机械能守恒定律及其应用(二):单体机械能守恒问题
机械能守恒定律的应用
机械能守恒定律的应用在物理学中,机械能守恒定律是一条基本的物理定律,它描述了在一个孤立的力学系统中,总的机械能保持不变。
这个定律可以被广泛应用于各种物理现象和工程问题中。
本文将探讨机械能守恒定律的应用,并以实际例子加以说明。
一、弹簧势能和重力势能的转化机械能守恒定律可以应用于弹簧势能和重力势能的相互转化的问题。
考虑一个弹簧与一个质点连接,并将这个质点放置在重力场中。
当质点在弹簧的作用下沿着垂直方向运动时,弹簧的势能和重力势能会相互转化。
假设质点在某一时刻具有高度h,速度v,弹簧的劲度系数为k。
根据机械能守恒定律,质点的机械能E可以表示为:E = mgh + (1/2)mv^2 + (1/2)kx^2其中m是质点的质量,g是重力加速度,x是弹簧的伸缩量。
在运动过程中,如果质点在距离平衡位置的位置发生变化,即x不等于零,那么弹簧的势能和重力势能会发生相应的变化。
然而,总的机械能E在整个过程中保持不变。
二、轨道运动中的机械能守恒机械能守恒定律在轨道运动中也有重要的应用。
考虑一个质点在离心力和引力的作用下在一个假设无摩擦的平面上运动。
根据机械能守恒定律,质点的机械能E在整个运动过程中保持不变。
在一个闭合轨道上,质点具有速度v和离心力F_c,引力和重力力F_g。
根据机械能守恒定律,质点的机械能E可以表示为:E = (1/2)mv^2 - GmM/r其中M是引力中心的质量,r是质点与引力中心之间的距离,G是引力常数。
在闭合轨道上,质点的速度和距离会相应变化,但机械能E保持不变。
三、动能转化与物体碰撞机械能守恒定律还可以应用于动能转化和物体碰撞的问题。
在一个孤立的力学系统中,当两个物体碰撞时,它们的机械能可以部分转化为其他形式的能量,如热能或变形能。
考虑两个质量分别为m1和m2的物体,在碰撞前具有速度v1和v2。
根据机械能守恒定律,碰撞后物体的机械能E'可以表示为:E' = (1/2)m1v1'^2 + (1/2)m2v2'^2其中v1'和v2'是碰撞后物体的速度。
机械能守恒定律和其应用
1页机械能守恒定律及其应用一、机械能守恒1.机械能守恒的条件:只有重力或系统内的弹力做功. 2.机械能守恒的判断方法(1)从机械能的定义直接判断:若物体动能、势能均不变,机械能不变.若一个物体动能不变,势能变化,或势能不变,动能变化或动能和势能同时增加(或减小),其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他外力,但其他外力不做功, 或其它力做功的代数和为零,机械能守恒.对单个物体就看是否只有重力做功,或者虽受其他力,但其他力不做功;对两个或几个物体组成的系统,就看是否只有重力或系统内弹力做功,若有其他外力或内力做功(如内部有摩擦等),则系统机械能不守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统的机械能守恒. 思维提升【例1】关于机械能是否守恒的叙述,正确的是 ( BD )A .作匀速直线运动的物体的机械能一定守恒B .作匀变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .只有重力对物体做功,物体机械能一定守恒[训练1]如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处自由 落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为( B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h )【训练2】如图所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a →b →c 的运动过程中,以下叙述正确的是 ( AD )A .小球和弹簧总机械能守恒B .小球的重力势能随时间均匀减少C .小球在b 点时动能最大D .到c 点时小球重力势能的减少量等于弹簧弹性势能的增加量二、机械能守恒定律及应用1.用守恒的观点表示,即系统在初状态的机械能等于末状态的机械能,表达式为 E k 1+E p 1=E k 2+E p 2或E 1=E 2.2.用转化的观点表示,即:系统减少(增加)的势能等于增加(减少)的动能,表达式为ΔE p =-ΔE k . 3.用转移的观点表示,即系统若由A 、B 两部分组成,A 部分机械能的减少量等于B 部分机械能的增加量,表达式为:ΔE A 减=ΔE B 增.4.对于多个物体组成的系统,研究对象的选取是解题的关键环节,若选单个物体为研究对象时,机械能可能不守恒,但选此物体与其他几个物体组成的系统为研究对象时,机械能却是守恒的.【例2】如下图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 齐平,静止放于光滑斜面上,一长为L 的轻质细线一端固定在O 点,另一端系一质量为m 的小球,将细线拉至水平,此时小球在位置C ,由静止释放小球,小球到达最低点D 时,细绳刚好被拉断,D 点到AB 的距离为h ,之后小球在运动过程中恰好沿斜面方向将弹簧压缩,弹簧的最大压缩量为x ,重力加速度为g 。
第3讲 机械能守恒定律及其应用-2025版创新设计高考物理一轮复习
第3讲机械能守恒定律及其应用学习目标 1.理解重力势能和弹性势能,知道机械能守恒的条件。
2.会判断研究对象在某一过程机械能是否守恒。
3.会用机械能守恒定律解决单个物体或系统的机械能守恒问题。
1.2.3.4.1.思考判断(1)重力势能的变化量与零势能参考面的选取无关。
(√)(2)被举到高处的物体重力势能一定不为零。
(×)(3)发生弹性形变的物体都具有弹性势能。
(√)(4)弹力做正功,弹性势能一定增加。
(×)(5)物体所受的合外力为零,物体的机械能一定守恒。
(×)(6)物体的速度增大时,其机械能可能减小。
(√)(7)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒。
(√)2.如图所示是“弹簧跳跳杆”,杆的上下两部分通过弹簧连接。
当人和跳杆从一定高度由静止竖直下落时,弹簧先压缩后弹起。
则人从静止竖直下落到最低点的过程中()A.弹簧弹性势能一直增加B.杆下端刚触地时人的动能最大C.人的重力势能一直减小D.人的机械能保持不变答案C考点一机械能守恒的理解与判断例1(多选)在如图1所示的物理过程示意图中,甲图中一端固定有小球的轻杆从右偏上30°角释放后绕光滑支点摆动;乙图中轻绳一端连着一小球,从右偏上30°角处自由释放;丙图中物体A正在压缩弹簧;丁图中不计任何阻力和定滑轮质量,A加速下落,B加速上升。
