现代材料分析方法(英文)

合集下载

(完整版)材料现代分析方法第一章习题答案解析

(完整版)材料现代分析方法第一章习题答案解析

第一章1.X射线学有几个分支?每个分支的研究对象是什么?答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。

X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。

X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。

X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。

2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少?解:已知条件:U=50kV电子静止质量:m0=9.1×10-31kg光速:c=2.998×108m/s电子电量:e=1.602×10-19C普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为:E=eU=1.602×10-19C×50kV=8.01×10-18kJ由于E=1/2m0v02所以电子击靶时的速度为:v0=(2E/m0)1/2=4.2×106m/s所发射连续谱的短波限λ0的大小仅取决于加速电压:λ0(Å)=12400/U(伏) =0.248Å辐射出来的光子的最大动能为:E0=hv=h c/λ0=1.99×10-15J3. 说明为什么对于同一材料其λK<λKβ<λKα?答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k以kα为例:hV kα = E L– E khe = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象?答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。

材料科学与工程专业实验教学大纲

材料科学与工程专业实验教学大纲

材料科学与工程专业实验教学大纲《材料现代测试方法》实验教学大纲课程名称:材料现代测试方法英文名:Advanced Analysis Methods for Materials课程编码:课程总学时:48实验总学时:12课程总学分:3实验课学分:开课对象:材料科学与工程学院本科生开课学期:6本大纲主撰人:刘云飞一、课程目的和任务本课程是材料学院各专业一门必修的实验课。

目的在于使学生了解和掌握现代分析仪器的分析原理、使用方法和在材料研究方面的应用。

二、课程基本内容和要求了解和掌握X射线衍射分析、电子显微分析、热分析和傅立叶红外变换光谱的仪器结构、操作、试样制备及结果分析方法。

三、实验项目的设置及学时分配1、实验过程中对每位学生预习、出勤及实验完成情况、动手能力、分析解决问题能力进行考察,占总成绩的50%;2、对实验报告(包括实验结果、思考题回答等)进行综合评分,占总成绩的50%;3、对上述实验成绩综合后作为本课程实验成绩按照20%计入总成绩。

五、实验教材《材料科学与工程专业实验指导书》《材料科学与工程实验-1》实验教学大纲课程名称:材料科学与工程实验-1英文名:Experiments on Material Science and Engineering:Part 1课程编码:课程总学时:32实验总学时:32课程总学分:2实验课学分:2开课对象:材料科学与工程专业本科生开课学期:5本大纲主撰人:兰祥辉一、课程目的和任务本课程是材料科学与工程专业本科生的专业基础实验课程,包括了晶体结构、材料科学基础与材料表面与界面等方面的知识,是学生学习专业课和从事本专业的科研、生产等必备的专业基础。

通过本实验课程的学习,培养学生的动手能力和独立分析问题、解决问题的能力,使学生进一步巩固已学的专业基础理论知识。

二、课程基本内容和要求本课程是一门教学实验课程,要求学生在了解和掌握材料科学基础、晶体结构、材料表面等课程的理论知识的基础上,独立进行相关实验,明确实验目的,掌握实验原理,了解实验过程,能用已学的理论知识解释实验现象,写出实验报告。

现代材料分析方法(8-SIMS)

现代材料分析方法(8-SIMS)

Al+的流强随时间变化的曲线
SIMS 离子溅射与二次离子质谱
Si的正二次离子质谱
SIMS 离子溅射与二次离子质谱
聚苯乙烯的二次离子质谱
SIMS 离子溅射与二次离子质谱
在超高真空条件下,在清 洁的纯Si表面通入20 L的氧 气后得到的正、负离子谱, 并忽略了同位素及多荷离 子等成份。除了有硅、氧 各自的谱峰外,还有SimOn (m,n = 1, 2, 3……)原子团离 子发射。应当指出,用氧 离子作为入射离子或真空 中有氧的成分均可观察到 MemOn (Me为金属)
SIMS 二次离子质谱仪
定性分析Biblioteka SIMS定性分析的目的是根据所获取的二次离子
质量谱图正确地进行元素鉴定。样品在受离子照射时,
一般除一价离子外,还产生多价离子,原子团离子,
一次离子与基体生成的分子离子。带氢的离子和烃离 子。这些离子有时与其它谱相互干涉而影响质谱的正 确鉴定。
SIMS 二次离子质谱仪
溅射产额与元素的升 华热倒数的对比
SIMS 离子溅射与二次离子质谱
溅射产额与晶格取向的关系
SIMS 离子溅射与二次离子质谱
在100~1000 eV下,用Hg+垂直入射Mo和Fe的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
= 60o时W靶的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
SIMS 离子溅射与二次离子质谱
是入射方向与
样品法向的夹角。
当 = 60o~ 70o时, 溅射产额最大, 但对不同的材料, 增大情况不同。
相对溅射产额与离子入射角度的关系
SIMS 离子溅射与二次离子质谱
溅射产额与入射离子原子序数的关系
SIMS 离子溅射与二次离子质谱

材料现代分析方法练习题及答案(rd,ebsd,tem,sem,表面分析)

材料现代分析方法练习题及答案(rd,ebsd,tem,sem,表面分析)

