《简单的轴对称图形》典型例题1(1)(答案)

合集下载

《生活中的轴对称》典型例题

《生活中的轴对称》典型例题

《生活中的轴对称》典型例题例1 指出下列图形中的轴对称图形例2 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例3 画出下列图形的对称轴。

例4 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.(1) (2) (3) (4)(5) (6) (7) (8)例5找出下面的轴对称图形,并说出它们各有几条对称轴.例6 下列图形中,不是轴对称图形的是( )(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例7观察中(1)~(5),它们是不是轴对称图形?有什么共同特点?例8请分别画出下图中3个图形的对称轴.例9如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?参考答案例1分析:正确理解轴对称图形概念.解:轴对称图形是(2)(3)(4)(6)(7)(8)例2 分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合.解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形.正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线.说明:对称轴是一条直线,不是线段.例3分析:依据定义可以画出,但可能是多条.解:如图例4 分析:判断两个图形是否是轴对称,关键是能否找到一条直线使这两个图形沿这条直线对折后能够重合.解:(1)和(2)每组的两个图形都是轴对称的.(3)和(4)每组的两个图形不是轴对称的.(1)的对称轴是连结两个圆心的线段的垂直平分线;(2)的对称轴就是原正方形分成两三角形时的这条对角线所在的直线.说明:对称轴是直线而非线段.例5分析:本题主要考查识别轴对称图形的能力.根据轴对称图形的概念来认真识别.但要注意.图(9)(10)这两个图也有“对称”性,但它们没有对称轴.不能把它们误认为是轴对称图形.解:根据图形可知:(1)是轴对称图形,它有3条对称轴;(2)是轴对称图形,它有5条对称轴;(3)是轴对称图形.它有4条对称轴.(4)是轴对称图形.它有1条对称轴;(5)是轴对称图形,它有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,它有1条对称轴;(8)是轴对称图形,它有1条对称轴;(9)(10)虽然有“对称”性,但都不是轴对称图形.例6 分析:在(A)中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B)和(C)中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D)中三角形的三个内角各不相等,不是等腰三角形,所以(D)不是轴对称图形.解:选(D)说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.例7分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.例8分析:找对称轴从不同角度观察,全面分析.解:(1)有6条对称轴;(2)有5条对称轴;(3)有6条对称轴.画图略.例9分析:正多边形并不都是轴对称图形.但是,是轴对称图形的正多边形的对称轴的条数与其边数有着密切的联系,请仔细找出它们之间的规律.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形就有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形就有29条对称轴,正五十边形就有50条对称轴,正一百边形就有100条对称轴.。

鲁教版(五四制)七年级数学上册2.3简单的轴对称图形

鲁教版(五四制)七年级数学上册2.3简单的轴对称图形
1.等腰三角形一个底角为75°,它的另外两个角
为___7_5_°__,__3_0_°___
2.等腰三角形一个角为40°,它的另外两个角为 ___7_0_°__,_7_0_°__或__4_0_°__,_1_0_0_°__
3.等腰三角形一个角为120°,它的另外两个角为 _____3_0_°__,_3_0_°_____
动脑筋
同步练习
1.填空:在△ABC中,AB=AC, D 在BC上, (1)如果AD⊥BC,那么∠BAD = ∠_C_A_D__ ,
BD = _C_D__. (2)如果∠BAD= ∠CAD,那么AD⊥_B_C_, BD = _C_D__. (3)如果BD=CD,那么∠BAD =∠_C_A_D__, AD⊥_B_C_,
等边三角形
1、轴对称图形。 2、三线合一(等腰三角形顶角平分 线、底边上的中线、底边上的高互相 重合)
3、等边对等角(等腰三角形的两 底角相等)
1、轴对称图形。
2、三组“三线合一”(每个角的平分 线都与它对边上的中线及高互相重合)
3、每个内角都等于60o
A 性质1.等腰三角形两个底角相等,简写成“等
C D
观察发现
2、等腰三角形顶角平分线所在的直线 是它的对称轴吗?
A 等腰三角形顶角平分线所在的直 线是它的对称轴.
重合的线段 重合的角
AB=AC ∠B =∠C B BD=CD ∠BAD=∠CAD AD=AD ∠ADB=∠ADC
C D
观察发现
3、等腰三角形底边上的中线所在的直 线是它的对称轴吗?底边上的高所在的直线
∠ADB =∠ _A_D_C__=_9_0_°
A
B
C
D
2.判断下列语句是否正确.