关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()图1A.甲图中小球机械能守恒B.乙图中小球机械能守恒C.丙图中物体A的机械能守恒D.丁图中A、B组成的系统机械能守恒答案AD解析甲图过程中轻杆对小球不做功,只有重力做功,小球的机械能守恒,故A 正确;乙图过程中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,故B错误;丙图中重力和系统内弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A 的机械能不守恒,故C错误;丁图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,故D正确。
机械能守恒定律及其应用
机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述机械能守恒定律是解决物理问题的重要定律。
利用机械能守恒定律解题,只涉及一个物体的始末,不涉及物理过程,简化了力学问题的求解。
介绍了机械能守恒定律及其表达式和守恒条件,并通过实例分析讨论了机械能守恒定律应用中的重点和难点问题。
关键词:机械能守恒定律重力势能变力做功稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 1机械能守恒定律是力学中重要的物理定律之一,是高中物理的重点和难点。
在高考中占有相当大的比重。
如果我们能巧妙地应用机械能守恒定律,我们就能很容易地解决运动学中的许多问题。
因此,正确理解和灵活运用机械能守恒定律是十分必要的。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 2机械能守恒定律的研究对象是一个或多个物体与地球组成的系统,重力和弹性是系统的内力。
守恒的条件是系统中只有重力或弹性做功,其他所有的力都不做功。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 5可以从以下两个方面理解:第一,一个物体只受重力影响。
比如在各种抛体运动中不考虑空气阻力时,物体的机械能守恒。
第二,只有重力或弹性做功,其他外力不做功或做功的代数和为零,所以机械能守恒。
比如物体从光滑的斜坡上滑下时,受到重力和斜坡支撑力的作用,斜坡支撑力不做功,所以物体的机械能守恒。
判定是否能守恒的方法:(1)工作判断。
分析系统的受力情况。
如果系统中只有重力或弹力做功,虽然受到其他力的作用,但不做功,机械能守恒。
(2)能量转换。
如果系统中存在势能和动能的相互转换,而机械能和其他形式的能量之间没有转换,那么机械能就是守恒的。
(3)对于像绳子的瞬时张力,物体间的非弹性碰撞这样的东西,除非题目另有说明,否则其机械能不守恒。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 3应用机械能守恒定律解题,一般需要以下五个步骤。
(1)确定研究对象――物体或系统。
当只有重力做功时,可选取一个物体为研究对象;当物体间存在弹力做功时,则要选取这几个物体构成的系统为研究对象。
机械能守恒定律及其应用教案
机械能守恒定律及其应用教案第一章:机械能守恒定律的引入1.1 教学目标让学生了解机械能的概念引导学生理解机械能守恒定律的定义使学生能够运用机械能守恒定律进行简单问题的计算1.2 教学内容机械能的定义及表示方法机械能守恒定律的表述机械能守恒定律的证明1.3 教学方法通过实例引入机械能的概念,引导学生思考机械能的变化通过实验演示机械能守恒的现象,让学生直观地理解机械能守恒定律利用数学方法证明机械能守恒定律,加深学生对定律的理解第二章:机械能守恒定律的应用2.1 教学目标使学生能够运用机械能守恒定律解决实际问题培养学生运用物理学知识解决工程问题的能力2.2 教学内容机械能守恒定律在简单运动中的应用机械能守恒定律在复杂运动中的应用2.3 教学方法通过实例分析,让学生学会运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,模拟复杂运动情况,帮助学生理解和应用机械能守恒定律第三章:机械能守恒定律在力学问题中的应用3.1 教学目标让学生掌握机械能守恒定律在力学问题中的应用方法培养学生解决力学问题的能力3.2 教学内容机械能守恒定律在直线运动中的应用机械能守恒定律在曲线运动中的应用3.3 教学方法通过典型例题,引导学生学会运用机械能守恒定律解决力学问题利用物理实验设备,进行力学实验,帮助学生理解和应用机械能守恒定律第四章:机械能守恒定律在工程问题中的应用4.1 教学目标使学生能够运用机械能守恒定律解决工程问题培养学生运用物理学知识解决实际问题的能力4.2 教学内容机械能守恒定律在机械设计中的应用机械能守恒定律在能源转换中的应用4.3 教学方法通过实际案例,让学生学会运用机械能守恒定律解决工程问题利用计算机软件,进行模拟计算,帮助学生理解和应用机械能守恒定律第五章:机械能守恒定律的综合应用5.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力5.2 教学内容机械能守恒定律在不同情境下的综合应用5.3 教学方法通过综合案例,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验,帮助学生理解和应用机械能守恒定律第六章:非保守力与机械能守恒6.1 教学目标让学生理解非保守力的概念引导学生掌握非保守力作用下机械能守恒的条件使学生能够分析并解决非保守力作用下的机械能守恒问题6.2 教学内容非保守力的定义与特点非保守力作用下机械能守恒的条件非保守力作用下的机械能守恒问题分析与计算6.3 教学方法通过实例讲解非保守力的概念及其对机械能守恒的影响利用数学方法分析非保守力作用下的机械能守恒条件通过实际问题引导学生运用机械能守恒定律解决非保守力作用下的物体运动问题第七章:机械能守恒定律在碰撞问题中的应用7.1 教学目标让学生掌握机械能守恒定律在碰撞问题中的应用培养学生分析并解决碰撞问题的能力7.2 教学内容碰撞问题的基本概念与分类机械能守恒定律在弹性碰撞中的应用机械能守恒定律在非弹性碰撞中的应用7.3 教学方法通过实例分析碰撞问题,引导学生理解并应用机械能守恒定律利用物理实验设备进行碰撞实验,帮助学生直观地理解碰撞现象结合数学方法与计算机软件,模拟碰撞过程,加深学生对机械能守恒定律在碰撞问题中的应用第八章:机械能守恒定律在地球物理学中的应用8.1 教学目标使学生了解机械能守恒定律在地球物理学中的应用培养学生运用物理学知识解决地球物理学问题的能力8.2 教学内容地球物理学中机械能守恒定律的应用实例机械能守恒定律在地球内部运动中的应用机械能守恒定律在地表运动中的应用8.3 教学方法通过地球物理学实例,让学生了解机械能守恒定律在地球物理学中的应用利用计算机软件与物理实验设备,模拟地球内部与地表运动,帮助学生理解并应用机械能守恒定律第九章:机械能守恒定律在现代科技中的应用9.1 教学目标让学生了解机械能守恒定律在现代科技领域的应用培养学生运用物理学知识解决实际问题的能力9.2 教学内容机械能守恒定律在航空航天领域的应用机械能守恒定律在新能源开发中的应用机械能守恒定律在其他现代科技领域的应用9.3 教学方法通过实例介绍机械能守恒定律在航空航天等领域的应用,引导学生了解并应用机械能守恒定律解决实际问题利用计算机软件与物理实验设备,模拟相关科技领域的运动过程,帮助学生理解并应用机械能守恒定律第十章:机械能守恒定律的综合练习与拓展10.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力10.2 教学内容机械能守恒定律在不同情境下的综合应用练习机械能守恒定律在实际工程问题中的应用拓展10.3 教学方法通过综合练习题,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验与计算,帮助学生理解和应用机械能守恒定律重点解析本文主要介绍了机械能守恒定律及其应用,分为十个章节。