8. 什么是弱束暗场像与中心暗场像有何不同试用Ewald图解说明。

答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。

与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。

中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。

采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。

图:PPT透射电子显微技术1页10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同用什么办法及根据什么特征才能将它们区分开来答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。

层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。

孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。

反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。

层错条纹平行线直线间距相等反相畴界非平行线非直线间距不等孪晶界条纹平行线直线间距不等晶界条纹平行线非直线间距不等11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。

形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同为什么答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。

现代材料分析方法(10-AFM)

现代材料分析方法(10-AFM)

原子力显微镜示意图
B
C
A
F G1
D E
基座
G2 F
A: 待测样品 D: 微杠杆 F: 氟橡胶
B: AFM的针尖 C: STM的针尖 E: 用于调节隧道结间隙的压电晶体 G: 扫描器,G2也是STM
AFM 根本原理
Position Sensitive Photodiode
Mirror
Laser
XYZ Piezoelectric Scanner
可控气氛SPM
特定气体气氛 气氛温度、湿度控制 样品加热、冷却 气体吹扫样品 光线照射样品等等
可控气氛SPM
在控制气氛下 •可以交換样品 •可以清洗、切割等前处理
碘化钾单晶(001)
Байду номын сангаас
潮解性非常強的碘化钾,在氩气中劈开,在露出的最外表,观察到原子
阶梯〔左〕。另外,在真空中加热400℃,观察到外表重排列的(100)阶
Curve
硬度測定
后扫描
・选择打圧痕的位置
・确认圧痕的状态
Load-Displacemenat Curve
应用〔2〕
微观刻痕实验
磨耗实验
力曲线測定
Force (Cantilever Deflection)
③ repulsive
force
attractive force
Approach Release
现代材料分析方法(10AFM)
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!

现代材料分析方法RDF

现代材料分析方法RDF
j 1
Z
ikrj cos
假定电子云分布是球对称 的,其径向分布函数:
dAa Ae dne Ae e dv i Aa Ae e dv
j
i j
i j
U (r ) 4r (r )
2
对α和φ积分后:
Aa sin kr f U (r ) dr 0 Ae kr
对于单色平行入射的X射线,原子相干散射振幅
2ik r F (k ) f n e n
k 为散射矢量
F (k )
i 2k r dvr e ( r )e v
* i 2k( r ' r ) I (k ) F (k ) F (k ) e (r ) e (r ' )e du r dv r
径向分布函数
一个原子对X射线的散射
一个原子的相干散射强度:Ia= f 2 Ie
f: 原子散射因子
一个原子散射的相干散 射波振幅 Aa f 一个电子散射的相干散 射波振幅 Ae
径向分布函数
一个原子对X射线的散射
整个原子散射波振幅的瞬时值:
Aa Ae e
j 1
Z
i j
Ae e
非晶态径向分布函数
非晶态结构分析的主要计算公式
3500
3000
311ZrO2
2500
intensity(cps)
2000
200ZrO2
1500
111ZrO2
1000
500
0 0 20 40 60 80 100
2theta(deg.)
晶体的X射线衍射
非晶态的X射线衍射
非晶态径向分布函数
非晶态结构分析的主要计算公式

材料现代分析与测试技术 教学大纲

材料现代分析与测试技术  教学大纲

材料现代分析与测试技术课程教学大纲一、课程性质、教学目的及教学任务1.课程性质本课程是材料类专业的专业基础课,必修课程。

2.教学目的学习有关材料组成、结构、形貌状态等分析测试的基本理论和技术,为后续专业课学习及将来材料研究工作打基础。

3.教学任务课程任务包括基本分析测试技术模块——X射线衍射分析、电子显微分析、热分析;扩充分析测试技术模块——振动光谱分析和光电子能谱分析。

在各模块中相应引入新发展的分析测试技术:X射线衍射分析X射线衍射图谱计算机分析处理;电子显微分析引入扫描探针显微分析(扫描隧道显微镜、原子力显微镜);热分析引入DSC分析。

二、教学内容的结构、模块绪论了解材料现代分析与测试技术在无机非金属材料中的应用、发展趋势,明确本课程学习的目的和要求。

1. 本课程学习内容2. 本课程在无机非金属材料中的应用3. 本课程的要求(一)X射线衍射分析理解掌握特征X射线、X射线与物质的相互作用、布拉格方程等X射线衍射分析的基本理论,掌握X射线衍射图谱的分析处理和物相分析方法,掌握X射线衍射分析在无机非金属材料中的应用,了解X射线衍射研究晶体的方法和X射线衍射仪的结构,了解晶胞参数测定方法。

1. X射线物理基础(1)X射线的性质(2)X射线的获得(3)特征X射线和单色X射线2. X射线与物质的相互作用3. X射线衍射几何条件4. X射线衍射研究晶体的方法(1)X射线衍射研究晶体的方法(2)粉末衍射仪的构造及衍射几何5. X射线衍射数据基本处理6. X射线衍射分析应用(1)物相分析(2)X射线衍射分析技术在测定晶粒大小方面的应用(二)电子显微分析理解掌握电子光学基础、电子与固体物质的相互作用、衬度理论等电子显微分析的基本理论,掌握透射电镜分析、扫描电镜分析、电子探针分析的应用和特点,掌握用各种衬度理论解释电子显微像,掌握电子显微分析样品的制备方法,了解透射电镜、扫描电镜、电子探针的结构。

