回龙观地初中2018-2019学年初中七年级上学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回龙观地初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•桂林)桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()
A. ﹣8℃
B. 6℃
C. 7℃
D. 8℃
2.(2分)(2015•苏州)月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A. 1.738×106 B. 1.738×107 C. 0.1738×107 D. 17.38×105
3.(2分)-5的绝对值为()
A. -5
B. 5
C.
D.
4.(2分)(2015•漳州)的相反数是()
A. B. C. -3 D. 3
5.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()
A. 7.7×109元
B. 7.7×1010元
C. 0.77×1010元
D. 0.77×1011元
6.(2分)(2015•淮安)2的相反数是()
A. B. - C. 2 D. -2
7.(2分)(2015•巴彦淖尔)﹣3的绝对值是()
A. ﹣3
B. 3
C. ﹣3﹣1
D. 3﹣1
8.(2分)(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()
A. ﹣2xy2
B. 3x2
C. 2xy3
D. 2x3
9.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()
A. 赚16元
B. 赔16元
C. 不赚不赔
D. 无法确定
10.(2分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()
A. B. C. D.
11.(2分)(2015•莆田)﹣2的相反数是()
A. B. 2 C. - D. -2
12.(2分)(2015•六盘水)下列运算结果正确的是()
A. ﹣87×(﹣83)=7221
B. ﹣2.68﹣7.42=﹣10
C. 3.77﹣7.11=﹣4.66
D. <
二、填空题
13.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ . 14.(1分)(2015•资阳)太阳半径大约是696 000千米,用科学记数法表示为________ 米.
15.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .
16.(1分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,
a3+a4,…由此推算a399+a400=________ .
17.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为 ________ .
18.(1分)(2015•重庆)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为 ________ .
三、解答题
19.(25分)根据下列条件列出方程:
(1)某数比它的大;
(2)某数比它的2倍小5;
(3)某数的一半比它的3倍大4;
(4)某数比它的平方小24;
(5)某数的40%与25的差的一半等于30.
20.(7分)小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):
星期一二三四五六日
与标准的差/m+410+420-100+230-3100150
(1)星期三小明跑了________m;
(2)他跑得最多的一天比最少的一天多跑了________m;
(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.
21.(11分)某市居民使用自来水按如下标准收费(水费按月缴纳):
户月用水量单价
不超过12 m3的部分a元∕m3
超过12 m3但不超过20 m3的部分 1.5a元∕m3
超过20 m3的部分2a元∕m3
(1)当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;
(2)设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费________元(用含a、n的整式表示);(3)当a=2时,甲、乙两用户一个月共用水40m3 ,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3 ,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
22.(9分)观察下列等式:
第1个等式:= = ×(1-);
第2个等式:= = ×(-);
第3个等式:= = ×(-);第4个等式:= = ×(-);…
请回答下列问题:
(1)按以上规律列出第5个等式:=________=________;
(2)用含n的代数式表示第n个等式:=________=________(n为正整数);
(3)求的值.
23.(4分)在一次数学社团活动中,指导老师给同学们提出了以下问题:
问题:有67张卡片叠在一起,按从上而下的顺序先把第一张拿走,把第二张放到底层,然后把第三张拿走,再把第四张放到底层,如此进行下去,直至只剩最后一张卡片.问仅剩的这张卡片是原来的第几张卡片?
由于卡片数量较多,指导老师建议同学们先对较少的张数进行尝试,以便熟悉游戏规则并发现一些规律!请你也试着在草稿纸上进行试验,填写相应结果:
(1)起初有2张卡片,按游戏规则最后剩下的卡片是原来的第________张;
(2)起初有4张卡片,按游戏规则最后剩下的卡片是原来的第________张;
(3)起初有8张卡片,按游戏规则最后剩下的卡片是原来的第________张.
(4)根据试验结果进行规律总结,直接判断若起初有64张卡片,最后剩下的卡片是原来的第________张.
回到最初的67张卡片情形,请你给出答案并简要说明理由.