新高考物理考试易错题易错点12机械能守恒定律及其应用附答案
易错点12 机械能守恒定律及其应用易错总结1.机械能守恒定律的成立条件不是合外力为零,而是除重力和系统内弹力外,其他力做功为零。
2.机械能守恒定律是对系统而言的,单个物体没有所谓的机械能守恒,正常所说的某物体的机械能守恒只是一种习惯说法,实际为该物体与地球间机械能守恒。
3.用机械能守恒定律列方程时始、末态的重力势能要选同一个零势能面。
4.虽然我们常用始、末态机械能相等列方程解题,但始、末态机械能相等与变化过程中机械能守恒含义不尽相同。
整个过程中机械能一直保持不变才叫机械能守恒,始、末态只是其中的两个时刻。
5.机械能守恒定律是能量转换与守恒定律的一个特例,当有除重力和系统内弹力以外的力对系统做功时,机械能不再守恒,但系统的总能量仍守恒。
6.能量守恒定律不需要限定条件,对所有过程都适用,但用来计算时须准确列出初态的总能量和末态的总能量。
7.若从守恒的角度到关系式,要选取恰当的参考面,确定初末状态的机械能。
8.若从转化的角度到关系式,要考虑动能和势能的变化量,与参考面无关。
9.用做功判断机械能守恒,只有重力做功或系统内弹力做功。
10.研究多个物体机械能守恒时,除能量关系外,请找速度关系,根据物体沿绳(杆)方向的分速度相等,建立两个连接体的速度关系式。
解题方法1.对机械能守恒条件的理解(1)只有重力做功,只发生动能和重力势能的相互转化.(2)只有弹力做功,只发生动能和弹性势能的相互转化.(3)只有重力和弹力做功,发生动能、弹性势能、重力势能的相互转化.(4)除受重力或弹力外,其他力也做功,但其他力做功的代数和为零.如物体在沿斜面的拉力F的作用下沿斜面运动,若已知拉力与摩擦力的大小相等,方向相反,在此运动过程中,其机械能守恒.2.判断机械能是否守恒的方法(1)利用机械能的定义直接判断:若动能和势能中,一种能变化,另一种能不变,则其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.3.机械能守恒定律常用的三种表达式(1)从不同状态看:E k1+E p1=E k2+E p2(或E1=E2)此式表示系统两个状态的机械能总量相等.(2)从能的转化角度看:ΔE k=-ΔE p此式表示系统动能的增加(减少)量等于势能的减少(增加)量.(3)从能的转移角度看:ΔE A增=ΔE B减此式表示系统A部分机械能的增加量等于系统剩余部分,即B部分机械能的减少量.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2019·云南省玉溪第一中学)如图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态。
机械能守恒定律及其应用教案
机械能守恒定律及其应用教案一、教学目标1. 让学生理解机械能守恒定律的概念及意义。
2. 培养学生运用机械能守恒定律解决实际问题的能力。
3. 引导学生掌握机械能守恒定律的实验方法和技巧。
二、教学内容1. 机械能守恒定律的定义及表达式。
2. 机械能守恒定律的应用实例。
3. 机械能守恒定律的实验操作步骤及注意事项。
三、教学过程1. 导入:通过分析生活中常见的机械能转化现象,引发学生对机械能守恒定律的思考。
2. 讲解:详细讲解机械能守恒定律的定义、表达式及适用条件。
3. 案例分析:分析多个机械能守恒定律的应用实例,让学生理解并掌握定律的应用方法。
4. 实验演示:进行机械能守恒定律的实验演示,让学生直观地观察到能量的转化过程。
5. 学生实验:分组进行机械能守恒定律的实验,培养学生动手操作能力和观察能力。
6. 总结:对本节课的内容进行总结,强调机械能守恒定律在实际生活中的应用。
四、教学评价1. 课堂问答:检查学生对机械能守恒定律的理解程度。
2. 实验报告:评估学生在实验中的操作技能和观察能力。
3. 课后作业:检验学生对机械能守恒定律的应用能力。
五、教学资源1. 课件:制作精美的课件,帮助学生直观地理解机械能守恒定律。
2. 实验器材:准备充足的实验器材,确保每个学生都能动手操作。
3. 参考资料:提供相关的参考资料,方便学生课后进一步学习。
教案编写:教案编辑专员六、教学重点与难点重点:1. 理解机械能守恒定律的定义和表达式。
2. 掌握机械能守恒定律的应用方法。
3. 熟悉机械能守恒定律的实验操作步骤。
难点:1. 判断系统中哪些能量是守恒的。
2. 处理复杂的机械能转化问题。
3. 在实验中准确测量和计算机械能的变化。
七、教学方法1. 讲授法:讲解机械能守恒定律的理论基础。
2. 案例分析法:通过具体实例展示机械能守恒定律的应用。
3. 实验教学法:通过实验演示和学生动手实验,加深对机械能守恒现象的理解。
4. 讨论法:鼓励学生在课堂上提问和讨论,提高解决问题的能力。
高一物理动能定理机械能守恒定律应用
一、求瞬间力做功问题
【例2】运动员踢球的平均作用力为200N,把一 个静止的质量为1kg的球以10m/s的速度踢出, 球在水平面上运动50m后停下,求运动员对球 做的功?
分析:
运动员对球做功是在瞬间完成的,用做功公式 W=FLcosa不好计算,可考虑动能定理;
软的细线跨过定滑轮,两端分别与物块A和B连结,A 的质量为4m,B的质量为m,开始时将B按在地面上不 动,然后放开手,让A沿斜面下滑而B上升。物块A与 斜面间无摩擦。设当A沿斜面下滑S 距离后(S小于斜 面的高度),细线突然断了。求物块B上升离地的最 大高度H.
A
30
B
A
A
B
B
解:一、
A、B一起运动:对系统由机械能守恒定律
C、重力做功500J D、支持力做功50J
2、将质量为m=2kg的一块石头从离地面H=2m高处
由静止开始释放,落入泥潭并陷入泥中h=5cm深处,
H
不计空气阻力,求泥对石头的平均阻力(g取10m/s2) 3、一个小球从光滑斜面的顶端A处由静
止释放,通过光滑圆轨道最高点B时, B 对轨道的压力大小等于重力,则斜面的
W 合=Ek2-Ek1 即: W人=Ek2-Ek1 =50J
vo
v=0
F
S=50m
【变式训练2】
某人从距地面h=25m高处水平抛出一小球,小球 质量为m=100g,出手时速度大小为v0=10m/s, 落地时速度大小为V=16m/s,取g=10m/s2,试 求:
(1) 人抛球时对小球做多少功?
