萧山市二中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

萧山市二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 4213
5
3
2,4,25a b c ===,则( )
A .b a c <<
B .a b c <<
C .b c a <<
D .c a b << 2. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )
A .﹣
B .
C .﹣1
D .1
3. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞
4. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )
A .2
B .3
C .7
D .9 5. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( ) A .y=3x ﹣4 B .y=﹣3x+2 C .y=﹣4x+3 D .y=4x ﹣5 6. 若命题“p 或q ”为真,“非p ”为真,则( )
A .p 真q 真
B .p 假q 真
C .p 真q 假
D .p 假q 假
7. 设命题p :,则
p 为( )
A .
B .
C .
D .
8. 若方程C :x 2+
=1(a 是常数)则下列结论正确的是( )
A .∀a ∈R +,方程C 表示椭圆
B .∀a ∈R ﹣,方程
C 表示双曲线
C .∃a ∈R ﹣,方程C 表示椭圆
D .∃a ∈R ,方程C 表示抛物线 9. 下列各组函数为同一函数的是( )
A .f (x )=1;g (x )=
B .f (x )=x ﹣2;g (x )=
C .f (x )=|x|;g (x )=
D .f (x )=

;g (x )=
10.复数Z=
(i 为虚数单位)在复平面内对应点的坐标是( )
A .(1,3)
B .(﹣1,3)
C .(3,﹣1)
D .(2,4)
11.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )
A .1
B .2
C .3
D .4
12.已知命题p :∀x ∈R ,sinx ≤1,则¬p 为( )
A .∃x ∈R ,sinx ≥1
B .∀x ∈R ,sinx ≥1
C .∃x ∈R ,sinx >1
D .∀x ∈R ,sinx >1
二、填空题
13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
14.已知函数21,0()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x
g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.
15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,
)到直线l 的距离为 .
16.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若222
4S a b c +=+, 则sin cos()4
C B π
-+
取最大值时C = .
17.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________. 18.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
三、解答题
19.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面
积.
20.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,
2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,
(Ⅰ)求数列{b n}的通项公式;
(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.
21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.
22.已知函数
3
()
1
x
f x
x
=
+
,[]2,5
x∈.
(1)判断()
f x的单调性并且证明;
(2)求()
f x在区间[]2,5上的最大值和最小值.
23.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边7
2
c =
,且
tan tan tan 3A B A B +=-ABC ∆的面积为2
ABC S ∆=
,求a b +的值.
24.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE=3AF ,BE 与平面ABCD 所成角为60°.
(Ⅰ)求证:AC ⊥平面BDE ;
(Ⅱ)求二面角F ﹣BE ﹣D 的余弦值;
(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.
萧山市二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】A 【解析】
试题分析:222353
4,4,5a b c ===,由于4x
y =为增函数,所以a b >.应为23
y x =为增函数,所以c a >,故b a c <<. 考点:比较大小. 2. 【答案】D
【解析】解:∵a 1=3,a n ﹣a n •a n+1=1,

,得
,,a 4=3,

∴数列{a n }是以3为周期的周期数列,且a 1a 2a 3=﹣1, ∵2016=3×672,
∴A 2016 =(﹣1)672
=1.
故选:D .
3. 【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方
程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 4. 【答案】C
【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,
∴sin
+acos
=﹣
=﹣2,∴a=
,∴f (x )=sin ωx+
cos ωx=2sin (ωx+
).
再根据f ()=2sin (+
)=﹣2,可得
+
=2k π+
,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7, 则ω的可能值为7, 故选:C .
【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.
5. 【答案】B
【解析】解:∵点(1,﹣1)在曲线上,y ′=3x 2
﹣6x , ∴y ′|x=1=﹣3,即切线斜率为﹣3. ∴利用点斜式,切线方程为y+1=﹣3(x ﹣1),即y=﹣3x+2.
故选B .
【点评】考查导数的几何意义,该题比较容易.
6. 【答案】B 【解析】解:若命题“p 或q ”为真,则p 真或q 真,
若“非p ”为真,则p 为假,
∴p 假q 真, 故选:B .
【点评】本题考查了复合命题的真假的判断,是一道基础题.
7. 【答案】A
【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。

故答案为:A
8.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
9.【答案】C
【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;
B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;
C、因为,故两函数相同;
D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.
故选:C.
10.【答案】A
【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).
故选:A.
【点评】本题考查了复数的运算法则、几何意义,属于基础题.
11.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
12.【答案】C
【解析】解:根据全称命题的否定是特称命题可得,
命题p:∀x∈R,sinx≤1,的否定是∃x∈R,使得sinx>1
故选:C
【点评】本题主要考查了全称命题与特称命题的之间的关系的应用,属于基础试题
二、填空题
13.【答案】异面.
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB与CD的位置关系是异面.
故答案为:异面.
-+∞.
14.【答案】2,[1,)
【解析】
15.【答案】3.
【解析】解:直线l 的方程为ρcos θ=5,化为x=5.
点(4,
)化为