1. 电子光学基础(1)电子的波长和波性(2)电子在电磁场中的运动和电磁透镜(3)电磁透镜的像差和理论分辨率(4)电磁透镜的场深和焦深2. 电子与固体物质的相互作用(1)电子散射、内层电子激发后的驰豫过程、自由载流子(2)各种电子信号(3)相互作用体积与信号产生的深度和广度3. 透射电子显微分析(1)透射电子显微镜(2)透射电镜样品制备(3)电子衍射(4)透射电子显微像及衬度(5)透射电子显微分析的应用4. 扫描电子显微分析(1)扫描电子显微镜(2)扫描电镜图像及衬度(3)扫描电镜样品制备5. 电子探针X射线显微分析(1)电子探针仪的构造和工作原理(2)X射线谱仪的类型及比较(3)电子探针分析方法及其应用6. 扫描探针显微分析(1)扫描隧道显微镜(2)原子力显微镜(三)热分析理解掌握差热分析、热释光谱分析的基本原理,掌握差热曲线的判读及影响因素,掌握热释光谱分析,了解差热分析仪的结构,了解热重分析和示差扫描量热分析。

现代材料分析方法(7-XPS)

现代材料分析方法(7-XPS)
MNN和NOO四个系列的Auger线。
因为Auger电子的动能是固定的,而X射线光电子
的束缚能是固定的,因此,可以通过改变激发源 (如Al/Mg双阳极X射线源)的方法,观察峰位的变 化与否而识别Augar电子峰和X射线光电子峰。
XPS XPS分析方法 定性分析-谱线的类型
X射线的伴峰:X射线一般不是单一的特征 X射线,而是还存在一些能量略高的小伴 线,所以导致XPS中,除K1,2 所激发的主 谱外,还有一些小的伴峰。
XPS XPS分析方法

定性分析-谱线的类型
发射的光电子动能为:
E h E B nE P ES
n K
其中:n是受振荡损失的次数,EP是体等离子激元损 失的能量,ES是受表面等离子激元损失的能量。一般
ES E P / 2
XPS XPS分析方法

Al的2s谱线及相关的能量损失线
K.Siegbahn给这种谱仪取名为化学分析电子能谱 (Electron Spectroscopy for Chemical Analysis), 简称为“ESCA”,这个名词强调在X射线电子能
谱中既有光电子峰也包含了俄歇峰,在分析领域
内广泛使用。 随着科学技术的发展,XPS也在不断地完善。目 前,已开发出的小面积X射线光电子能谱,大大提 高了XPS的空间分辨能力。
XPS X射线光电子谱仪
样品引进系统
X射线激发源
h
样品室
e
能量分析器
e
抽真空系统 电子倍增器
显示、记录
XPS X射线光电子谱仪
在一般的X射线光电子谱仪中,没有X射线单色器, 只是用一很薄(1〜2m)的铝箔窗将样品和激发源分 开,以防止X射线源中的散射电子进入样品室,同 时可滤去相当部分的轫致辐射所形成的X射线本底。 将X射线用石英晶体的(1010)面沿Bragg反射方向衍 射后便可使X射线单色化。X射线的单色性越高,谱 仪的能量分辨率也越高。 同步辐射源是十分理想的激发源,具有良好的单色 性,且可提供10 eV〜10 keV连续可调的偏振光。

现代材料分析方法(7-XPS)

现代材料分析方法(7-XPS)
X射线光电子谱(XPS)
X-ray Photoelectron Spectroscopy
XPS 引言
➢ X射线光电子谱是重要的表面分析技术之一。它不仅能探 测表面的化学组成,而且可以确定各元素的化学状态,因 此,在化学、材料科学及表面科学中得以广泛地应用。
➢ X射线光电子能谱是瑞典Uppsala大学K.Siegbahn及其同 事经过近20年的潜心研究而建立的一种分析方法。他们发 现了内层电子结合能的位移现象,解决了电子能量分析等 技术问题,测定了元素周期表中各元素轨道结合能,并成 功地应用于许多实际的化学体系。
XPS XPS分析方法
❖化合态识别-Auger线
➢以Eb(P)为横坐标,Ek(A)为纵 坐标,‘为对角参数将给出二 维化学状态平面图,对识别表 面元素的化学状态极为有用。
Ag及其化合物的 二维化学状态图
XPS XPS分析方法
❖ 化合态识别-伴峰
➢ 震激线、多重分裂等均可给出元素化学状态变 化方面的信息 。
➢ 当光电子能量在100~1500 eV时,非弹性散射的 主要方式是激发固体中自由电子的集体振荡, 产生等离子激元。
XPS XPS分析方法
❖定性分析-谱线的类型
发射的光电子动能为:
E
n K
h
EB
nEP
ES
其中:n是受振荡损失的次数,EP是体等离子激元 损失的能量,ES是受表面等离子激元损失的能量。
➢ 其次,化学环境的变化将使一些元素的光电子谱 双峰间的距离发生变化,这也是判定化学状态的 重要依据之一。
➢ 元素化学状态的变化有时还将引起谱峰半峰高宽 的变化。
XPS XPS分析方法
❖ 化合态识别-光电子峰
S的2p峰在不同化学状态下的结合能值