(2)小球在空中运动时克服阻力做功多少? 答案: 5J 17.2J
v
F=f Vm
vm
机械能守恒定律及其应用
§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v,也是相对于地面的速度。
(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(3)“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选定一种表达式,列式求解。
4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。
机械能守恒2多物体机械能守恒问题
机械能守恒应用2 多物体机械能守恒问题一、轻杆连接系统机械能守恒 1、模型构建轻杆两端各固定一个物体,整个系统一起沿斜面运动或绕某点转动或关联运动,该系统即为机械能守恒中的轻杆模型. 2、模型条件(1).忽略空气阻力和各种摩擦.(2).平动时两物体线速度相等,转动时两物体角速度相等,关联运动时沿杆方向速度相等。
3、模型特点(1).杆对物体的作用力并不总是指向杆的方向,杆能对物体做功,单个物体机械能不守恒. (2).对于杆和球组成的系统,没有外力对系统做功,因此系统的总机械能守恒.例1.[转动]质量分别为m 和2m 的两个小球P 和Q ,中间用轻质杆固定连接,杆长为L ,在离P 球L3处有一个光滑固定轴O ,如图8所示.现在把杆置于水平位置后自由释放,在Q 球顺时针摆动到最低位置时,求:图8(1)小球P 的速度大小;(2)在此过程中小球P 机械能的变化量. 答案 (1)2gL 3 (2)增加49mgL 解析 (1)两球和杆组成的系统机械能守恒,设小球Q 摆到最低位置时P 球的速度为v ,由于P 、Q 两球的角速度相等,Q 球运动半径是P 球运动半径的两倍,故Q 球的速度为2v .由机械能守恒定律得 2mg ·23L -mg ·13L =12mv 2+12·2m ·(2v )2,解得v =2gL3. (2)小球P 机械能增加量ΔE =mg ·13L +12mv 2=49mgL[跟踪训练].如图5-3-7所示,在长为L 的轻杆中点A 和端点B 各固定一质量为m 的球,杆可绕无摩擦的轴O 转动,使杆从水平位置无初速度释放。
求当杆转到竖直位置时,轻杆对A 、B 两球分别做了多少功?图5-3-7解析:设当杆转到竖直位置时,A 球和B 球的速度分别为v A 和v B 。
如果把轻杆、两球组成的系统作为研究对象,那么由于杆和球的相互作用力做功总和等于零,故系统机械能守恒。
机械能守恒定律及其应用
机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的各种表达形式(1)222121v m h mg mv mgh '+'=+,即k p k p E E E E '+'=+; (2)0=∆+∆k P E E ;021=∆+∆E E ;K P E E ∆=∆-点评:用(1)时,需要规定重力势能的参考平面。
用(2)时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。
尤其是用K P E E ∆=∆-,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
2.应用举例【例1】如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。
AO 、BO 的长分别为2L和L 。
开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。
让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,游乐列车由许多节车厢组成。
列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L >2πR ).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。
试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v 0,才能使列车通过圆形轨道而运动到右边的水平轨道上?AB O【例4】如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?【例5】 如图所示,一根长为m 1,可绕O 轴在竖直平面内无摩擦转动的细杆AB ,已知m OB m OA 4.0;6.0==,质量相等的两个球分别固定在杆的B A 、端,由水平位置自由释放,求轻杆转到竖直位置时两球的速度?【例6】 小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时消除外力。
2024届高考一轮复习物理教案(新教材鲁科版):机械能守恒定律及其应用
第3讲 机械能守恒定律及其应用目标要求 1.知道机械能守恒的条件,理解机械能守恒定律的内容.2.会用机械能守恒定律解决单个物体或系统的机械能守恒问题.考点一 机械能守恒的判断1.重力做功与重力势能的关系 (1)重力做功的特点①重力做功与路径无关,只与始末位置的高度差有关. ②重力做功不引起物体机械能的变化. (2)重力势能 ①表达式:E p =mgh . ②重力势能的特点重力势能是物体和地球所共有的,重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关. (3)重力做功与重力势能变化的关系重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大.即W G =E p1-E p2=-ΔE p . 2.弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能. (2)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增大.即W =-ΔE p . 3.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.(2)表达式:mgh 1+12m v 12=mgh 2+12m v 22.1.物体所受的合外力为零,物体的机械能一定守恒.( × ) 2.物体做匀速直线运动,其机械能一定守恒.( × )3.物体的速度增大时,其机械能可能减小.(√)机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.(2)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功(或做功代数和为0),则机械能守恒.(3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统内也没有机械能与其他形式能的转化,则机械能守恒.例1忽略空气阻力,下列物体运动过程中满足机械能守恒的是()A.电梯匀速下降B.物体由光滑斜面顶端滑到斜面底端C.物体沿着斜面匀速下滑D.拉着物体沿光滑斜面匀速上升答案 B解析电梯匀速下降,说明电梯处于受力平衡状态,并不是只有重力做功,机械能不守恒,所以A错误;物体在光滑斜面上,受重力和支持力的作用,但是支持力的方向和物体位移的方向垂直,支持力不做功,只有重力做功,机械能守恒,所以B正确;物体沿着斜面匀速下滑,物体处于受力平衡状态,摩擦力和重力都要做功,机械能不守恒,所以C错误;拉着物体沿光滑斜面匀速上升,物体处于受力平衡状态,拉力和重力都要做功,机械能不守恒,所以D错误.例2(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关答案ABC解析在运动员到达最低点前,运动员一直向下运动,根据重力势能的定义可知重力势能始终减小,故选项A正确;蹦极绳张紧后的下落过程中,弹力方向向上,而运动员向下运动,所以弹力做负功,弹性势能增加,故选项B正确;对于运动员、地球和蹦极绳所组成的系统,蹦极过程中只有重力和弹力做功,所以系统机械能守恒,故选项C正确;重力做功是重力势能转化的量度,即W G=-ΔE p,而蹦极过程中重力做功只与初末位置的高度差有关,与重力势能零点的选取无关,所以重力势能的改变量与重力势能零点的选取无关,故选项D错误.