电阻应变式传感器的原理与应用
电阻应变式传感器
当温度变化∆t时,电阻丝电阻的变化值为:
∆Rα=Rt-R0=R0α0∆t
2) 试件材料和电阻丝材料的线膨胀系数的影响 当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如 何变化,电阻丝的变形仍阻丝材料的线膨胀系数不同时,由于环境温度的 变化,电阻丝会产生附加变形,从而产生附加电阻变化。 设电阻丝和试件在温度为0℃时的长度均为l0, 它们的线膨胀 系数分别为βs和βg,若两者不粘贴,则它们的长度分别为
当电桥平衡时, Uo=0, 则有 或 R1R4 = R2R3
R1 R3 = R2 R4
电桥平衡条件:相邻两臂 电桥平衡条件 电阻的比值应相等, 或相 对两臂电阻的乘积相等。
电桥接入的是电阻应变片时,即为应变桥。当一个 桥臂、两个桥臂乃至四个桥臂接入应变片时,相应 的电桥为单臂桥、半桥和全臂桥。 2.不平衡直流电桥的工作原理及电压灵敏度
R1 Z1 = R1 + jwR1C1
R2 Z2 = R2 + jwR2C2
Z 3 = R3
输出电压
⋅ ⋅
Z 4 = R4
U ( Z1Z 4 − Z 2 Z 3 ) U0 = ( Z1 + Z 2 )( Z 3 + Z 4 )
要满足电桥平衡条件, 即U0=0, 则有 Z1 Z4 = Z2 Z3
或
∆R ∆ρ = (1 + 2 µ )ε + R ρ
∆ρ ∆R R = (1 + 2 µ ) + ρ
ε
ε
通常把单位应变能引起的电阻值变化称为金属电 阻丝的灵敏度系数。其物理意义是单位应变所引起的 电阻相对变化量, 其表达式为 ∆ρ ρ K 0 = 1 + 2µ + ε ∆R = k 0ε 因此 R 灵敏度系数受两个因素影响: ①受力后材料几何尺寸的变化, 即(1+2µ); ②受力后材料的电阻率发生的变化, 即∆ρ/
电阻应变式传感器的工作原理及应用
电阻应变式传感器的工作原理及应用付晓鸥(本溪市机电工程学校辽宁本溪117000)【摘要】:本文阐述了应变效应、电阻应变式传感器工作原理及其应用。
【关键词】:应变效应;电阻应变式传感器;应用。
在日常生活中,我们大量的使用传感器,例如:电视机的遥控器利用红外光发射接收传感器控制电视;麦克风是一种把声音信号转换成电信号的传感器。
传感器亦称换能器,是利用各种物理、化学及生物效应实现非电量按一定的规律转换成便于处理和传输的电量的装置。
电阻应变式传感器是将压力这个物理量转换成电信号输出的一种传感器,随着加工工艺,粘贴工艺等的技术进步,电阻应变式压力传感器的准确度,可靠性大大提高,在自动检测与控制技术领域里得到了广泛应用。
一、应变效应导体或半导体材料因受外力作用,电阻值随其机械变形而发生变化的物理现象称之为应变效应。
金属丝电阻R可表达为R=ρl/A=ρl/пr2.式中ρ为电阻率,l 为电阻丝长度,A为电阻丝横截面积。
当沿电阻丝长度方向施加均匀力时,式中l、ρ、r都将发生变化。
导致电阻值发生变化。
即得到以下结论:当金属丝受外力作用而伸长时长度增加,截面积减小,电阻值增大;当金属丝受外力作用压缩时,长度减小,截面积增加,电阻值减小。
电阻值变化通常较小。
实验证明:电阻应变片的电阻应变εr=ΔR/R与电阻应变片的纵向应变εx在很大范围内是线性的.即:εr=ΔR/R=kεx式中ΔR/R为电阻应变片的电阻应变,k 为电阻丝的灵敏度,εr为被测件在电阻应变片上产生的应变。
康铜丝是目前应用最广泛的金属丝式应变材料,这是因为它的灵敏度系数稳定,电阻温度系数较小,加工工艺性能好易于焊接,为此国内外多以康铜丝作为金属应变式应变片材料。
二、电阻应变式传感器的工作原理传感器一般由敏感元件,传感元件和测量电路3部分组成,以电阻应变计为转换元件的电阻应变式传感器,主要由弹性元件、粘贴于其上的电阻应变片、输出电信号的电桥电路及补偿电路构成。
第2章 电阻应变式传感器
( 2 2 )
传感器原理与应用——第二章
电阻相对变化量为:
dR dL d dA R L A