现代企业管理名词中英文解释

现代企业管理名词中英文解释

现代企业管理名词中英文解释1.CE——Concurrent Engineering 并行工程2.QFD——Quality Function Deployment 品质功能展开3、PPM——Parts per Million 10-6百万分之一4、PPb——Parts per Billon 10-9十亿分之一5、ZD——Zero Defect 零缺陷6、VE——Value Engineering价值工程7、V A——Value Analysis价值分析8、AHP——层次分析法软件能力成熟度(the Capability Maturity Model for Software, 简称CMM)9、FTA——Failure tree Analysis故障树分析10、CS——Customer Satisfaction 顾客满意度11、LCE——Life-cycle Engineering生命周期工程12、IPD——一体化产品开发. Integrated Product development.13、SE——Simultaneous Engineering 同步工程14、TD——Team Design 团队设计15、DFM——Design for Manufacture 为制造而设计16、DFA——Design for Assembly 为装配而设计17、CAD——Computer aided Design 计算机辅助设计18、CAM——Computer aided Manufacture 计算机辅助制造19、CIMS——计算机集成制造系统Computer Integrated Manufacturing system20、BPR——Business Process Reengineer 业务流程再造(重组)21、MTBF——Mean Time Between Failure 平均故障周期22、MTTR——Mean Time to Repair 平均维修时间23、TPM——Total Productive Maintenance 全面生产维修24、SMT——表面装配技术(电子元件与PCB板贴装)25、4M1E——人(Man)、机器设备(Machine)、原材料(Material)、操作及检测方法(Method)、和环境(Environment)26、5W1H——Why(采取措施的原因)、What(执行措施预期达到目的)、Where(在哪里执行措施)、Who(谁来执行)、When(何时开始执行,何时完成)、How(如何执行)。

材料现代分析测试技术-光谱分析

材料现代分析测试技术-光谱分析
弧焰中心a的温度最高,边缘b的温度较低。由弧焰中心 发射出来的辐射光,必须通过整个弧焰才能射出,由于
弧层边缘的温度较低,因而这里处于基态的同类原子较多。 这些低能态的同类原子能吸收高能态原子发射出来的光而 产生吸收光谱。原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的辐射, 这种现象称为自吸现象。
光电直读光谱仪
在原子发射光谱法中, 一般多采用摄谱法(spectrography)。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪 焦面上,接受被分析试样的光谱作用而感光,再经过 显影、定影等过程后,制得光谱底片,其上有许多黑 度不同的光谱线。然后用影谱仪观察谱线位置及大致 强度,进行光谱定性及半定量分析。
(6)谱线的自吸与自蚀
三、谱线的自吸与自蚀(self-absorption and selfreversal of spectral lines)
在实际工作中,发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。首先,物质在光源中蒸发形成 气体,由于运动粒子发生相互碰撞和激发,使气体中产生
大量的分子、原子、离子、电子等粒子,这种电离的气 体在宏观上是中性的,称为等离子体。在一般光源中, 是在弧焰中产生的,弧焰具有一定的厚度,如下图:
4. Atomic fluorimetry
气态自由原子吸收特征波长的辐射后,原子的外层 电子 从基态或低能态跃迁到较高能态,约经10-8 s,又跃
迁至基态或低能态,同时发射出与原激发波长相同(共 振荧光)或不同的辐射(非共振荧光—直跃线荧光、阶 跃线荧光、阶跃激发荧光、敏化荧光等),称为原子荧 光。波长在紫外和可见光区。在与激发光源成一定角度 (通常为90)的方向测量荧光的强度,可以进行定量分 析。

材料现代分析方法课件- 概论

材料现代分析方法课件- 概论
● 分 辨 率:0.34nm ● 加速电压:75KV-200KV ● 放大倍数:25万倍 ● 能 谱 仪:EDAX-9100 ● 扫描附件:S7010
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
CM200-FEG场发射枪电镜
加速电压20KV、40KV、80KV、 160KV、200KV 可连续设置加速电压 热场发射枪 晶格分辨率 1.4Å 点分辨率 2.4Å 最小电子束直径1nm 能量分辨率约1ev 倾转角度α=±20度
a axis (inclination)
Operation range:15~120°
b axis (intraplanar rotation)
Operation range:360°
Z axis (front and back) Operation range:10mm
Z axis
薄膜测试-Thin film measurement 极图测试-Pole figure measurement 残余应力-Residual Stress measurement
镍基合金中第二相(GdNi5)粒子在基体中的分布
母相
透射电镜-位向分析
母相 新相
图像分析的分辨率
(3)表面分析方法及分辨尺度
本课程主要内容
材料X射线衍射分析技术 材料微观结构的电子显微学分析 谱分析技术
1) X射线衍射分析技术
X射线物理学基础 X射线衍射方向 X射线衍射强度 多晶体分析方法 物相分析及点阵参数精确测定 宏观残余应力的测定 多晶体织构的测定
材料分析方法
Analysis Method of Materials
公认的材料科学与工程四大要素