例3(多选)如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁(不与槽粘连).现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是()A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球的机械能守恒C.小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统机械能守恒D.小球从下落到从右侧离开半圆形槽的过程中,机械能守恒答案BC解析当小球从半圆形槽的最低点运动到半圆形槽右侧的过程中,小球对半圆形槽的力使半圆形槽向右运动,半圆形槽对小球的支持力对小球做负功,小球的机械能不守恒,A、D错误;小球从A点向半圆形槽的最低点运动的过程中,半圆形槽静止,则只有重力做功,小球的机械能守恒,B正确;小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统只有重力做功,机械能守恒,C正确.考点二单物体机械能守恒问题1.表达式2.应用机械能守恒定律解题的一般步骤例4 (2023·福建省龙岩第一中学月考)如图所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,所有接触面光滑,固定曲面在B 处与水平面平滑连接,AB 之间的距离s =1 m ,固定斜面高为h =0.8 m ,质量m =0.2 kg 的小物块从斜面顶端由静止释放,g 取10 m/s 2,求:(1)物块到达B 点时的速度大小;(2)弹簧被压缩到最短时所具有的弹性势能. 答案 (1)4 m/s (2)1.6 J解析 (1)物块从斜面顶端到达底端时,由机械能守恒定律得mgh =12m v B 2解得v B =4 m/s(2)由能量关系可知弹簧被压缩到最短时所具有的弹性势能E p =mgh =1.6 J.例5 (2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R ,则v =LgR,故C 正确,A 、B 、D 错误.例6 (2021·浙江1月选考·20改编)如图所示,竖直平面内由倾角α=60°的斜面轨道AB 、半径均为R 的半圆形细圆管轨道BCDE 和16圆周细圆管轨道EFG 构成一游戏装置固定于地面,B 、E 两处轨道平滑连接,轨道所在平面与竖直墙面垂直.轨道出口处G 和圆心O 2的连线,以及O 2、E 、O 1和B 等四点连成的直线与水平线间的夹角均为θ=30°,G 点与竖直墙面的距离d =3R .现将质量为m 的小球从斜面的某高度h 处静止释放.小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力.(1)若释放处高度h =h 0,当小球第一次运动到圆管最低点C 时,求速度大小v C ; (2)求小球在圆管内与圆心O 1点等高的D 点所受弹力F N 与h 的关系式; (3)若小球释放后能从原路返回到出发点,高度h 应该满足什么条件? 答案 见解析解析 (1)从A 到C ,小球的机械能守恒,有 mgh 0=12m v C 2,可得v C =2gh 0(2)小球从A 到D ,由机械能守恒定律有 mg (h -R )=12m v D 2根据牛顿第二定律有F N =m v D 2R联立可得F N =2mg (hR -1)满足的条件h ≥R(3)第1种情况:不滑离轨道原路返回,由机械能守恒定律可知,此时h 需满足的条件是 h ≤R +3R sin θ=52R第2种情况:小球与墙面垂直碰撞后原路返回, 小球与墙面碰撞后,进入G 前做平抛运动,则 v x t =v x v yg =d ,其中v x =v G sin θ,v y =v G cos θ故有v G sin θ·v G cos θg =d ,可得v G =2gR由机械能守恒定律有mg (h -52R )=12m v G 2可得h =92R .考点三 系统机械能守恒问题1.解决多物体系统机械能守恒的注意点(1)对多个物体组成的系统,要注意判断物体运动过程中系统的机械能是否守恒.一般情况为:不计空气阻力和一切摩擦,系统的机械能守恒.(2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系.(3)列机械能守恒方程时,一般选用ΔE k =-ΔE p 或ΔE A =-ΔE B 的形式. 2.几种实际情景的分析 (1)速率相等情景注意分析各个物体在竖直方向的高度变化. (2)角速度相等情景①杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.②由v=ωr知,v与r成正比.(3)某一方向分速度相等情景(关联速度情景)两物体速度的关联实质:沿绳(或沿杆)方向的分速度大小相等.(4)含弹簧的系统机械能守恒问题①由于弹簧发生形变时会具有弹性势能,系统的总动能将发生变化,若系统除重力、弹簧弹力以外的其他力不做功,系统机械能守恒.②弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.③对同一弹簧,弹性势能的大小由弹簧的形变量决定,弹簧的伸长量和压缩量相等时,弹簧的弹性势能相等.考向1速率相等情景例7(多选)(2023·福建省厦门外国语学校月考)如图所示,半径为R的光滑圆环固定在竖直面内,质量均为m的A、B两球用长度为2R的轻杆连接套在圆环上,开始时轻杆竖直并同时由静止释放两球.当A球运动到B的初始位置时,轻杆刚好水平,重力加速度为g,则从开始运动到轻杆水平的过程中,下列说法正确的是()A.小球A、B的机械能均保持守恒B.小球A、B组成的系统机械能守恒C.轻杆水平时小球A的速度大小为2gRD.轻杆水平时小球B的速度大小为2gR答案BD解析由于环是光滑的,因此A、B组成的系统机械能守恒,当杆水平时,设A、B两球的速度大小均为v,由题意可知mg×2R=12×2m v2,则v=2gR,因为A球的重力势能转化为了A球和B球的动能,因此从开始到杆水平时,B球的机械能增加,则A球的机械能减少,故B、D正确,A、C错误.多个物体组成的系统,应用机械能守恒时,先确定系统中哪些能量增加、哪些能量减少,再用ΔE增=ΔE减(系统内一部分增加的机械能和另一部分减少的机械能相等)解决问题.考向2角速度相等情景例8(多选)(2023·安徽滁州市定远县第三中学模拟)轮轴机械是中国古代制陶的主要工具.如图所示,轮轴可绕共同轴线O自由转动,其轮半径R=20 cm,轴半径r=10 cm,用轻质绳缠绕在轮和轴上,分别在绳的下端吊起质量为2 kg、1 kg的物块P和Q,将两物块由静止释放,释放后两物块均做初速度为0的匀加速直线运动,不计轮轴的质量及轴线O处的摩擦,重力加速度g取10 m/s2.在P从静止下降1.2 m的过程中,下列说法正确的是()A.P、Q速度大小始终相等B.Q上升的距离为0.6 mC.P下降1.2 m时Q的速度大小为2 3 m/sD.P下降1.2 m时的速度大小为4 m/s答案BD解析由题意知轮半径R=20 cm,轴半径r=10 cm,根据线速度与角速度关系可知v Pv Q =ωR ωr=2 1,故A项错误;在P从静止下降1.2 m的过程中,由题意得h Ph Q=v P t vQt=21,解得h Q=0.6 m,故B 项正确;根据机械能守恒得m P gh P =12m P v P 2+12m Q v Q 2+m Q gh Q ,由A 项和B 项知v P v Q =21,h Q =0.6 m ,解得v Q =2 m/s ,v P =4 m/s ,故C 项错误,D 项正确.考向3 关联速度情景例9 (多选)(2023·福建厦门市湖滨中学月考)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .小环到达B 处时,重物上升的高度也为d B .小环在B 处的速度与重物上升的速度大小之比等于22C .小环从A 运动至B 点过程中,小环减少的重力势能大于重物增加的机械能D .