若电阻丝是圆形的, 则A=πr ² 微分 ,对r
( 3 2 )
l
2r
2(r-dr)
F
l+ dl
得dA=2πr dr,则:
dA 2rdr dr 2 2 A r r
图2-1 金属丝的应变效应
• 应变式电阻传感器是目前测量力、力矩、 压力、加速度、重量 等参数应用最广泛的传感器。
传感器原理与应用——第二章
2.1 电阻应变片的基本原理 应变式传感器的核心元件是电阻应变片,它可将试件 上的应力变化转换成电阻变化。 2.1.1 应变效应 当导体或半导体在受到外界力的作用而不能产生位移
时,则会产生机械变形(它的几何形状和尺寸将
指 示 应 变 卸载
Δε
εi
加载 机械应变εR 图2-6 应变片的机械滞后
传感器原理与应用——第二章
产生原因:应变片在承受机械应变后的残余变形,使
敏感栅电阻发生少量不可逆变化;在制造或粘贴应变
片时,敏感栅受到的不适当的变形或粘结剂固化不充
分等。
机械滞后值还与应变片所承受的应变量有关,加载 时的机械应变愈大,卸载时的滞后也愈大。所以,通常 在实验之前应将试件预先加、卸载若干次,以减少因机 械滞后所产生的实验误差。
很宽的范围内均为线性关系。
传感器原理与应用——第二章
即:
R
R
K 或
K
R
R
( 14 2 )
K为金属应变片的灵敏系数。
测量结果表明,应变片的灵敏系数K恒小于线材的
灵敏系数KS。原因主要是胶层传递变形失真及横向效
电阻应变式传感器实验报告
电阻应变式传感器实验报告电阻应变式传感器实验报告导言:电阻应变式传感器是一种常见的传感器类型,广泛应用于各个领域。
本实验旨在通过实际操作和数据收集,了解电阻应变式传感器的原理和应用。
一、实验目的本实验的目的是通过测量电阻应变式传感器在不同应变下的电阻变化,了解其工作原理和特性。
同时,通过实验数据的处理,掌握电阻应变式传感器的灵敏度和线性范围。
二、实验器材和原理1. 实验器材:- 电阻应变式传感器- 电源- 电压表- 电流表- 变压器- 桥式电路- 数据采集仪2. 实验原理:电阻应变式传感器是利用材料在受力作用下产生应变,从而改变电阻值的原理。
当传感器受到外力作用时,其内部的应变片会产生应变,从而导致电阻值的变化。
通过测量电阻值的变化,可以间接得到外力的大小。
三、实验步骤1. 将电阻应变式传感器连接到桥式电路中,调节桥臂上的电阻,使得桥路平衡。
2. 施加外力,使传感器产生应变。
3. 通过电压表和电流表测量桥路的电压和电流值。
4. 记录不同应变下的电压和电流值,并计算电阻值的变化。
四、实验数据处理1. 根据实验记录的电压和电流值,计算电阻值的变化。
2. 绘制电阻值与应变的关系曲线,分析其线性范围和灵敏度。
3. 根据实验结果,评估电阻应变式传感器的性能和适用范围。
五、实验结果和讨论根据实验数据处理的结果,我们可以得出电阻应变式传感器在不同应变下的电阻变化曲线。
通过分析曲线,我们可以确定其线性范围和灵敏度。
同时,我们还可以评估传感器的稳定性和精确度。
六、实验结论通过本实验,我们深入了解了电阻应变式传感器的工作原理和特性。
实验结果表明,电阻应变式传感器具有较好的线性范围和灵敏度,适用于各种测量场合。
然而,其稳定性和精确度仍需进一步改进。
七、实验总结本实验通过实际操作和数据处理,使我们对电阻应变式传感器有了更深入的认识。
同时,也让我们了解到传感器在实际应用中的一些局限性和改进方向。
通过不断的实验和研究,我们可以进一步提高传感器的性能和精确度,以满足不同领域的需求。
电阻应变片的原理及应用
电阻应变片的原理及应用1. 电阻应变片的原理电阻应变片是一种常见的用于测量物体形变的传感器。
它利用了金属材料在受力后导电性能的变化,通过测量电阻的变化来间接测量物体的形变。
电阻应变片的原理基于金属材料的应变效应。
当金属受到外力作用时,其晶格结构会发生变化,从而使电阻发生变化。
这种应变效应被称为压阻效应。
电阻应变片通常采用金属箔片的形式,由特殊的合金材料制成。
当受到外力拉伸或压缩时,金属箔片会产生相应的应变,从而导致电阻值发生变化。