现代材料分析方法(5-EBSD)

现代材料分析方法(5-EBSD)

04
5-EBSD技术与其他分析方法的 比较
与传统EBSD技术的比较
分辨率提高
01
5-EBSD技术采用更先进的探测器,提高了空间分辨率和角度分
辨率,能够更准确地分析材料的晶体结构和取向。
速度更快
02
5-EBSD技术采用了更快的扫描速度和更高效的算法,能够在短
时间内完成大面积的材料分析。
更广泛的应用范围
现代材料分析方法(5-ebsd)
• 引言 • 5-EBSD技术原理及设备 • 5-EBSD在材料分析中的应用 • 5-EBSD技术与其他分析方法的比较
• 5-EBSD技术在材料科学研究中的意 义
• 展望与挑战
01
引言
目的和背景
1 2 3
揭示材料微观结构
5-EBSD技术能够精确测定晶体取向、晶界、相 分布等微观结构信息,为材料性能研究和优化提 供重要依据。
和强化提供重要信息,从而提高材料的综合性能。
为新材料设计和开发提供指导
发掘新材料潜力
通过5-EBSD技术对现有材料进行 深入研究,可以发现新材料的潜 力和优势,为新材料的设计和开 发提供启示。
指导新材料合成和
制备
结合5-EBSD技术和其他分析方法, 可以对新材料的合成和制备过程 进行精确控制,从而实现新材料 的定向设计和制备。
自动化和智能化
机器学习、深度学习等人工智能技术的引入将进一步提高EBSD的 自动化和智能化水平,减少人工干预,提高分析效率。
面临的挑战与问题
数据处理与解析
随着EBSD技术的发展,获取的数据量将不断增加,如何有效处理、 解析这些数据并从中提取有用信息是一个重要挑战。
复杂样品分析
对于复杂样品(如多相材料、非晶材料等),EBSD的分析难度将 增加,需要开发新的算法和技术以应对这些挑战。

现代材料分析方法试题及答案

现代材料分析方法试题及答案

一、单项选择题(每题 2 分,共 10 分)1.成分和价键分析手段包括【 b 】(a)WDS、能谱仪(EDS)和 XRD (b)WDS、EDS 和 XPS(c)TEM、WDS 和 XPS (d)XRD、FTIR 和 Raman2.分子结构分析手段包括【 a 】(a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和 WDS(c)SEM、TEM 和 STEM(扫描透射电镜)(d) XRD、FTIR 和 Raman3.表面形貌分析的手段包括【 d 】(a)X 射线衍射(XRD)和扫描电镜(SEM) (b) SEM 和透射电镜(TEM)(c) 波谱仪(WDS)和 X 射线光电子谱仪(XPS) (d) 扫描隧道显微镜(STM)和SEM4.透射电镜的两种主要功能:【 b 】(a)表面形貌和晶体结构(b)内部组织和晶体结构(c)表面形貌和成分价键(d)内部组织和成分价键5.下列谱图所代表的化合物中含有的基团包括:【 c 】(a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2,(c) –C-H、和-C=C- (d) –C-H、和 CO二、判断题(正确的打√,错误的打×,每题 2 分,共 10 分)1.透射电镜图像的衬度与样品成分无关。

(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。

(√)3.透镜的数值孔径与折射率有关。

(√)4.放大倍数是判断显微镜性能的根本指标。

(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角速度的二倍。

(√)三、简答题(每题 5 分,共 25 分)1. 扫描电镜的分辨率和哪些因素有关?为什么?和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。