《简单的轴对称图形》典型例题1(1)

《简单的轴对称图形》典型例题1(1)
略解:(1) (2)另外两内角分别为: (3)
说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。
例4 分析:因为 是等腰三角形,因此, ,所以只要求出 的度数,就可以求出 的度数. 根据三角形内角和定理,又可求出 的度数.
解:∵ 和 是邻补角,又 ,

∵ ,∴ (等边对等角)

说明:在等腰三角形中,两个底角相等,内角和为 ,所以只要知道等腰三角形的一个内角,就很容易求出它的另外两个角.
例2分析:本题依据线段垂直平分线的性质可以得到.
解: 是AB的垂直平分线

∴ 厘米Βιβλιοθήκη 是等腰三角形∴ 厘米∴ 的周长是 厘米
例3分析:注意到题中所给的条件AB=AC,得到三角形为等腰三角形。利用等腰三角形的性质对问题(1)可得 ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为 可得此等腰三角形的顶角只能为 这一种情况。
《简单的轴对称图形》典型例题
例1想一想等边三角形的三个内角各是多少度,它有几条对称轴。
例2如图,已知 是等腰三角形, 都是腰,DE是AB的垂直平分线, 厘米, 厘米,求 的周长.
例3
例4如图,已知:在 中, , ,求 各内角的度数.
例5如下图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE.
例6分析:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.等腰三角形的“三线合一”是等腰三角形的重要性质.
解:因等腰三角形的“三线合一”,
所以AD既是△ABC的顶角平分线又是底边上的高,
∴ ∠ADC=90°.
∴ ∠A=180°-30°-30°=120°,

(完整版)八年级第十三章《轴对称》知识点及典型例题

(完整版)八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点.4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然.(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,—y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

人教版八年级上册数学-13《轴对称》知识点及典型例题

人教版八年级上册数学-13《轴对称》知识点及典型例题

⼈教版⼋年级上册数学-13《轴对称》知识点及典型例题第⼗三章《轴对称》⼀、知识点归纳(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。

连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。

5.画⼀图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)所以线段的垂直平分线能够看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹⾓平分线对称点P(x,y)关于第⼀、三象限坐标轴夹⾓平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第⼆、四象限坐标轴夹⾓平分线y=-x对称的点的坐标是(-y,-x)(六)关于平⾏于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三⾓形1、等腰三⾓形性质:性质1:等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)性质2:等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼相互重合。

(完整版)七年级数学简单的轴对称图形练习题

(完整版)七年级数学简单的轴对称图形练习题

1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。

例题1:下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 梯形。

D. 正方形。

解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。

2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。

3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。

4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。

答案为D。

例题2:正六边形的对称轴有()条。

A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。

2. 所以正六边形的对称轴有6条。

答案为B。

二、线段垂直平分线性质的例题。

例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。

2. 已知△BCE的周长为14,即BE + EC+BC = 14。

3. 又因为AE = BE,所以AC+BC=14。

4. 已知BC = 6,所以AC = 14 - 6=8。

5. 因为AB = AC,所以AB = 8。

答案为C。

例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。

B. l平分但不垂直AB。

C. l垂直且平分AB。

D. l与AB相交但不一定垂直平分。

解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。

2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

简单的轴对称图形(等腰、等边)

简单的轴对称图形(等腰、等边)

AB CD 简单的轴对称图形---(等腰三角形,等边三角形)一、选择题 济宁附中李涛1、 等腰三角形的一个角为40°,则它的底角为( )A. 100°B. 40°C. 70°D. 70°或40°2、 等腰三角形的一个角为100°,则它的底角为( )A. 100°B. 40°C. 70°D. 100°或40°3、如图,在等腰三角形ABC 中,顶角∠A=36°.若BD 平分∠ABC ,则图中等腰三角形有( ) A . 1个 B . 2个 C . 3个 D . 4个4、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A . 5 B . 6 C . 7 D . 85、如图所示.△ABC 中,∠B=∠C ,D 在BC 上,∠BAD=50°,AE=AD ,则∠EDC 的度数为( )A . 15°B . 25°C . 30°D . 50°6、如图,△ABC 的面积为1cm2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A . 0.4 cm2B . 0.5 cm2C . 0.6 cm2D . 0.7 cm2二、选择题: 1、(1)已知等腰三角形的一边长等于5,一边长等于11,则它的周长为__________。

(2)已知等腰三角形一边长等于5,一边长等于7,则它的周长为__________。

2、如右图,∠A=200,∠C=400,∠ADB=800,则∠DBC=_ _,图中等腰三角形有_ 个。

3、如下图△ABC 中 AB=AC ,D 是BC 的中点,则AD BC,若∠B=35°,则∠CAD= ,∠BAC= 。

5.3 简单的轴对称图形(1)

5.3 简单的轴对称图形(1)