具体来说,电阻应变片通常由四个电阻元件组成,形成一个电桥电路。
两个电阻应变片被安装在测量物体上,分别受到压缩或拉伸的力。
另外两个电阻元件被用作参考电阻,保持恒定。
当物体受力时,电桥电路中的电阻发生变化,通过测量电桥的输出电压或电流变化,可以间接测量物体的形变。
2. 电阻应变片的应用电阻应变片的应用非常广泛,下面列举了几个常见的领域:•力学研究:电阻应变片常用于力学研究领域,用于测量材料的应力和应变。
通过将电阻应变片安装在试样上,可以实时监测试样在受力过程中的应变情况,从而分析材料的力学性质。
•工程结构监测:电阻应变片在工程结构监测中得到广泛应用。
例如,在桥梁、建筑物或机械设备中安装电阻应变片,可以实时监测结构的应变情况,及时发现结构的异常变形,提前采取相应的维修措施。
•汽车工业:在汽车工业中,电阻应变片被广泛应用于刹车系统、悬挂系统和发动机控制系统等。
通过测量车辆部件的应变情况,可以提高汽车的行驶安全性和性能。
•航空航天领域:电阻应变片在航空航天领域也有重要的应用。
例如,在飞机的机翼、机身和发动机上安装电阻应变片,可以实时监测结构的应变情况,确保飞机的结构安全可靠。
•医学领域:电阻应变片在医学领域也有一定的应用。
例如,在人工关节的研发和临床应用中,电阻应变片可以用于测量人工关节在运动过程中的应变,从而评估关节的性能和使用寿命。
以上只是电阻应变片应用的几个典型领域,实际上,在工业、科研和生活中都存在着很多其他的应用场景。
电阻应变片式传感器及应用
S
L
L L 2 S S S
L 应变: L 引入两个概念 D D 泊松比: L L
R L S R L S
2DD S S 4 4 S D 2 S D
R1 U U R1 1 2 R R1 2 4 R 1 R1 2R
R R1 1 1 R1 1 2R R1 0 2R
U o
U R1 4 R
以上说明:单臂工作时,输出电压与应变片电阻变化率之间是近
似的线性关系,实际上是非线性关系。这会带来非线性误差。
压阻式固态压力传感器
利用扩散工艺制作的四个 半导体应变电阻处于同一硅片 上,工艺一致性好,灵敏度相 等,漂移抵消,迟滞、蠕变非 常小,动态响应快。
压阻式固态压力传感器的隔离、承压膜片
隔离、承压膜片 可以将腐蚀性的气体、 液体与硅膜片 隔离开 来。
p 压阻式固态 压力传感器
内部结构
信号处 理电路
导体的电阻随着机械变形而发生变化的现象, 称为电阻应变效应
金属应变片有:丝式和箔式 优点:稳定性和温度特性好. 缺点:灵敏度系数小.
应变效应:
受外力F作用 应力 L,S, R
dR dL L d L dS 对R按应力 求全微分得: 2 d S d S d S d
r r t t 若半导体只沿纵向受应 力,则 r E 式中: r t 纵向、横向压阻系数 E 半导体弹性模数
R (1 2 r E ) r E R
r t 纵向、横向应力 纵向应变
' ' R1' R1 1,R2 R2 1,R3' R3 1,R4 R4 1,
电阻应变式传感器的工作原理及应用
成本较高
电阻应变式传感器的制造成本 较高,价格相对较贵。
对激励电源要求高
电阻应变式传感器需要稳定的 激励电源,对电源的要求较高
。
05 发展趋势与展望
技术创新与改进
微型化
随着微电子和纳米技术的发展, 电阻应变式传感器正朝着微型化 方向发展,以提高测量精度和灵
敏度。
智能化
集成化、智能化的传感器已成为趋 势,通过与微处理器和算法结合, 实现自校准、自补偿和自适应等功 能。
电阻应变片的结构与工作原理
01 基底
02 敏感栅
03 引线
04 盖片
05 工作原理
支撑电阻丝并传递应力的 介质。
由金属丝或金属箔制成的 敏感元件,用于感受形变 并产生电阻变化。
连接敏感栅与测量电路的 导线。
保护敏感栅和引线的覆盖 层。
当被测物体受到外力作用 时,粘贴在其上的电阻应 变片会随之产生形变,导 致敏感栅的电阻值发生变 化。通过测量电路可以测 量出电阻值的变化,从而 推算出受力的大小。