束斑尺寸越小,产生信号的区域也小,分辨率就高。

2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的?范德华力和毛细力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Characterization techniques:(A) XPS (X-ray photoelectron spectroscopy):Hydrothermally deposited epitaxial thin films are characterized by XPS to retrieve useful information like composition, chemical structure and local arrangement of atoms that make up few layers of surface of film and also the interfacial layer between the film and substrate.X-ray photoelectron spectroscopy (XPS) was developed in the mid –1960s by Kai Siegnahm and his research group at the University of Uppsala, Sweden.Surface analysis by XPS involves irradiating a solid in vacuum with monoenergetic soft x-rays and analyzing the emitted electrons by energy. The spectrum is obtained as a plot of the number of detected electrons per energy interval versus their kinetic energy. The principle on which the XPS technique is based can explained with the help of figure 1 as shown below. [27]Figure 1. An energy level diagram showing the physical basis of XPS technique.The energy carried by an incoming X-ray photon is absorbed by the target atom, raising it into excited state from which it relaxes by the emission of a photoelectron. Mg Kα(1253.6eV) or Al Kα (1486.6 eV) x-rays are generally used as a source of monoenergetic soft x-rays. These photons have limited penetrating power in a solid on the order of 1-10 micrometers. They interact with atoms in the surface region, causing electrons to be emitted by the photoelectric effect. The emitted electrons have measured kinetic energies given by:KE=hγ-BE -φsWhere hγ is the energy of the photon, BE is the binding energy of the atomic orbital from which the electron originates and φs is the spectrometer work function. The binding energy may be regarded as the energy difference between the initial and final states after the photoelectron has left the atom. Because there are a variety of possible final states of the ions from each type of atom, there is corresponding variety of kinetic energies of the emitted electrons. Photoelectrons are emitted from all energy levels of the target atom and hence the electron energy spectrum is characteristic of the emitting atom type and may be thought as its XPS fingerprint. Each element has unique spectrum .The spectrum from a mixture of elements is approximately the sum of peaks of the individual constituents. Because the mean free path of electrons in the solids is very small, the detected electrons originate from only the top few atomic layers making XPS a unique surface sensitive technique for chemical analysis. Quantitative data can be obtained from peak heights or peak areas and identification of chemical states often can be made from exact measurement of peak positions and separations as well from certain spectral features.The line lengths indicate the relative probabilities of the various ionization processes. The p,d and f levels split upon ionization leading to vacancies in the p1/2,p3/2,d3/2,d5/2,f5/2 and f7/2.The spin orbit splitting ratio is 1:2 for p levels ,2:3 for d levels and 3:4 for f levels .Because each element has a unique set of binding energies, XPS can be used to identify and determine the concentration of the elements in the surface. Variations in the elemental binding energies (the chemical shifts) arise from the differences in the chemical potential and polarizibilty of compounds. These chemical shifts can be analyzed to identify the chemical state of the materials being analyzed.The electrons leaving sample are detected by an electron spectrometer according to their kinetic energy. The analyzer is usually operated as an energy window, referred to as pass energy. To maintain a constant energy resolution, the pass energy is fixed. Incoming electrons are adjusted the pass energy before entering the energy analyzer. Scanning for different energies is accomplished by applying a variable electrostatic field before the analyzer. This retardation voltage may be varied from zero upto and beyond the photon energy. Electrons are detected as discrete events, and the number of electrons for the given detection time. And energy is stored and displayed.In general, the interpretation of the XPS spectrum is most readily accomplished first by identifying the lines that almost always present (specifically those of C and O), then by identifying major lines and associated weaker lines.(B) Auger electron spectroscopy:Auger electron spectroscopy is a very useful technique in elemental characterization of thin films. In the current project this technique has been utilized not only for elemental compositional analysis but also for understanding nucleation and growth mechanism. Auger electron effect is named after the French physicist Pierre Auger who described the process involved in 1925.Auger is process is bit more complicated than the XPS process.The Auger process occurs in three stages. First one being atomic ionization. Second being electron emission (Auger emission) and third being analysis of emitted auger electrons .The source of radiation used is electrons that strike in the range of 2 to 10 kev. The interatomic process resulting in the production of an Auger electron is shown in figure 2 below.Figure 2 showing the interatomic process resulting in production of the Auger electrons. One electron falls a higher level to fill an initial core hole in the k-shell and the energy liberated in this process is given to second electron ,fraction of this energy is retained by auger electron as kinetic energy.X-ray nomenclature is used for the energy levels involved and the auger electron is described as originating from for example ,an ABC auger transition where A is the level of the original core hole,B is the level from which core hole was filled and C is the level from which auger electron was emitted. In above figure 2 shown above the auger transition is described as L3M1M2, 3.The calculation of energies of the lines in the Auger electron spectrum is complicated by the fact that emission occurs from an atom in an excited state and consequently the energies of the levels involved are difficult to define precisely.Each element in a sample being studied gives rise to characteristic spectrum of peaks at various kinetic energies. Area generally scanned is 1 mm2.To understand the variation in the concentration with the distance from the surface depth profiling can also be carried out. For depth profiling the surface has to be etched away by using argon beam.The principle advantage that AES hold over XPS is that the source of excitation in case of AES is electrons which allows it to take a spectra from micro-regions as small as 100 nm diameters or less instead of averaging over the whole of the surface of the sample as is done generally in XPS.