小环在B 处时,小环速度大小为(3-22)gd 答案 CD解析 小环到达B 处时,重物上升的高度应为绳子缩短的长度,即h =2d -d =(2-1)d ,故A 错误;沿绳子方向的速度大小相等,将小环速度沿绳子方向与垂直于绳子方向正交分解,应满足v 环cos θ=v 物,即v 环v 物=1cos θ=2,故B 错误;环下滑过程中无摩擦力做功,只有重力和系统内的弹力做功,故系统机械能守恒,环减小的机械能等于重物增加的机械能,所以小环减少的重力势能减去小环增加的动能等于重物增加的机械能,故小环减少的重力势能大于重物增加的机械能,故C 正确;小环和重物组成的系统机械能守恒,故mgd -12m v环2=12×2m v 物2+2mgh ,联立解得v 环=()3-22gd ,故D 正确.考向4 含弹簧的系统机械能守恒问题例10(多选)如图所示,一根轻弹簧一端固定在O点,另一端固定一个带有孔的小球,小球套在固定的竖直光滑杆上,小球位于图中的A点时,弹簧处于原长,现将小球从A点由静止释放,小球向下运动,经过与A点关于B点对称的C点后,小球能运动到最低点D点,OB垂直于杆,则下列结论正确的是()A.小球从A点运动到D点的过程中,其最大加速度一定大于重力加速度gB.小球从B点运动到C点的过程,小球的重力势能和弹簧的弹性势能之和可能增大C.小球运动到C点时,重力对其做功的功率最大D.小球在D点时弹簧的弹性势能一定最大答案AD解析在B点时,小球的加速度为g,在BC间弹簧处于压缩状态,小球在竖直方向除受重力外还有弹簧弹力沿竖直方向向下的分力,所以小球从A点运动到D点的过程中,其最大加速度一定大于重力加速度g,故A正确;由机械能守恒定律可知,小球从B点运动到C点的过程,小球做加速运动,即动能增大,所以小球的重力势能和弹簧的弹性势能之和一定减小,故B错误;小球运动到C点时,由于弹簧的弹力为零,合力为重力G,所以小球从C点往下还会加速一段,所以小球在C点的速度不是最大,即重力的功率不是最大,故C错误;D点为小球运动的最低点,速度为零,小球机械能最小,由小球和弹簧组成的系统运动过程中只有重力做功,系统机械能守恒,所以小球在D点时弹簧的弹性势能最大,故D正确.例11如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放A后,A沿斜面下滑至速度最大时,C恰好离开地面.求:(1)斜面的倾角α;(2)A球获得的最大速度v m的大小.答案(1)30°(2)2g m 5k解析(1)由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面,A的加速度此时为零.由牛顿第二定律得4mg sin α-2mg=0则sin α=12,α=30°.(2)初始时系统静止且细线无拉力,弹簧处于压缩状态,设弹簧压缩量为Δx,对B:kΔx=mg 因α=30°,则C球离开地面时,弹簧伸长量也为Δx,故弹簧弹性势能变化量为零,A、B、C三小球和弹簧组成的系统机械能守恒,有4mg·2Δx·sin α-mg·2Δx=12(5m)v m2联立解得v m=2g m5k.课时精练1.如图所示,斜劈劈尖顶着竖直墙壁静止在水平面上.现将一小球从图示位置由静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法中正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能的减少量等于斜劈动能的增加量答案 B解析不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,系统机械能守恒,B正确;斜劈动能增加,重力势能不变,故斜劈的机械能增加,C错误;由系统机械能守恒可知,小球重力势能的减少量等于斜劈动能的增加量和小球动能的增加量之和,D 错误;斜劈对小球的弹力与小球位移的夹角大于90°,故弹力做负功,A 错误.2.(2021·海南卷·2)水上乐园有一末段水平的滑梯,人从滑梯顶端由静止开始滑下后落入水中.如图所示,滑梯顶端到末端的高度H =4.0 m ,末端到水面的高度h =1.0 m .取重力加速度g =10 m/s 2,将人视为质点,不计摩擦和空气阻力.则人的落水点到滑梯末端的水平距离为( )A .4.0 mB .4.5 mC .5.0 mD .5.5 m 答案 A解析 设人从滑梯由静止滑到滑梯末端速度为v ,根据机械能守恒定律可知mgH =12m v 2,解得v =4 5 m/s ,从滑梯末端水平飞出后做平抛运动,竖直方向做自由落体运动,根据h =12gt 2可知t =2h g=2×1.010s =15s ,水平方向做匀速直线运动,则人的落水点距离滑梯末端的水平距离为x =v t =45×15m =4.0 m ,故选A. 3.质量为m 的小球从距离水平地面高H 处由静止开始自由落下,取水平地面为参考平面,重力加速度大小为g ,不计空气阻力,当小球的动能等于重力势能的2倍时,经历的时间为( ) A.6H g B .2H 3g C.2H 3gD.2H g答案 B解析 设下降h 时,动能等于重力势能的2倍,根据机械能守恒:mgH =mg (H -h )+E k 即:mgH =3mg (H -h ),解得h =23H ,根据h =12gt 2解得t =2H3g,故选B. 4.(2023·武汉东湖区联考)如图所示,有一条长为L =1 m 的均匀金属链条,有一半在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/s B.522 m/sC. 5 m/sD.352m/s 答案 A解析 设链条的质量为2m ,以开始时链条的最高点的重力势能为零,链条的机械能为E =-12×2mg ·L 4sin 30°-12×2mg ·L 4=-38mgL ,链条全部滑出后,动能为E k ′=12×2m v 2,重力势能为E p ′=-2mg ·L 2,由机械能守恒定律可得E =E k ′+E p ′,即-38mgL =m v 2-mgL ,解得v=2.5 m/s ,故A 正确,B 、C 、D 错误.5.(多选)如图,一个质量为0.9 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.(取g =10 m/s 2)下列说法正确的是( )A .小球做平抛运动的初速度v 0=2 3 m/sB .P 点和C 点等高C .小球到达圆弧最高点C 点时对轨道的压力大小为12 ND .P 点与A 点的竖直高度h =0.6 m 答案 CD解析 小球恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧,则小球到A 点时的速度与水平方向的夹角为θ,所以v 0=v x =v A cos θ=2 m/s ,选项A 错误;小球到A 点时的竖直分速度v y =v A sin θ=2 3 m/s ,由平抛运动规律得v y 2=2gh ,解得h =0.6 m ,而AC 的竖直距离为R +R cos θ=0.45 m ,可知P 点高于C 点,选项B 错误,D 正确;取A 点的重力势能为零,由机械能守恒定律得12m v A 2=12m v C 2+mg (R +R cos θ),代入数据得v C =7 m/s ,在C 点时由牛顿第二定律得N C +mg =m v C 2R,代入数据得N C =12 N ,根据牛顿第三定律,小球对轨道的压力大小N C ′=N C =12 N ,选项C 正确.6.如图所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC 部分水平,质量均为m的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,小球可视为质点,开始时a 球处于圆弧上端A 点,由静止开始释放小球和轻杆,使其沿光滑弧面下滑,重力加速度为g ,下列说法正确的是( )A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球都滑到水平轨道上时速度大小均为2gRD .从释放a 、b 球到a 、b 球都滑到水平轨道上,整个过程中轻杆对a 球做的功为12mgR答案 D解析 对于单个小球来说,杆的弹力做功,小球机械能不守恒,A 、B 错误;两个小球组成的系统只有重力做功,所以系统的机械能守恒,故有mgR +mg (2R )=12·2m v 2,解得v =3gR ,C 错误;a 球在下滑过程中,杆对小球做功,重力对小球做功,故根据动能定理可得W +mgR =12m v 2,v =3gR ,联立解得W =12mgR ,D 正确.7.