24.(11分)某市居民使用自来水按如下标准收费(水费按月缴纳):
(1)当时,某用户一个月用了水,求该用户这个月应缴纳的水费;
(2)设某户月用水量为立方米,当时,则该用户应缴纳的的水费为________元(用含的整式表示);
(3)当时,甲、乙两用户一个月共用水,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水
,试求甲、乙两用户一个月共缴纳的水费(用含的整式表示)。
25.(7分)观察下列等式的规律,解答下列问题:
(1)按此规律,第④个等式为________;第个等式为________;(用含的代数式表示,为正整数)(2)按此规律,计算:
26.(8分)已知有理数a、b、c在数轴上的位置,
(1)a+b________0;a+c________0;b-c________0(用“>,<,=”填空)
(2)试化简|a+b|-2|a+c|+|b-c|.
回龙观地初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】D
【考点】有理数的减法
【解析】【解答】解:7﹣(﹣1)=7+1=8℃.
故选D.
【分析】根据“温差”=最高气温﹣最低气温计算即可.
2.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将1738000用科学记数法表示为:1.738×106.
故选:A.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
3.【答案】B
【考点】绝对值及有理数的绝对值
【解析】
【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
【解答】-5的绝对值为5,
故选:B.
【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
4.【答案】A
【考点】相反数及有理数的相反数
【解析】【解答】解:根据相反数的含义,可得
﹣的相反数是:﹣(﹣)=.
故选:A.
【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.
5.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】77亿=77 0000 0000=7.7×109,
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.【答案】D
【考点】相反数及有理数的相反数
【解析】【解答】2的相反数是2,
故选:D.
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
7.【答案】B
【考点】绝对值及有理数的绝对值
【解析】【解答】﹣3的绝对值是3,
故选B.
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
8.【答案】D
【考点】单项式
【解析】【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.
A、﹣2xy2系数是﹣2,错误;
B、3x2系数是3,错误;
C、2xy3次数是4,错误;
D、2x3符合系数是2,次数是3,正确;故选D.
【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
9.【答案】B
【考点】一元一次方程的实际应用-销售问题
【解析】【解答】设赚了25%的衣服是x元,则(1+25%)x=120,
解得x=96元,
则实际赚了24元;
设赔了25%的衣服是y元,
则(1-25%)y=120,
解得y=160元,
则赔了160-120=40元;
∵40>24;
∴赔大于赚,在这次交易中,该商人赔了40-24=16元.
故选B.
10.【答案】C
【考点】正数和负数的认识及应用,绝对值及有理数的绝对值
【解析】【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,
∴﹣0.6最接近标准,
故选:C.
【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.11.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣2的相反数是2,故选:B.
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.12.【答案】A
【考点】有理数大小比较,有理数的减法,有理数的乘法
【解析】【解答】A、原式=7221,正确;
B、原式=﹣10.1,错误;
C、原式=﹣3.34,错误;
D、﹣>﹣,错误,
故选A
【分析】原式各项计算得到结果,即可做出判断.
二、填空题
13.【答案】1161
【考点】有理数的混合运算
【解析】解:(39+)×(40+)
=1560+27+24+
=1611+
∵a是整数,1<b<2,
∴a=1611.
故答案为:1611.
【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.
14.【答案】6.96×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:696 000千米=696 000 000米=6.96×108米.
【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
15.【答案】-2
【考点】有理数大小比较
【解析】【解答】解:根据有理数比较大小的方法,可得
﹣2<﹣1<0,
所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.
故答案为:﹣2.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
16.【答案】1.6×105或160000
【考点】探索数与式的规律
【解析】【解答】解:∵;;;…
∴;
∴.
故答案为:1.6×105或160000.
【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.
17.【答案】22
【考点】探索数与式的规律
【解析】【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.
所以第n行的第1个数n(n﹣1)+1.
所以n=7时,第7行的第1个数为22.
故答案为:22.
【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.
18.【答案】6.5×107
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将65000000用科学记数法表示为:6.5×107.