∴点到直线l 的距离d=5﹣2=3.
故答案为:3.
【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.
16.【答案】4
π 【解析】
考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1
【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及
2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为
正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式
111sin ,,(),2224abc ab C ah a b c r R
++. 17.【答案】或 【解析】
试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.
【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.
18.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
三、解答题
19.【答案】
【解析】解:(1)f(x)=•=2cos2
x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,
令﹣+2kπ≤2x+≤+2kπ,
解得﹣+kπ≤x≤+kπ,
函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],
(Ⅱ)∵f(A)=2
∴2sin(2A+)+1=2,即sin(2A+)=….
又∵0<A<π,∴A=.…
∵a=,
由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…
∵sinB=2sinC∴b=2c ②…
由①②得c2=.…
∴S△ABC=.…
20.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
21.【答案】
【解析】解:(Ⅰ)由f(﹣x)=﹣f(x)得kx2﹣2x=﹣kx2﹣2x,
∴k=0.
(Ⅱ)∵g(x)=a f(x)﹣1=a2x﹣1=(a2)x﹣1
①当a2>1,即a>1时,g(x)=(a2)x﹣1在[﹣1,2]上为增函数,∴g(x)最大值为g(2)=a4﹣1.
②当a2<1,即0<a<1时,∴g(x)=(a2)x在[﹣1,2]上为减函数,
∴g(x)最大值为.

(Ⅲ)由(Ⅱ)得g(x)在x∈[﹣1,1]上的最大值为,
∴1≤t2﹣2mt+1即t2﹣2mt≥0在[﹣1,1]上恒成立
令h (m )=﹣2mt+t 2,


所以t ∈(﹣∞,﹣2]∪{0}∪[2,+∞).
【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
22.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】
试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()
()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]
2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5
(5)2
f =.
试题解析:
在[]2,5上任取两个数12x x <,则有
12121233()()11x x f x f x x x -=
-++12123()
(1)(1)
x x x x -=
++0<, 所以()f x 在[]2,5上是增函数.
所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2
f x f ==. 考点:函数的单调性证明.
【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 23.【答案】112
. 【解析】

题解析:由tan tan 3tan tan 3A B A B +=-
可得
tan tan 31tan tan A B
A B
+=--,即tan()3A B +=-.
∴tan()3C π-=-,∴tan 3C -=-,∴tan 3C =.
∵(0,)C π∈,∴3
C π
=
.
又ABC ∆的面积为33ABC S ∆=,∴133sin 2ab C =,即1333
2ab ⨯=,∴6ab =. 又由余弦定理可得222
2cos c a b ab C =+-,∴2227()2cos 23
a b ab π=+-,
∴22227()()32a b ab a b ab =+-=+-,∴2121()4a b +=,∵0a b +>,∴112
a b +=.1 考点:解三角形问题.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题. 24.【答案】
【解析】
【分析】(I )由已知中DE ⊥平面ABCD ,ABCD 是边长为3的正方形,我们可得DE ⊥AC ,AC ⊥BD ,结合线面垂直的判定定理可得AC ⊥平面BDE ;
(Ⅱ)以D 为坐标原点,DA ,DC ,DE 方向为x ,y ,z 轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE 的法向量,代入向量夹角公式,即可求出二面角F ﹣BE ﹣D 的余弦值;
(Ⅲ)由已知中M 是线段BD 上一个动点,设M (t ,t ,0).根据AM ∥平面BEF ,则直线AM 的方向向量与平面BEF 法向量垂直,数量积为0,构造关于t 的方程,解方程,即可确定M 点的位置. 【解答】证明:(Ⅰ)因为DE ⊥平面ABCD ,所以DE ⊥AC . 因为ABCD 是正方形,所以AC ⊥BD , 从而AC ⊥平面BDE .…(4分)
解:(Ⅱ)因为DA ,DC ,DE 两两垂直,所以建立空间直角坐标系D ﹣xyz 如图所示.
因为BE 与平面ABCD 所成角为600
,即∠DBE=60°, 所以

由AD=3,可知


则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.
设平面BEF的法向量为=(x,y,z),则,即.
令,则=.
因为AC⊥平面BDE,所以为平面BDE的法向量,.
所以cos.
因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)
(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).
则.
因为AM∥平面BEF,
所以=0,即4(t﹣3)+2t=0,解得t=2.
此时,点M坐标为(2,2,0),
即当时,AM∥平面BEF.…(12分)。

相关文档
最新文档