(多选)如图所示,质量为M 的小球套在固定倾斜的光滑杆上,原长为l 0的轻质弹簧一端固定于O 点,另一端与小球相连,弹簧与杆在同一竖直平面内.图中AO 水平,BO 间连线长度恰好与弹簧原长相等,且与杆垂直,O ′在O 的正下方,C 是AO ′段的中点,θ=30°.现让小球从A 处由静止释放,重力加速度为g ,下列说法正确的有( )A .下滑过程中小球的机械能守恒B .小球滑到B 点时的加速度大小为32g C .小球下滑到B 点时速度最大D .小球下滑到C 点时的速度大小为2gl 0 答案 BD解析 下滑过程中小球的机械能会与弹簧的弹性势能相互转化,因此小球的机械能不守恒,故A 错误;因为在B 点,弹簧恢复原长,因此重力沿杆的分力提供加速度,根据牛顿第二定律可得mg cos 30°=ma ,解得a =32g ,故B 正确;到达B 点时加速度与速度方向相同,因此小球还会加速,故C 错误;因为C 是AO ′段的中点,θ=30°,由几何关系知当小球到C 点时,弹簧的长度与在A 点时相同,故在A 、C 两位置弹簧弹性势能相等,小球重力做的功全部转化为小球的动能,有mgl 0=12m v C 2,解得v C =2gl 0,故D 正确.8.(2023·广东省深圳实验学校、湖南省长沙一中高三联考)如图所示,一根长为3L 的轻杆可绕水平转轴O 转动,两端固定质量均为m 的小球A 和B, A 到O 的距离为L ,现使杆在竖直平面内转动,B 运动到最高点时,恰好对杆无作用力,两球均视为质点,不计空气阻力和摩擦阻力,重力加速度为g .当B 由最高点第一次转至与O 点等高的过程中,下列说法正确的是( )A .杆对B 球做正功 B .B 球的机械能守恒C .轻杆转至水平时,A 球速度大小为10gL5D .轻杆转至水平时,B 球速度大小为310gL5答案 D解析 由题知B 运动到最高点时,恰好对杆无作用力,有mg =m v 22L ,B 在最高点时速度大小为v =2gL ,因为A 、B 角速度相同,A 的转动半径只有B 的一半,所以A 的速度大小为v2,当B 由最高点转至与O 点等高时,取O 点所在水平面的重力势能为零,根据A 、B 机械能守恒,mg ·2L -mgL +12m ⎝⎛⎭⎫v 22+12m v 2=12m v A 2+12m v B 2,2v A =v B ,解得v A =310gL 10,v B =310gL5,故C 错误,D 正确;设杆对B 做的功为W ,对B 由动能定理得mg ·2L +W =12m v B 2-12m v 2,解得W =-65mgL ,所以杆对B 做负功,B 机械能不守恒,故A 、B 错误.9.(2023·广东省佛山一中高三月考)如图所示,物块A 套在光滑水平杆上,连接物块A 的轻质细线与水平杆间所成夹角为θ=53°,细线跨过同一高度上的两光滑定滑轮与质量相等的物块B 相连,定滑轮顶部离水平杆距离为h =0.2 m ,现将物块B 由静止释放,物块A 、B 均可视为质点,重力加速度g =10 m/s 2,sin 53°=0.8,不计空气阻力,则( )A .物块A 与物块B 速度大小始终相等 B .物块B 下降过程中,重力始终大于细线拉力C .当物块A 经过左侧定滑轮正下方时,物块B 的速度最大D .物块A 能达到的最大速度为1 m/s 答案 D解析 根据关联速度得v A cos θ=v B ,所以二者的速度大小不相等,A 错误;当物块A 经过左侧定滑轮正下方时细线与杆垂直,则根据选项A 可知,物块B 的速度为零,所以B 会经历减速过程,减速过程中重力会小于细线拉力,B 、C 错误;当物块A 经过左侧定滑轮正下方时,物块A 的速度最大,根据系统机械能守恒得mg (h sin θ-h )=12m v 2,解得v =1 m/s ,D 正确.10.(2023·四川省泸县第一中学模拟)如图所示,把质量为0.4 kg 的小球放在竖直放置的弹簧上,并将小球缓慢向下按至图甲所示的位置,松手后弹簧将小球弹起,小球上升至最高位置的过程中其速度的平方随位移的变化图像如图乙所示,其中0.1~0.3 m 的图像为直线,弹簧的质量和空气的阻力均忽略不计,重力加速度g =10 m/s 2,则下列说法正确的是( )A .小球与弹簧分离时对应的位移小于0.1 mB .小球的v 2-s 图像中最大的速度为v 1=2 m/sC .弹簧弹性势能的最大值为E p =1.2 JD .压缩小球的过程中外力F 对小球所做的功为W F =0.6 J 答案 C解析 由于不计空气阻力,则小球与弹簧分离后,小球加速度为g ,说明小球在s =0.1 m 时刚好回到弹簧原长位置,小球与弹簧分离,即分离时对应的位移为0.1 m ,A 错误;对直线段有v 22=2g (0.3 m -0.1 m),解得v 2=2 m/s ,由题图可知最大速度v 1>v 2,B 错误;从释放到小球速度为0的过程,弹性势能全部转化为小球的机械能,以最低点为重力势能参考平面,小球的机械能为mgh 0=0.4×10×0.3 J =1.2 J ,故弹簧弹性势能最大值为E p =1.2 J ,C 正确;向下按h =0.1 m 的过程,根据功能关系有W F +mgh =E p ,解得W F =0.8 J ,D 错误. 11.(2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg(ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F 向=2mω2R设F 与水平方向的夹角为α,则F cos α=F 向 F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR。
机械能守恒及其应用
实验验证:机械能守恒定律可以通过 实验进行验证。例如,通过测量物体 自由下落的加速度和高度,可以验证 机械能守恒定律的正确性。
对未来研究的展望
• 深入研究机械能守恒定律的原理和本质:尽管机械能守恒定律已经得到了广泛 的应用和研究,但是其原理和本质仍然需要进一步深入探讨。例如,可以研究 机械能守恒定律在不同条件下的适用范围和限制条件,以及与其他物理定律的 关系和相互作用。
非弹性碰撞的影响
非弹性碰撞导致能量损失
在非弹性碰撞中,机械能不会完全守恒,部 分能量会转化为热能或其他形式的能量。
非弹性碰撞对系统性能的 影响
非弹性碰撞可能导致系统性能的降低,如零 件的磨损或结构的损坏。
重力以外的力做功的影响
要点一
其他外力对机械能的影响
除了重力外,其他力也可能对机械能产生影响,如电磁力 或流体动力。
• 加强实验研究和验证:为了更好地应用和发展机械能守恒定律,需要加强实验 研究和验证。例如,可以通过设计更加精确和可靠的实验装置和方法,提高实 验的精度和可靠性;同时也可以通过实验研究和验证来探索机械能守恒定律在 不同条件下的表现和特性。
THANKS
感谢观看
详细描述
弹性势能的变化等于弹力所做的功。如果系统只受到重力和弹力作用,且没有外力做功,则弹性势能的减少等于 系统动能的增加,从而证明了机械能守恒。
03
机械能守恒的应用场景
自由落体运动
总结词
自由落体运动是机械能守恒的重要应用场景之一,通过研究自由落体运动,可以深入理解机械能守恒 的原理。
详细描述
自由落体运动是指物体仅受重力作用,沿直线方向下落的运动。在自由落体运动中,物体的动能和势 能之间相互转化,总机械能保持不变,这正是机械能守恒的表现。
机械能守恒定律的应用(二课时)课件-高一物理(教科版2019必修第二册)
A.环到达B处时,重物上升的高度
h
d 2
B.环到达B处时,环与重物的速度大小相等
C.环从A到B,环减少的机械能大于重物增加的机械能
D.环能下降的最大高度为
3d 4
【解析】A.根据几何关系,环从 A 下滑至 B 点时,下降的高度为 d,则重物上升处时,对环的速度沿绳子方向和
应用 范围
能用机械能守恒定律解决的问题都能用动能定理解 决;能用动能定理解决的问题不一定能用机械能守 恒定律解决。
结论 动能定理比机械能守恒定律应用更广泛,更普遍
注意: 机械能守恒定律只涉及能量,不涉及功,强调能量转化; 动能定理只涉及功和动能,强调功是能转化的量度。
热身训练
1.如图所示,三个质量相同的小球,从同一高度由静止释放,其中a球沿竖 直方向自由下落,b球沿光滑斜面下滑,c球沿 光滑圆弧下滑.不计空气阻
量为m的小球B,OB中点A固定一个质量为m的小球A,若OB杆从水平位置
静止开始释放转到竖直位置的过程中,求
(1)A、B球摆到最低点的速度大小各是多少?