故答案为:6.5×107.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
19.【答案】(1)解:设此数为x,根据题意可得:x﹣x=
(2)解:设此数为x,根据题意可得:2x﹣x=5
(3)解:设此数为x,根据题意可得:x﹣3x=4
(4)解:设此数为x,根据题意可得:x2﹣x=24
(5)解:设此数为x,根据题意可得:(40%x﹣25)=30
【考点】根据数量关系列出方程
【解析】【分析】设此数为x,根据题意将各个小题中的“某数”及“它的”换为x,然后将文字语言转化为数学语言即可。
20.【答案】(1)1900
(2)730
(3)解:[(410+420−100+230−310+0+150)+2000×7] ÷200=74(min)答:这周他跑步的时间为74分. 【考点】运用有理数的运算解决简单问题
【解析】【解答】解:(1)2000-100=1900(m);
故答案为:1900;
(2 )跑得最多的一天比最少的一天多跑了420-(-310)=730(m)
故答案为:730;
【分析】(1)以2000m为标准,超过的米数记作正数,不足的米数记作负数,故小明周三所跑的路程可以用2000加上周三不足的米数即可;
(2)从表格提供的数据来看,跑的最多的一天是周一,跑的最少的一天是周五,用表格记录的周一超过的米数将去周五不足的米数即可算出跑得最多的一天比最少的一天多跑的米数;
(3)算出表格记录的本周跑步的米数的和再加上本周每天的基数和算出本周所跑的总路程,然后根据路程除以速度等于时间,用本周所跑的总路程除以他跑步的平均速度200m/min ,即可算出他本周的运动时间。
21.【答案】(1)解:2×12+2×1.5×(20-12)+2×2×(28-20)=80元
答:该用户这个月应缴纳80元水费
(2)2an-16a
(3)解:∵甲用户缴纳的水费超过了24元
∴x>12
①12<x≤20
甲:2×12+3×(x-12)=3x-12
乙:20≤40-x<28
12×2+8×3+4×(40-x-20)=128-4x
共计:3x-12+128-40x=116-x
②20≤x≤28
甲:2×12+3×8+4(x-20)=4x-32
乙:12≤40-x≤20
2×12+3×(40-x-12)=108-3x
共计:4x-32+108-3x=x+76
③28≤x≤40
甲:2×12+3×8+4×(x-20)=4x-32
乙:0≤40-x≤12
2×(40-x)=80-2x
共计:4x-32+80-2x=2x+48
答:甲、乙两用户共缴纳的水费为
【考点】整式的加减运算,运用有理数的运算解决简单问题
【解析】【解答】解:(2)2an-16a
【分析】(1)根据表中数据可知28>20,再根据表中数据列式计算,可求出结果。
(2)根据n>20,可得出12a+8×1.5a+2a(n-20),化简即可。
(3)根据已知甲用户缴纳的水费超过了24元,可知a>12,再再分情况讨论:①12<x≤20;②20≤x≤28;
③28≤x≤40,分别用含x的代数式表示出甲和乙所付的水费,再求出它们的和即可。
22.【答案】(1);
(2);
(3)解:a1+a2+a3+a4+…+a2018= ×(1-)+ ×(-)+ ×(-)+ ×(-)+…+ = .
【考点】有理数的加减乘除混合运算,探索数与式的规律
【解析】【解答】解:(1)第5个等式:a5= ,
故答案为.
(2 )an= ,
故答案为.
【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
(2)根据以上规律,就可用含n的代数式表示出第n个代数式。
(3)根据以上的规律,可得出a1+a2+a3+a4+…+a2018= ×(1-)+ ×(-)+ ×(-)+
×(-)+…+ ,计算即可求出结果。
23.【答案】(1)2
(2)4
(3)8
(4)6
【考点】探索数与式的规律
【解析】【解答】解:(1)根据上述操作,起初有2张卡片,按游戏规则最后剩下的卡片是原来的第二张;(2)根据上述操作,先拿走了第一张,再拿走了第三张,然后拿走了第二张,最后剩下的卡片是原来的第四张;
(3)按游戏规则最后剩下的卡片是原来的第八张;
(4)根据试验结果进行规律总结,当卡片个数N=2a时,剩下的一定是第2a张,直接判断若起初有64=26张卡片,最后剩下的卡片是原来的第64张.
当N=2a+M时,剩下的这张卡片是原来那一摞卡片的第2(N-2a)张.
回到最初的67张卡片情形卡片个数N=26+3,所以剩下的这种卡片为原来的6张.
