4 1.4 本文主要研究内容................................................................................................................. 5 2 无功补偿理论基础概述.................................................................................................................... 6 2.1 无功功率的产生及物理意义................................................................................................. 6 2.1.1 无功功率的产生.......................................................................................................... 6 2.1.2 无功功率的物理意义.................................................................................................. 6 2.2 传统无功功率理论................................................................................................................. 7 2.2.1 单相正弦电路无功功率概述...................................................................................... 7 2.2.2 单相非正弦电路无功功率概述.................................................................................. 8 2.3 瞬时无功功率理论................................................................................................................. 9 2.4 本章小结............................................................................................................................... 15 3 SVG 基本原理与控制策略 .............................................................................................................. 16 3.1 SVG 基本原理 ....................................................................................................................... 16 3.1.1 SVG 的工作原理 ........................................................................................................ 16 3.1.2 SVG 的主电路结构 .................................................................................................... 16 3.1.3 SVG 的电压电流特性 ................................................................................................ 19 3.2 SVG 的无功电流实时检测方法 ........................................................................................... 20 3.2.1 p- q 运算方式 .............................................................................................................. 20 3.2.2 ip - iq 运算方式.............................................................................................................. 22 3.3 SVG 的控制方法 ................................................................................................................... 23 3.3.1 电流间接控制法........................................................................................................ 23