O
(2)轻杆对A、B球各做功多少?
A
B
(3)轻杆对A、B球所做的总功为多少?
(1)求A、B球摆到最低点的速度大小?
O
Al B
lm
m
vA
A、B系统机械能守恒
分别以A、B两球为研究对象,机械能守恒吗?
WA EA 0.4mgl WB EB 0.4mgl
(3)求轻杆对A、B球所做的总功为多少?
W总=WA+WA 0
A、B系统机械能守恒
【 典 例 2 】 如图所示,长为2L的轻质杆一端用铰链固定于O点,杆的中点固 定有质量为m的小球A,杆的另一端固定有质量为2m的小球B。现将杆从水 平位置由静止释放,不计杆、球系统在竖直平面内转动过程中所受的摩擦 ,重力加速度为g,求: (1)刚释放杆时,B球的加速度大小a; (2)由水平位置转过90°时,杆转动的角速度ω; (3)杆转至竖直位置时,杆对铰链的作用力F。
机械能守恒定律及其应用
机械能守恒定律及其应用目标认知学习目标1.通过实例体会动能和势能可以相互转化,知道什么是机械能。
2.通过公式推导验证机械能守恒。
3.理解机械能守恒定律的内容、条件,学会应用守恒的观点看待问题。
4.知道应用机械能守恒定律解题的步骤。
学习重点和难点1.针对具体的物理现象和问题,正确应用机械能守恒定律。
2.判断被研究对象在经历的研究过程中机械能是否守恒,在应用时要找准始末状态的机械能。
知识要点梳理知识点一:动能和势能间的相互转化要点诠释:重力对物体做正功时,物体的重力势能减少了,减少的重力势能转化成了动能;重力对物体做负功时,物体的动能减少了,减少的动能转化成了重力势能;重力势能和动能之间可以相互转化,弹性势能和动能之间也可以相互转化。
知识点二:机械能守恒定律要点诠释:1.机械能物体的动能和势能之和称为物体的机械能。
(势能包含重力势能和弹性势能)2.机械能守恒定律(1)机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,叫作机械能守恒定律。
(2)机械能守恒定律的推导(3)机械能守恒的条件:只有重力或弹力做功。
说明:只有重力或弹力做功这一条件可以理解为三层含义:第一,只受重力或弹力;第二,除重力和弹力做功外,其他力不做功;第三,除重力和弹力做功外,其他力做功的代数和为零。
知识点三:机械能守恒定律的应用要点诠释:1.机械能守恒定律的三种表达式(1)守恒的观点:;即初状态的动能与势能之和等于末状态的动能与势能之和。
(2)转化的观点:;即动能(势能)的增加量等于势能(动能)的减少量。
(3)转移观点:;即由A、B两个物体组成的系统中,A物体的机械能的增加量等于B物体机械能的减少量。
2.应用机械能守恒定律解题的基本步骤①根据题意,选取研究对象(物体或相互作用的物体系);②分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件;③若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值;④据机械能守恒定律列方程,并代入数值求解。
单体机械能守恒问题
一.必备知识精讲1重力势能〔1〕定义:物体由于被举高而具有的能量,叫作重力势能。
〔2〕表达式:E p=mgh,其中h是相对于参考平面的高度。
〔3〕特点:①系统性:重力势能是地球与物体所组成的“系统〞所共有的。
②相对性:重力势能的数值与所选参考平面有关。
③标量性:重力势能是标量,正负表示大小。
〔4〕重力做功的特点①物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关。
②重力做功不引起物体机械能的变化。
〔5〕重力做功与重力势能变化的关系①)定性关系:重力对物体做正功,重力势能减小,重力对物体做负功,重力势能增大。
②定量关系:重力对物体做的功等于物体重力势能的减少量,即W G=E p1-E p2=-(E p2-E p1)=-ΔE p。
2. 弹性势能〔1〕定义:发生弹性形变的物体的各局部之间,由于有弹力的相互作用,也具有势能,这种势能叫作弹性势能。
〔2〕大小:弹簧的弹性势能跟弹簧的形变量及劲度系数有关,形变量越大,劲度系数越大,弹性势能就越大。
〔3〕弹力做功与弹性势能变化的关系弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p。
3. 机械能守恒定律〔1〕内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。
〔2〕常用的三种表达式①守恒式: E1=E2或E k1+E p1=E k2+E p2。
E1、E2分别表示系统初末状态时的总机械能。
②转化式:ΔE k=-ΔE p或ΔE k增=ΔE p减。
表示系统势能的减少量等于动能的增加量。
③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减。
表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能。
〔3〕机械能守恒的条件①系统只受重力或弹簧弹力的作用,不受其他外力.②系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.③系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化.〔4〕机械能保持不变判断方法①用定义判断:假设物体动能、势能均不变,那么机械能不变。
机械能守恒定律
机械能守恒定律机械能守恒定律是物理学中的重要概念,它描述了一个封闭系统在没有外力做功的情况下,机械能的总量保持不变。
这个定律在许多物理问题的解答中都起到了关键作用。
本文将探讨机械能守恒定律的基本概念及其应用。
一、机械能的定义机械能是指一个物体的动能和势能的总和。
动能是物体由于运动而具有的能量,它与物体的质量和速度相关。
势能是物体由于其位置而具有的能量,它与物体的质量、重力加速度以及高度相关。
在机械能守恒定律中,机械能的总量在封闭系统内始终保持恒定。
二、机械能守恒定律的表达式机械能守恒定律可以用以下表达式表示:E = K + U其中,E表示机械能的总量,K表示动能,U表示势能。
当没有外力对系统做功时,机械能守恒定律可以用如下形式表示:E初 = E末即,系统的初始机械能等于系统的末态机械能。
三、机械能守恒定律的应用机械能守恒定律可以应用于许多物理问题的解答。
下面以一些具体例子来说明其应用。
1. 自由落体问题:当一个物体从高处自由落下时,其在下落过程中动能逐渐增加,而势能逐渐减小。
根据机械能守恒定律,物体的总机械能在运动过程中保持不变。
2. 弹簧弹性势能问题:当一个质点与弹簧发生弹性碰撞时,质点的动能会转化为弹簧的势能,同时弹簧的势能会转化为质点的动能。
根据机械能守恒定律,质点和弹簧所具有的总机械能在碰撞过程中保持不变。
3. 滑坡问题:当一个物体从斜坡上滑下时,其在滑行过程中势能减小,动能增加。
在没有摩擦力的情况下,根据机械能守恒定律,物体的总机械能保持不变。
四、机械能守恒定律的局限性尽管机械能守恒定律在许多问题中具有广泛的应用,但在一些特殊情况下,它可能不适用。
例如,在存在摩擦力的情况下,物体的机械能会逐渐损失,无法保持恒定。
此外,在涉及到非弹性碰撞或复杂的能量转化过程中,机械能守恒定律也可能无法有效应用。
五、结论机械能守恒定律是一个重要的物理学原理,它描述了一个封闭系统中机械能的总量保持不变。
掌握了机械能守恒定律的应用方法,可以帮助我们解答各种与能量转化有关的物理问题。