【分析】(1)根据题意可知起初有2张卡片,按游戏规则最后剩下的卡片是原来的第二张。
(2)由已知起初有4张卡片,先拿走了第一张,再拿走了第三张,然后拿走了第二张,就可得出最后剩下的卡片就是原来的第四张。
即可得出答案。
(3)根据游戏规则,结合已知条件,可得出答案。
(4)根据试验结果进行规律总结,回到最初的67张卡片情形卡片个数N=26+3,所以剩下的这种卡片为原来的6张。
24.【答案】(1)∵用户一个月用水28m3,单价a=2元,依题可得:
12×2+(20-12)×2×1.5+(28-20)×2×2,
=24+24+32,
=80(元).
答:该用户这个月应缴纳的水费为80元.
(2)∵用户一个月用水m(m>20)立方米,单价a元,依题可得:
12×a+(20-12)×1.5a+(m-20)×2a,
=12a+12a-40a+2ma,
=2ma-16a(元).
故答案为:2ma-16a.
(3)∵甲用户缴纳的水费超过了24元
∴x>12,
①当12<x≤20时,
∵a=2元,
∴甲用户缴纳的水费:2×12+(x-12)×2×1.5=3x-12(元),
∵甲乙一个月共用水40立方米,
∴乙用水:20≤40-x<28,
∴乙用户缴纳的水费:2×12+(20-12)×2×1.5+(40-x-20)×2×2=128-4x(元),
∴甲乙两用户共缴纳的水费:
3x-12+128-4x=116-x(元).
②当20<x≤28时,
∵a=2元,
∴甲用户缴纳的水费:2×12+(20-12)×2×1.5+(x-20)×2×2=4x-32(元),
∵甲乙一个月共用水40立方米,
∴乙用水:12≤40-x<20,
∴乙用户缴纳的水费:2×12+(40-x-12)×2×1.5=108-3x(元),
∴甲乙两用户共缴纳的水费:
4x-32+108-3x=x+76(元).
③当28<x≤40时,
∵a=2元,
∴甲用户缴纳的水费:2×12+(20-12)×2×1.5+(x-20)×2×2=4x-32(元),
∵甲乙一个月共用水40立方米,
∴乙用水:0≤40-x<12,
∴乙用户缴纳的水费:(40-x)×2=80-2x(元),
∴甲乙两用户共缴纳的水费:
4x-32+80-2x=2x+48(元).
答:甲乙两用户共缴纳的水费:
当12<x≤20时,缴水费(116-x)元;
当20<x≤28时,缴水费(x+76)元;
当28<x≤40时,缴水费(2x+48)元.
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据用户的用水量,由不同单价,计算即可得出答案.
(2)根据用户的用水量,由不同单价,计算即可得出答案.
(3)根据题意分情况讨论:①当12<x≤20时,②当20<x≤28时,③当28<x≤40时,代入相应的单价,计算即可得出答案.
25.【答案】(1)2×34;2×3n
(2)解:①2×31+2×32+2×33+2×34+2×35=32-3+33-32+34-33+35-34+36-35=36-3=726.②31+32+33
+···+3n=(32-3)+(33-32)+(34-33)+···+(3n+1-3n)=(32-3+33-32+34-33+···+3n+1-3n)=(3n+1-3)
【考点】探索数与式的规律
【解析】【解答】解:(1)由题意得:
第④个等式为:35-34=2×34,
第n个等式为:3n+1-3n=2×3n,
故答案为:35-34=2×34, 3n+1-3n=2×3n.
【分析】(1)由已知的等式可知,第④个等式为35-34=234;第n个等式为3n+1-3n=23n;
(2)①由(1)中的规律可将乘法运算转化为加减运算,中间的项抵消后剩下两边的项相加即可求解;
②由①的计算可将②中的各项乘以2,括号外再乘以,于是可转化为①的计算求解即可。
26.【答案】(1)<;<;>
(2)解:由(1)得,,故,,
所以+()
故答案为
【考点】数轴及有理数在数轴上的表示,有理数的加法,有理数的减法
【解析】【解答】解:(1)由数轴可得:,
所以,,
【分析】(1)根据数轴确定a,b,c的正负,即可解答。
(2)根据绝对值的性质即可解答。