20°
.
数学
返回目录
名师点拨:
(1)若题目中没有明确顶角或底角的度数,做题时要注意分情况
进行讨论计算;
(2)等腰三角形的顶角可以是直角、钝角或锐角,而底角只能是
锐角.
数学
返回目录
知识点三 等边三角形的定义和性质
1.定义:三边都相等的三角形是 等边三角形 ,也叫正三角形.
2.性质:等边三角形是特殊的等腰三角形,它除了具有等腰三角
等腰三角形的 顶角 ,腰与底边的夹角叫做等腰三角形的
底角
.
2.性质:①等腰三角形是轴对称图形,对称轴是它的顶角平分
线所在的直线;②等腰三角形顶角的平分线、底边上的高、
底边上的中线重合(简称“ 三线合一 ”).
数学
返回目录
▶▶ 典型例题
【例1】如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点
腰三角形的个数是
3
.
数学
返回目录
三、解答题
1.如图,在△ABC中,已知AB=AC,AD为∠BAC的平分线,且
∠2=36°,BD=2,求∠BAC,∠B的度数及BC的长.
解:因为AD为∠BAC的平分线,∠2=36°,
所以∠1=∠2=36°,∠BAC=2∠2=72°.
又因为AB=AC,所以AD⊥BC,BD=CD,
解:因为AB=AC,AD是∠BAC的平分线,
所以BD=CD.
因为△ABC的周长为16,
1
所以AB+BD= ×16=8.
2
因为△ABD的周长为12,所以AD=12-8=4.
数学
返回目录
6.如图,A,B是直线l同侧的两点.请在直线l上找一点C,使得
AC+CB最小,并说明理由.

轴对称图形典型例题

轴对称图形典型例题

轴对称图形典型例题例1 如下图,已知,PB丄AB, PC丄AC,且PB = PC, D是AP上一点.证明:•••PB丄AB,PC丄AC,且PB= PC,••• / PAB = Z PAC (到角两边距离相等的点在这个角平分线上),/ APB + Z PAB= 90°,/ APC +Z PAC= 90°,/ APB = / APC,在厶PDB和厶PDC中,PB =PC,VAPB =NAPC,.、PD =PD•••△PDB ◎△ PDC (SAS),/ BDP = / CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD中,BC > BA, AD = CD , BD平分/ ABC .求证:/A +/ C = 180°.证法一:过D作DE丄AB交BA的延长线于E, DF丄BC于F,BD 平分/ ABC ,• DE = DF ,在Rt△ EAD 和Rt△ FCD 中,;AD = DC,QE =DF.(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明. )Rt△ EAD也Rt△ FCD (HL ),•••/ C=Z EAD ,/ EAD +Z BAD = 180°,•/ A+Z C = 180°.证法二:如下图(2),在BC上截取BE= AB,连结DE,证明△ ABD◎△ EBD可得.(2)证法三:如下图(3),延长BA到E,使BE= BC,连结ED,以下同证法(3)注本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD ABC的中线,且DE平分Z BDA交AB于E, DF平分Z ADC 交AC于F .证法一:在DA截取DN = DB,连结NE、NF,贝U DN = DC,在△ BDE和厶NDE中,BD = ND,奁BDE =ZNDE ,DE = DE.(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)•••△BDE ◎△ NDE (SAS),• BE= NE (全等三角形对应边相等),同理可证:CF = NF,在厶EFN中,EN + FN > EF (三角形两边之和大于第三边),BE+ CF>EF .证法二:延长ED至M,使DM = ED,连结CM、MF , 在厶BDE和厶CDM中,BD 二CD ,.BDE CDM ,DE =DM .(从另一个角度作辅助线)•••△BDE ◎△ NDE (SAS),••• CM = BE (全等三角形对应边相等),又•••/ BDE= / ADE,/ ADF = Z CDF ,而/ BDE + / ADE + / ADF + / CDF = 180°,/ ADE+ / ADF = 90°,即/ EDF = 90°,/ FDM =/ EDF = 90°,在厶EDF和厶MDF中,ED 二MD ,EDF = MDF,DF 二DF.•△ EDF◎△ MDF (SAS),•EF = MF (全等三角形对应边相等),在厶CMF中,CF + CM >EF,BE+ CF >EF.注本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P、Q是厶ABC边BC上的两点,且BP = PQ= QC = AP = AQ.求:/ BAC的度数.解:••• AP= PQ = AQ (已知),••• / APQ=Z AQP = Z FAQ = 60°(等边三角形三个角都是60°),••• AP= BP (已知),(注意观察图形和条件)•/ PBA =Z PAB (等边对等角),/ APQ=Z PBA +Z FAB = 60°(三角形的一个外角等于和它不相邻的两个内角和),•/ PBA =Z PAB= 30°,同理/ QAC = 30°,/ BAC = Z BAP +Z FAQ + Z QAC = 30° + 60°+ 30°= 120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ ABC中,AB= AC, E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF = DE ,连结FC .求证:/ F = / A.证明:••• AB = AC,•/ B=Z ACB (等边对等角),EB= ED ,/ B=Z EDB ,•/ ACB = Z EDB (等量代换),•ED // AC (同位角相等,两直线平行),在厶BDE 和厶AED 中,BE = AE=ED ,连结AD 可得,/ EAD =/ EDA,/ EBD = / EDB ,/ EDA + Z EDB = 90 ° ,即卩AD 丄BC,/ EDA +Z EDB = 90°,即卩AD 丄BC,(用什么定理判定三角形全等的?)•D为BC的中点,•△ BDE◎△ CDF ,•/ BED = Z F,而/ BED = Z A,•/ F=Z A.例6 已知,如下图,△ ABC中,AB = AC, E在CA的延长线上,/ AEF = Z AFE . 求证:EF丄BC .证法一:作BC边上的高AD, D为垂足,EAB= AC, AD丄BC,/ BAD = Z CAD(等腰三角形三线合一),又•••/ BAC=Z E+Z AFE,/ AEF = Z AFE ,/ CAD = Z E,••• AD // EF ,AD 丄BC,EF 丄BC.证法二:过A作AG丄EF于G,Z AEF = Z AFE , AG = AG , Z AGE = Z AGF = 90•△AGE^A AGF (ASA ),AB= AC , • Z B =Z C ,又Z EAF = Z B+Z C,(请对比多种证法的优劣)•Z EAG+Z GAF = Z B +Z C ,Z EAG=Z C , • AG // BC , AG 丄EF , EF 丄BC.证法三:过E作EH // BC交BA的延长线于H ,AB= AC , • Z B =Z C ,•Z H = Z B=Z C=Z AEH ,Z AEF = Z AFE , Z H+Z AFE + Z FEH = 180° ,Z H + Z AEH + Z AEF + Z AFE = 180 ° ,•Z AEF + Z AEH = 90°,即Z FEH = 90° ,EF 丄EH ,又EH // BC,EF 丄BC.AB= AC, • Z B =Z C ,1Z B= 2 (180 °-Z BAC),Z AEF = Z AFE ,Z AFE = 2 (180 ° -Z EAF ),证明:连结BC , ••• AB = AC (已知), •Z ABC = Z ACB (等边对等角),又•••点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上) ,而两点确定一条直线,• AD 就是线段BC 的垂直平分线,• PB = PC (线段垂直平分线上的点到线段两个端点的距离相等),• Z PBC = Z PCB (等边对等角),(线段垂直平分线的性质) •Z ABC -Z PBC = Z ACB -Z PCB (等式性质),即Z ABP = Z ACP .注 本题若用三角形全等, 至少需要证两次,现用线段垂直平分线的判定和性质, 就显得比较简洁.例8 如下图,AB = AC , DE 垂直平分 AB 交AB 于D ,交AC 于丘,若厶ABC 的周长为28, BC = 8,求厶BCE 的周长./ BFK = Z AFE ,1/ BFK = 2 ( 180° -Z EAF ),1 1Z B +Z BFK = 2 (180。