(C) Atomic force Microscope:Atomic Force Microscope (AFM ) is being used to solve processing and materials problems in a wide range of technologies affecting the electronics, telecommunications, biological, chemical, automotive, aerospace, and energy industries. The materials being investigating include thin and thick film coatings, ceramics, composites, glasses, synthetic and biological membranes, metals, polymers, and semiconductors.In the current work AFM was used to understand the nucleation and growth mechanism of the epitaxial thin films and to understand the surface morphology of totally grown films in terms of surface coverage and surface roughness.In the fall of 1985 Gerd Binnig and Christoph Gerber used the cantilever to examine insulating surfaces. A small hook at the end of the cantilever was pressed against the surface while the sample was scanned beneath the tip. The force between tip and sample was measured by tracking the deflection of the cantilever. This was done by monitoring the tunneling current to a second tip positioned above the cantilever. They were able to delineate lateral features as small as 300 Å. This is the way force microscope was developed. Albrecht, a fresh graduate student, who fabricated the first silicon microcantilever and measured the atomic structure of boron nitride. The tip-cantilever assembly typically is microfabricated from Si or Si3N4. The force between the tip and the sample surface is very small, usually less than 10-9 N.According to the interaction of the tip and the sample surface, the AFM is classified as repulsive or Contact mode and attractive or Noncontact mode. In contact mode the topography is measured by sliding the probe tip across the sample surface. In noncontact mode, topography is measured by sensing Van de Waals forces between the surface and probe tip. Held above the surface. The tapping mode which has now become more popular measures topography by tapping the surface with an oscillating probe tip which eliminates shear forces which can damage soft samples and reduce image resolution. 1. Laser2. Mirror3. Photo detector4. Amplifier5. Register6. Sample7. Probe8. CantileverFigure 3 showing a schematic diagram of the principle of AFM.Compared with Optical Interferometric Microscope (optical profiles), the AFM provides unambiguous measurement of step heights, independent of reflectivity differences between materials. Compared with Scanning Electron Microscope, AFM provides extraordinary topographic contrast direct height measurements and unobscured views of surface features (no coating is necessary). One of the advantages of the technique being that it can be applied to insulating samples as well. Compared with Transmission Electron Microscopes, three dimensional AFM images are obtained without expensive sample preparation and yield far more complete information than the two dimensional profiles available from cross-sectioned samples.(D) Fourier Transform Infrared Spectroscopy:Infrared spectroscopy is widely used chemical analysis tool which in addition to providing information on chemical structures also can give quantitative information such as concentration of molecules in a sample.The development in FTIR started with use of Michelson interferometer an optical device invented in 1880 by Albert Abraham Michelson. After many years of difficultiesin working out with time consuming calculations required for conversion intereferogram into spectrum, the first FTIR was manufactured by the Digilab in Cambridge Massachusetts in 1960s .These FTIR machines stared using computers for calculating fourier transforms faster.The set up consists of a source, a sample and a detector and it is possible to send all the source energy through an interferometer and onto the sample. In every scan, all source radiation gets to the sample. The interferometer is a fundamentally different piece of equipment than a monochromater. The light passes through a beamsplitter, which sends the light in two directions at right angles. One beam goes to a stationary mirror then back to the beamsplitter. The other goes to a moving mirror. The motion of the mirror makes the total path length variable versus that taken by the stationary-mirror beam. When the two meet up again at the beamsplitter, they recombine, but the difference in path lengths creates constructive and destructive interference: an interferogram:The recombined beam passes through the sample. The sample absorbs all the different wavelengths characteristic of its spectrum, and this subtracts specific wavelengths from the interferogram. The detector reports variation in energy versus time for all wavelengths simultaneously. A laser beam is superimposed to provide a reference for the instrument operation.Energy versus time was an odd way to record a spectrum, until the point it was recognized that there is reciprocal relationship between time and frequency. A Fourier transform allows to convert an intensity-vs.-time spectrum into an intensity-vs.-frequency spectrum.The advantages of FTIR are that all of the source energy gets to the sample, improving the inherent signal-to-noise ratio. Resolution is limited by the design of the interferometer. The longer the path of the moving mirror, the higher the resolution.One minor drawback is that the FT instrument is inherently a single-beam instrument and the result is that IR-active atmospheric components (CO2, H2O) appear in the spectrum. Usually, a "Background" spectrum is run, and then automatically subtracted from every spectrum.(E) Scanning Electron Microscopy:Scanning electron microscopy is one the most versatile characterization techniques that can give detailed information interms of topography, morphology, composition and crystallography. This has made it widely useful in thin film characterization.The scanning electron microscope is similar to its optical counterparts except that it uses focused beam of electrons instead of light to image the specimen to gain information about the structure and composition.A stream electron is accelerated towards positive electrical potential. This stream is confined and focused using metal apertures and magnetic lenses into a thin, focused, monochromatic beam. This beam is focused onto the sample using a magnetic lens. Interactions occur inside the irradiated sample, affecting the electron beam. These interactions and effects are detected and transformed into an image. The electron detector collects the electrons and then image is created. Scanning with SEM is accomplished bytwo pairs of electromagnetic coils located within the objective lens, one pair deflects the beam in x-direction across the sample and the other pair deflects it in the y direction. Scanning is controlled by applying an electric signal to one pair of scan coils such that the electron beam strikes the sample to one side of theFigure 4 Schematic view of a SEM instrument.center axis of the lens system. By varying the electrical signal to this pair of coils as a function of time, the electron beam is moved in a straight line across the sample and then returned to its original position. Thus by rapidly moving the beam the entire sample surface can be irradiated with the electron beam. The output signal consists of backscattered and secondary electrons which generally serve as basis of scanning electron microscope and whereas the x-ray emission serves as the basis of the energy dispersive spectroscopy as shown in figure 4.Figure 5.Schematic presentation of the interaction of the electron with the sample.Energy dispersive spectroscopy is analytical method which is used in determination of elemental composition of the specimen.EDS uses the electrons generated characteristic x-radiation to determine elemental composition. The SEM/EDS combination is a powerful tool in inorganic microanalysis, providing the chemical composition of volumes as small as 3 m3.