传感器简介
电阻应变式传感器由敏感元件、转换元件和测量电路组成, 其中敏感元件负责感知被测量的变化,转换元件将敏感元件 输出的应变信号转换为电信号,测量电路则对电信号进行测 量和输出。
电阻应变式传感器的敏感元件通常采用金属箔、金属丝等材 料,当受到外力作用时,这些材料会发生形变,导致其电阻 值发生变化,从而输出相应的电信号。
多功能化
为了满足复杂环境下的测量需求, 电阻应变式传感器正朝着多功能化 方向发展,如压力、温度、湿度等 多参数测量。
应用领域的拓展
医疗健康
01
用于监测生理参数,如血压、心电等,为医疗诊断和治疗提供
支持。
智能制造
应变式电阻传感器的工作原理
应变式电阻传感器的工作原理引言应变式电阻传感器是一种常用的传感器,广泛应用于测量物体的应变变化。
它的工作原理基于金属电阻的变化,通过测量电阻值的变化来获取物体的应变量。
本文将详细介绍应变式电阻传感器的工作原理及其应用。
一、应变式电阻传感器的结构应变式电阻传感器通常由弹性金属片和电阻片组成。
弹性金属片连接在被测物体上,当被测物体受到外力作用时,会发生形变,进而使弹性金属片产生应变。
应变会导致弹性金属片的长度和宽度发生微小的变化,从而改变金属电阻片的电阻值。
二、应变式电阻传感器的工作原理应变式电阻传感器的工作原理基于金属电阻与应变之间的关系。
当外力作用在被测物体上时,弹性金属片会发生微小的形变,从而引起金属电阻片的几何形状发生改变。
根据金属电阻的材料特性,电阻值随着几何形状的改变而发生变化。
应变式电阻传感器通常采用金属材料,如铜、钢等。
这些金属材料具有较小的电阻温度系数,能够提供稳定的电阻值。
当外力作用于被测物体时,弹性金属片产生应变,导致电阻值的变化。
这种电阻变化可以通过电路进行测量和记录。
三、应变式电阻传感器的应用1. 强度测量:应变式电阻传感器常用于测量材料的强度。
通过将传感器粘贴在被测物体上,当物体受到外力时,传感器测量所产生的应变,从而间接测量物体的强度。
2. 应力测量:应变式电阻传感器可用于测量材料的应力。
应力是单位面积上的力,通过测量物体的应变量,可以计算出物体的应力值。
3. 位移测量:应变式电阻传感器在位移测量中也有广泛应用。
通过将传感器安装在机械结构上,当结构发生位移时,传感器可以测量出位移的大小。
4. 压力测量:应变式电阻传感器可用于测量液体或气体的压力。
将传感器安装在压力容器中,当容器受到压力时,传感器测量所产生的应变,从而计算出压力值。
结论应变式电阻传感器通过测量金属电阻的变化,实现对物体应变量的测量。
其工作原理简单而有效,应用广泛。
无论是强度测量、应力测量、位移测量还是压力测量,应变式电阻传感器都发挥了重要作用。
电阻应变式传感器工作原理及应用
电阻应变式传感器工作原理及应用电阻应变式传感器是一种常见的传感器类型,它基于电阻的变化来检测物体或环境的应变。
本文将介绍电阻应变式传感器的工作原理和常见应用。
电阻应变式传感器的工作原理主要基于金属电阻的特性。
金属材料在受力作用下会发生应变,即物体的形状和尺寸会发生改变。
当金属材料发生应变时,其电阻值也会发生变化。
电阻应变式传感器利用这一原理,通过测量电阻值的变化来反映物体的应变情况。
电阻应变式传感器一般由金属应变片和电阻组成。
金属应变片是一个非常薄的金属片,可以粘贴或焊接在需要测量应变的物体上。
当物体发生应变时,金属应变片也会发生相应的应变。
应变片上的电阻会因为应变而发生变化。
电阻应变式传感器中的电阻通常采用导线电阻,如铜线或铂电阻。
当应变片发生应变时,导线电阻的长度和截面积都会发生变化,从而改变电阻值。
通过测量电阻的变化,可以间接地得知物体的应变情况。
电阻应变式传感器的应用广泛。
它可以用于测量力的大小和方向,例如测量桥梁、建筑物和船舶等结构物的应变。
同时,电阻应变式传感器也可以用于测量压力、应力和扭矩等物理量。
例如,它可以用于测量管道中的流体压力,以及机械设备中的扭矩大小。
电阻应变式传感器还可以用于工业自动化领域。