轴对称图形典型例题

轴对称图形典型例题

轴对称图形轴对称图形典型例题例1 如下图,已知,PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠PAB =∠PAC (到角两边距离相等的点在这个角平分线上),∵ ∠APB +∠PAB =90°,∠APC +∠PAC =90°,∴ ∠APB =∠APC ,在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠= PD PD APC APB PC PB .,,∴ △PDB ≌△PDC (SAS ),∴ ∠BDP =∠CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.(1)证法一:过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F ,∵ BD 平分∠ABC ,∴ DE =DF ,在Rt △EAD 和Rt △FCD 中,⎩⎨⎧==.DF DE DC AD ,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴ Rt △EAD ≌Rt △FCD (HL ),∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如下图(2),在BC 上截取BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.(2)证法三:如下图(3),延长BA 到E ,使BE =BC ,连结ED ,以下同证法二.(3)注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .证法一:在DA 截取DN =DB ,连结NE 、NF ,则DN =DC ,在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=.DE DE NDE BDE ND BD ,,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE ≌△NDE (SAS ),∴ BE =NE (全等三角形对应边相等),同理可证:CF =NF ,在△EFN 中,EN +FN >EF (三角形两边之和大于第三边),∴ BE +CF >EF .证法二:延长ED 至M ,使DM =ED ,连结CM 、MF ,在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=.DM DE CDM BDE CD BD ,,(从另一个角度作辅助线)∴ △BDE ≌△NDE (SAS ),∴ CM =BE (全等三角形对应边相等),又∵ ∠BDE =∠A DE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°,∴ ∠ADE +∠ADF =90°,即∠EDF =90°,∴ ∠FDM =∠EDF =90°,在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=.DF DF MDF EDF MD ED ,,∴ △EDF ≌△MDF (SAS ),∴ EF =MF (全等三角形对应边相等),在△CMF 中,CF +CM >EF ,∴ BE +CF >EF .注 本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P 、Q 是△ABC 边BC 上的两点,且BP =PQ =QC =AP =AQ .求:∠BAC 的度数.解:∵ AP =PQ =AQ (已知),∴∠APQ=∠AQP=∠PAQ=60°(等边三角形三个角都是60°),∵AP=BP(已知),(注意观察图形和条件)∴∠PBA=∠PAB(等边对等角),∴∠APQ=∠PBA+∠PAB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴∠PBA=∠PAB=30°,同理∠QAC=30°,∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6 已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∴ ∠BAD =∠CAD(等腰三角形三线合一),又∵ ∠BAC =∠E +∠AFE ,∠AEF =∠AFE ,∴ ∠CAD =∠E ,∴ AD ∥EF ,∵ AD ⊥BC ,∴ EF ⊥BC .证法二:过A 作AG ⊥EF 于G ,∵ ∠AEF =∠AFE ,AG =AG ,∠AGE =∠AGF =90°,∴ △AGE ≌△AGF (ASA ),∵ AB =AC ,∴ ∠B =∠C ,又∠EAF =∠B +∠C ,(请对比多种证法的优劣)∴ ∠EAG +∠GAF =∠B +∠C ,∴ ∠EAG =∠C ,∴ AG ∥BC ,∵ AG ⊥EF ,∴ EF ⊥BC .证法三:过E 作EH ∥BC 交BA 的延长线于H ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠H =∠B =∠C =∠AEH ,∵ ∠AEF =∠AFE ,∠H +∠AFE +∠FEH =180°,∴ ∠H +∠AEH +∠AEF +∠AFE =180°,∴ ∠AEF +∠AEH =90°,即∠FEH =90°,∴ EF ⊥EH ,又EH ∥BC ,∴ EF ⊥BC .证法四:延长EF 交BC 于K ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠B =21(180°-∠BAC ),∵ ∠AEF =∠AFE ,∴ ∠AFE =21(180°-∠EAF ),∴ ∠BFK =21(180°-∠EAF ),∴ ∠B +∠BFK =21(180°-∠BAC )+21(180°-∠EAF )∵ =21[360°-(∠EAF +∠BAC )],∴ ∠EAF +∠BAC =180°,∴ ∠B +∠BFK =90°,即∠FKB =90°,∴ EF ⊥BC .注 本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF 与BC 的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵ AB =AC (已知),∴ ∠ABC =∠ACB (等边对等角),又∵ 点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线, ∴ AD 就是线段BC 的垂直平分线,∴ PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴ ∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴ ∠ABC -∠PBC =∠ACB -∠PCB (等式性质),即∠ABP =∠ACP .注 本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁.例8 如下图,AB =AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC =8,求△BCE 的周长.解:∵ 等腰△ABC 的周长=28,BC =8,∴ 2AC +BC =28,∴ AC =10, (理由是什么?)∵ DE 垂直平分AB ,∴ AE =BE ,∴ △BCE 的周长=BE +EC +BC=AE +EC +BC=AC +BC =10+8=18.注 本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9 已知,如下图,△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于F ,交AB 于E ,求证:FC BF 21=.证法一:连结AF ,则AF =BF ,∴ ∠B =∠FAB (等边对等角),∵ AB =AC ,∴ ∠B =∠C (等边对等角),∵ ∠BAC =120°,∴ ∠B =∠C =302180=∠-BAC (三角形内角和定理),∴ ∠FAB =30°,∴ ∠FAC =∠BAC -∠FAB =120°-30°=90°,又∵ ∠C =30°,(线段的垂直平分线是常见的对称轴之一)∴ FC AF 21=(直角三角形中30°角所对的直角边等于斜边的一半),∴ FC BF 21=.证法二:连结AF,过A作AG∥EF交FC于G,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=FC21.例10 已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB =BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD是哪个角的平分线;(2)AD是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD是它的对称轴.(1)AD是顶角∠BAC的平分线.(2)AD是线段BC的垂直平分线.(3)AB=AC,BD=DC.(4)∠BAD=∠CAD,∠ABC=∠ACB,∠ADB=∠ADC.例2 如图7—16,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP.点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB⊥AB,PC⊥AC,且PB=PC,∴∠PAB=∠PAC(到角两边距离相等的点在这个角的平分线上).∵∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴∠APB=∠APC.在△PDB和△PDC中,⎪⎩⎪⎨⎧=∠=∠=PD PD APCAPB PC PB ∴ △PDB ≌△PDC(SAS)∴ ∠BDP =∠CDP .例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来. 解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC 中,AB =AC ,D 在BC 上,且BD =AD ,DC =AC ,将图中的等腰三角形全部写出来,并求出∠B 的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B 的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC ,△ABD ,△CAD .设∠B =x ,则∠C =x =∠BAD ,∠ADC =∠DAC =2x .∴ ∠B +∠C +∠BAC =∠B +∠C +∠BAD +∠DAC=x +x +x +2x =5x =180°∴ ︒=︒==∠365180x B .例5 如图7—19,在金水河的同一侧居住两个村庄A 、B .要从河边同一点修两条水渠到A 、B 两村浇灌蔬菜,问抽水站应修在金水河MN 何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN ,在直线MN 的同一侧有A 、B 两点.在直线MN 上找一点P ,使P 点到A 、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B 点关于直线MN 的对称点B ′,连结AB ′,与MN 相交于P ,则P 点即为所求.事实上,如果不是P 点而是P '点时,则连结B P 、P A ''和B P ''.由轴对称性知道,B P PB B P B P '=''=',,所以P '到A 、B 的距离之和,B P P A B P P A ''+'='+',而P 到A 、B 的距离之和B A B P AP PB AP '='+=+在'P B A '∆中,三角形两边之和大于第三边,B A B P P A '>''+'所以P 点即为所求的点.例6 如图7—20,已知,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题. 证法一:在DA 上截取DN =DB .连结NE 、NF .则DN =DC .在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DE NDE BDE ND BD ∴ △BDE ≌△NDE .∴ BE =NE .同理可得,CF =NF .在△EFN 中,EN +FN >EF(三角形两边之和大于第三边).∴ BE +CF >EF .证法二:如图7—21,延长DE 至M ,使DM =ED ,连结CM 、MF .在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE CDM BDE CD BD∴ △BDE ≌△CDM(SAS).∴ CM =BE(全等三角形对应边相等)又∵ ∠BDE =∠ADE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°∴ ∠ADE +∠ADF =90°,即∠EDF =90°.∴ ∠FDM =∠EDF =90°.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF MD ED ∴ △EDF ≌△MDF(SAS)∴ EF =MF(全等三角形对应边相等).在△CMF 中,CF +CM >MF ,∴ BE +CF >EF .点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例 已知如图7—22,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A+∠C=180°.证法一:如图7—22,过D作DE⊥AB交BA的延长线于E,DF⊥BC于F.∵ BD平分∠ABC,∴ DE=DF在Rt△EAD和Rt△FCD中,∵ AD=DC,DE=DF,∴ Rt△EAD≌Rt△FCD(HL)∴∠C=∠EAD,∵∠EAD+∠BAD=180°,∴∠A+∠C=180°.证法二:如图7—23,在BC上截BE=AB,连结DE,证明△ABD≌△EBD可得.证法三:延长BA到E,使BE=BC,连结ED,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。