(F) Transmission Electron microscopy:Transmission electron microscopy was used to analyze the interface between the BaTiO3 on SrTiO3 single crystals.For TEM specimen must be specially prepared to thicknesses which allow electrons to transmit through the sample, much like light is transmitted through materials in conventional optical microscopy. Because the wavelength of electrons is much smaller than that of light, the optimal resolution attainable for TEM images is many orders of magnitude better than that from a light microscope. Thus, TEMs can reveal the finest details of internal structure - in some cases as small as individual atoms. Magnifications of 350,000 times can be routinely obtained for many materials, whilst in special circumstances; atoms can be imaged at magnifications greater than 15 million timesThe energy of the electrons in the TEM determine the relative degree of penetration of electrons in a specific sample, or alternatively, influence the thickness of material from which useful information may be obtained.Cross-sectional specimens for TEM observation of the interface between the film and the substrate were prepared by conventional techniques employing mechanical polishing, dimpling and ion beam milling.TEM column is shown in figure 6 consists of gun chamber on the top to the camera at the bottom everything is placed under vacuum.Figure 6. Main components of TEM system. [28]At the top of the TEM column is the filament assembly, which is connected to thehigh voltage supply by insulated cable. In standard TEM, normal accelerating voltagesranges from 20,000 to 100,000V.Intermediate-voltage and high voltage TEMs may use accelerating voltages of 200,000 V to 1000000 V.The higher the accelerating voltage, the greater the theoretical resolution. Below the filament tip and above it the anode is a beam volume called crossover. In this area of the filament chamber, the electron beam volume iscondensed to its highest density. There are more electrons per unit area at the cross over than at any other place in the microscope. Crossover is the effective electron source for image formation. In a TEM, the diameter of the electron beam at crossover is approximately 50 μm.The anode or positively charged plate, is below the filament assembly.Electron beam then travels to the condenser –lens system.TEMs has two condensers lenses. Condenser system lens system controls electron illumination on the specimen and on the viewing screen for such functions as viewing, focusing and photography. Condenserlenses are fitted with apertures which are usually small platinum disks or molybdenum strips with holes of various sizes ranging from 100 to 400 μm and it protects specimen from too many stray electrons which can contribute to excessive heat and limit X-ray production farther down the columnObjective lens is the first magnifying lens and the specimen is inserted into the objective lens, which must be designed so that the specimen can be moved in both X and Y directions and have tilting and rotating capabilities. As the electron beam interacts with the specimen, a number of signals useful in the formation of the TEM image occur: absorption, diffraction, elastic scattering and inelastic scattering.(H) X-ray Diffraction (XRD):X-ray diffraction is the most commonly known technique which I used to determination of the phase formed in films and also to assess texture and crystallinity.X-rays were discovered in 1895 by the German physicist Wilhelm Conrad Röntgen - in some languages x-rays are called Röntgen-rays - and x-ray diffraction was discovered in 1912.The X-rays used in diffraction experiments all have a wavelength of 0.5-2.5 Å. The intensity of a beam of x-rays is the rate of transport of energy flow through a unit area perpendicular to the direction of propagation. To produce x-rays, a source of electrons, a high accelerating voltage and a target are needed. To get the voltage, the metal target is grounded and a cathode is at 30-50 kV. To get the electrons a metal filament is resistively heated (the tube is called a filament tube). The filament current is 3-5 amps. The cathode and the filament is one and the same thing and surrounding the target and the filament is an air evacuated envelope.The electrons from the filament are accelerated towards the target. They bombard the target in a rectangular shaped area called the focal spot. From there the x-rays are emitted in all directions. The walls of the tube are impenetrable for the x-rays except where beryllium windows are inserted. Beryllium has a very low absorption coefficient for the x-rays.The amount of x-rays produced depends on the number of electrons emitted and their energy when they reach the target. The number of electrons in turn depends on the filament temperature, and thus the filament current. The current of electrons from the filament to the target is measurable and usually 25-55 mA. This current can be chosen freely as a feedback loop will feed the filament with the current needed. The energy ofthe electrons depend on the accelerating voltage. Thus the total intensity emitted by thex-ray tube depends on both the operating voltage and the tube current.In general, diffraction is possible when the length of the wave is of the same order of magnitude as the distance between the regularly spaced scattering objectsTwo scattered rays are in phase, if their path difference is equal to a whole number n of wavelengths. Scattered rays emerging from a plane surface as a result of a beam incident on that surface, have a path difference equal to a whole number of wavelengths, if n l = 2 d' sinq (The Bragg Law),where d' is the distance between the diffracting planes in the crystal and q is the angle between the incident beam and the surface. n is the order of reflection and n can be any integral number as long as sin q < 1. n is also equal to the number of wavelengths in the path difference of two rays scattered from adjacent planes (e.g. If n = 2 then a ray scattered from one plane will have a path that is two wavelengths shorter than a ray scattered from a deeper lying neighbor plane).The basis for phase analysis is that the crystal of a certain phase will have interatomic distances peculiar to that phase and these different distances will cause a series of reflections as the detector are shifted through 2theta.Two phases can have similar or almost similar structures and hence interatomic distances. This makes identifying phases in an unknown sample very difficult, but knowing what elements are present in the sample will narrow the possibilities down quite a bit. Also crystallite size using XRD .X-ray pole figure measurements are used to characterize the film with respect to any preferred orientation with which growth has taken place. Rocking curve is another application to characterize the film with respect to its quality ofcrystallinity comparing to the single crystals or polycrystalline materials.。

相关文档
最新文档