5.3 简单的轴对称图形(2)

5.3 简单的轴对称图形(2)

其中,正确的说法有(
A.1个
B.2个
B
)
C.3个
D.0个
数学
返回目录
2.如图,在△ABC中,BC=8,AB,AC的垂直平分线与BC分别交于
E,F两点,则△AEF的周长为(
A.2
B.4
C.8
D.不能确定
C
)
数学
返回目录
3.如图,等腰△ABC的周长为13,底边BC=3,AB的垂直平分线DE
交AB于点D,交AC于点E,则△BEC的周长为(
= .
所以A,B,D项都成立.故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂
线交BC于点E,求△ADE的周长.
数学
返回目录
解:因为点D在线段AB的垂直平分线上,
所以DA=DB,
因为点E在线段AC的垂直平分线上,
所以EA=EC,
D
)
数学
返回目录
解析:因为BC=BD+CD,AD+CD=BC,所以AD=BD.
由作图痕迹可知,
在选项A中,AB=BD,不符合题意;
在选项B中,AD=CD,不符合题意.
在选项C中,AC=CD,不符合题意;
在选项D中,AD=BD,符合题意.
故选D.
数学
返回目录
二、填空题
1.如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为
∠ = ∠,
在△FEC与△AED中,ቐ = ,
∠ = ∠,
所以△FEC≌△AED(ASA).所以CF=AD.
数学
返回目录
(2)当BC=6时,点B在线段AF的垂直平分线上.理由:

人教版八年级数学上册《轴对称》知识点精讲与典型例题(含答案)

人教版八年级数学上册《轴对称》知识点精讲与典型例题(含答案)

轴对称例1.如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种),怎样移动才能使所构成的图形具有尽可能多的对称轴?解:不是。

有以下几种移动方法(如图所示),其中,第3个图的对称轴最多。

例2. 如图所示,C是线段AB的垂直平分线上的一点,垂足为D,则下列结论中正确的有()A.AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°A. 2个B. 3个C. 4个D. 5个分析:由垂直平分线的定义可以直接得出①和⑤;由垂直平分线的性质可得出②;由△ADC≌△BDC可得到③和④。

解:D例3. 写出下列各点关于x轴和y轴对称的点的坐标。

(-2,3),(1,-2),(-2,-4),(0,2)。

例4.(2007年烟台)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):例5. 如图所示,已知线段AB,画出线段AB关于直线l的对称图形。

解:(1)画出点A关于直线l的对称点A';(2)画出点B关于直线l的对称点B':(3)连结A'B',则线段A'B'即为所求。

例6.要在河边修建一个水泵站,分别向张村、李庄送水(如图)。

修在河边什么地方,可使所用水管最短?解:设张村为点A,李庄为点B,张村和李庄这一侧的河岸为直线l。

(1)作点B关于直线l的对称点,(2)连结,交直线l于点C,点C就是所求的水泵站的位置。

(如图所示)1. 下列说法错误的是()A. 关于某直线对称的两个图形一定能完全重合B. 全等的两个三角形一定关于某直线对称C. 轴对称图形的对称轴至少有一条D. 线段是轴对称图形2. 轴对称图形的对称轴是()A. 直线B. 线段C. 射线D. 以上都有可能3. 下面各组点关于y轴对称的是()A. (0,10)与(0,-10)B. (-3,-2)与(3,-2)C. (-3,-2)与(3,2)D. (-3,-2)与(-3,2)*4. 下列图形中,不是轴对称图形的是()A. 一条线段B. 两条相交直线C. 有公共端点的两条相等的线段D. 有公共端点的两条不相等的线段5. (2007年河南)如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A. 30°B. 50°C. 90°D. 100°6. (2008年江苏苏州)下列图形中,是轴对称图形的是()*7. (2008年武汉)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF =150°,则∠AFE+∠BCD的大小是()A. 150°B. 300°C. 210°D. 330°**8. (2008年全国数学竞赛浙江预赛)如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。

专题5.2简单的轴对称图形(知识解读)(原卷版)

专题5.2简单的轴对称图形(知识解读)(原卷版)

专题5.2 简单的轴对称图形(知识解读)【学习目标】1. 会用尺规作一个角的平分线,知道作法的合理性.2. 探索并证明角的平分线的性质.3. 理解线段垂直平分线的概念.4. 探索并证明线段垂直平分线的性质定理.【知识点梳理】考点1 角的平分线的性质(一)作已知角的平分线(已知:∠AOB。

求作:∠AOB的平分线)1、以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N。

MN的长为半径画弧,两弧在∠AOB的内部相交于2、分别以M,N为圆心,大于12点C。

3、画射线OC,射线OC即为所求。

(二)角的平分线的性质:角的平分线上的点到角的两边的距离相等。

几何表示:∠OC是∠AOB的平分线,P是OC上一点,PD∠OA,PE∠OB,垂足分别为D,E。

∠PD=PE。

重要拓展:1、三角形的三条角平分线相交于三角形内一点,且该点到三角形三边的距离相等。

反之,三角形内部到三边距离相等的点是该三角形三条角平分线的交点。

2、三角形的角平分线与三角形一边交于一点,这条角平分线把三角形分成两个小三角形,它们的面积比等于另外两边的长度的比。

∵AD 是∠BAC 的角平分线;∴DF=DE ;∵S △ADB =12AB ·DF ;S △ADC =12AC ·DE ;∴S △ADB S △ADC = ABAC ;考点2 垂直平分线的性质①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.③线段垂直平分线的作图1. 分别以点 A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于 C 、D 两点;2. 作直线 CD ,CD 为所求直线 【典例分析】【考点1 角平分线的性质】【典例1】(2022春•南海区校级月考)如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =2,则PE 的长是( )A .2B .3C .D .4【变式1-1】(2021秋•江州区期末)已知BG 是∠ABC 的平分线,点D 为BG 上任意一点,且DE ⊥AB 于点E ,DF ⊥BC 于点F ,DF =3,则DE 的长度是( )A .3B .6C .8D .9【变式1-2】(2021•宁德模拟)如图,在△ABC 中,∠ACB =90°,∠ABC的平分线BD 交AC 于点D .若AC =5,AD =3,则点D 到AB 边的距离是( )A .1B .2C .3D .4【变式1-3】(2022•梧州模拟)如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )A.14B.8C.16D.6【典例2】(2022•沈河区校级模拟)如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,点E为AB的中点,若AB=12,CD=3,则△DBE的面积为()A.10B.12C.9D.6【变式2-1】(2022•凤翔县一模)如图,在△ABC中,∠C=90°,AD是∠BAC 的角平分线,若CD=3,AB=8,则△ABD的面积是()A.6B.8C.10D.12【变式2-2】(2021秋•江陵县期末)如图,BD平分∠ABC,DE⊥AB于E点,S△DBC=12,BC=6,则DE的长为()A.2B.4C.8D.不能确定【变式2-3】(2021秋•木兰县期末)如图,BO、CO分别平分∠ABC、∠ACB,OD⊥BC于点D,OD=2,△ABC的周长为28,则△ABC的面积为()A.28B.14C.21D.7【典例3】(2021秋•绵竹市期末)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处【变式3-1】(2021秋•云浮期末)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【变式3-2】(2020春•章丘区期末)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【变式3-3】(2021秋•绥棱县期末)在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点【典例4】(2021秋•巢湖市期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.【变式4-1】(2021春•普宁市期末)如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.【变式4-2】(2021秋•龙江县期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【考点2 垂直平分线的性质】【典例5】(2023春•新城区校级月考)如图,在△ABC中,AC=5,AB的垂直平分线分别交AB,AC于点E,D.若△BCD的周长为8,则BC的长为()A.1B.2C.3D.4【变式5-1】(2023•建湖县一模)如图,在△ABC中,BC的垂直平分线分别交AC、BC于点D、E、若△ABC的周长为24,CE=5,则△ABD的周长为()A.12B.14C.16D.18【变式5-2】(2023春•西安月考)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC的长为9cm,BE的长为6cm,则EC的长为()A.2cm B.3cm C.4cm D.5cm【变式5-3】(2022秋•滑县校级期末)如图,线段AC的垂直平分线交AB于点D,∠A=48°,则∠BDC的度数为()A.48°B.96°C.90°D.84°【典例6】(2023春•项城市月考)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为;(2)若∠MFN=70°,求∠MCN的度数.【变式6-1】(2022秋•东昌府区校级期末)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)若∠BAC=128°,求∠DAE的度数.【变式6-2】(2022秋•龙马潭区期中)在△ABC中,DE,FG分别是边AB,AC 的垂直平分线,(1)若∠BAC=120°,求∠EAG的度数.(2)若BC=8,求△AEG的周长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《简单的轴对称图形》典型例题
例1 想一想等边三角形的三个内角各是多少度,它有几条对称轴。

例2 如图,已知ABC ∆是等腰三角形,AC AB 、都是腰,DE 是AB 的垂直平分线,12=+CE BE 厘米,8=BC 厘米,求ABC ∆的周长.
例3 AC AB ABC =,:中在已知∆
_____
,100)3(____,30)2(___
__,,70)1(00为则它的另外两内角分别若一角为为则它的另外两内角分别若一个角为则若=∠=∠=∠C B A ο
例 4 如图,已知:在ABC ∆中,AC AB =,︒=∠110ACD ,求ABC ∆各内角的度数.
例5 如下图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE.
例6如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数.
参考答案
例1 分析:由等腰三角形的性质易知等边三角形三个内角相等都是60°,它有三条对称轴。

解:三个内角都是60°,它有三条对称轴。

说明:等边三角形是等腰三角形的特例,所以等腰三角形的性质对其都是适用的,在数学的学习时这样的情况是会经常出现的。

例2 分析:本题依据线段垂直平分线的性质可以得到.
解:DE Θ是AB 的垂直平分线
∴BE AE =
∴12=+CE AE 厘米AC =
ABC ∆Θ是等腰三角形
∴12==AC AB 厘米
∴ABC ∆的周长是3281212=++=++BC AC AB 厘米
例3 分析:注意到题中所给的条件AB =AC ,得到三角形为等腰三角形。

利用等腰三角形的性质对问题(1)可得οο55,55=∠=∠C B ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为ο180可得此等腰三角形的顶角只能为ο100这一种情况。

略解:(1)οο55,55=∠=∠C B (2)另外两内角分别为:οοοο120,30;75,75(3)οο40,40
说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。

例4 分析:因为ABC ∆是等腰三角形,因此,ACB ABC ∠=∠,所以只要求出ACB ∠的度数,就可以求出ABC ∠的度数. 根据三角形内角和定理,又可求出A ∠的度数.
解:∵ACB ∠和ABD ∠是邻补角,又︒=∠110ACD ,
∴ ︒=∠70ACB
∵ AC AB =,∴︒=∠=∠70ACB ABC (等边对等角)
∴ ︒=︒-︒-︒=∠407070180A
说明:在等腰三角形中,两个底角相等,内角和为︒180,所以只要知道等腰三角形的一个内角,就很容易求出它的另外两个角.
例5 证明:∵ △ABC 中,AB =AC ,BD =CD (已知),
∴ AD ⊥BC (等腰三角形三线合一),
∴ AD 垂直平分线段BC ,
(在具有轴对称的图形中,如能证明和利用轴对称的性质,有时解题会有意想不到的功效)
∴ 点C 和点B 关于直线AD 对称,
又∵ 点E 在对称轴AD 上,
∴ BE =CE (轴对称的性质).
说明:本题也可用三角形全等、等腰三角形的性质予以证明,请大家自行完成,并对比哪一种证法更为简洁.
例6 分析:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重
合,简称“三线合一”.等腰三角形的“三线合一”是等腰三角形的重要性质.解:因等腰三角形的“三线合一”,
所以AD既是△ABC的顶角平分线又是底边上的高,
∴∠ADC=90°.
∴∠A=180°-30°-30°=120°,


=

=

=
∠60
2
120
2
1
A
.。

相关文档
最新文档