通过将传感器连接到控制系统中,可以实现对物体或设备的实时监测和控制。
例如,在汽车制造过程中,电阻应变式传感器可以用于监测车身的变形情况,以确保车身的质量符合标准要求。
除了上述应用外,电阻应变式传感器还可以用于测量温度、湿度和流量等参数。
通过将传感器与相应的测量电路结合,可以实现对这些参数的精确测量和控制。
总结起来,电阻应变式传感器是一种基于电阻变化来检测物体或环境应变的传感器。
它的工作原理简单且可靠,应用范围广泛。
无论是在工业生产中,还是在科学研究和日常生活中,电阻应变式传感器都发挥着重要的作用。
通过不断的技术创新和应用拓展,相信电阻应变式传感器将在更多领域发挥重要作用。
电阻应变式传感器
电阻应变式传感器
三、 电阻应变片的测量电路及温度补偿
(一) 测量电路
应变片把机械应变转化为有对应 关系的电阻变化后,需要将电阻的变 化转换为电压或电流的变化。由于应 变量非常小,通常采用测量电桥,将 微小的电阻变化转化为电压或电流的 变化。根据电源的不同,可将电桥分 为直流电桥和交流电桥。电桥的一般 形式如图1-7所示。
R
(1-5)
电阻应变式传感器
k0
1 2
/
,其中k0为电阻丝的灵敏系数,即单位应变所引
起的电阻的相对变化。通常把单位应变能引起的电阻值变化称为电阻丝
的灵敏系数,其物理意义是单位应变所引起的电阻相对变化量。
k0
1
2
/
可知,电阻丝的灵敏系数受两个因素的影响:
一个是应变片受力后材料几何尺寸的变化,即1+2μ,对某种材料来说
,它是一个常数;另一个是 / ,它是由电阻丝电阻率的改变而引
起的。
/
(1)对于金属材料, 是常数,并且比1+2μ小很多,往往可
以忽略不计,故 k0 1 2 。
电阻应变式传感器
(2)对于半导体材料,(dρ/ρ)/ε 的值比1+2μ大得多,电阻丝
的灵敏系数主要由电阻率相对变化所决定。 (3)大量实验也表明,在金属电阻丝拉伸比例极限内,电阻
相对变化与轴向应变成正比。通常,金属丝的灵敏系数k0为2左右, 不超过4~5,半导体应变片的灵敏系数为100~200。
半导体应变片的灵敏系数比金属电阻丝式应变片高几十倍,但 半导体材料的温度系数大,应变时非线性比较严重,使它的应用范 围受到一定的限制。
电阻应变式传感器
二、 电阻应变片的结构和特性 1. 应变片的分类与结构
应变式电阻传感器的工作原理
应变式电阻传感器的工作原理引言应变式电阻传感器是一种常用的传感器,广泛应用于工程领域。
其工作原理是利用材料的应变特性来测量所受力的大小。
本文将详细介绍应变式电阻传感器的工作原理以及其在实际应用中的一些特点。
一、工作原理应变式电阻传感器是通过在感应材料中引入电阻应变来测量外力的。
当受力作用于材料时,材料会发生应变,即长度或形状发生变化。
这种应变会导致材料的电阻发生变化,进而改变电路中的电流和电压。
具体来说,应变式电阻传感器通常由一条细长的金属电阻丝或薄膜组成,该电阻丝或薄膜被粘合在一个弹性体基座上。
当外力作用于传感器时,弹性体基座会发生形变,从而使电阻丝或薄膜发生拉伸或压缩。
这些形变会导致电阻丝或薄膜的电阻值发生变化。
二、工作特点1. 高精度:应变式电阻传感器具有较高的测量精度,可达到微米级别。
这使得它在许多精密测量领域得到广泛应用,如机械工程、材料科学等。
2. 宽测量范围:应变式电阻传感器的测量范围较宽,可以覆盖从微小变形到大变形的范围。
这使得它适用于各种不同应变程度的测量需求。
3. 快速响应:应变式电阻传感器具有快速的响应速度,可以实时地测量外力的变化。
这使得它在需要实时监测的应用中非常有用,如结构健康监测、力学测试等。
4. 抗干扰性强:应变式电阻传感器对外界干扰具有一定的抗干扰性能。
它的结构设计使其能够有效屏蔽外界电磁干扰,提高测量的准确性。
5. 结构简单:应变式电阻传感器的结构相对简单,制造成本较低。
这使得它成为一种经济实用的传感器。
三、应用领域应变式电阻传感器在工程领域有广泛的应用,以下是一些常见的应用领域:1. 结构健康监测:应变式电阻传感器可以用于监测建筑物、桥梁、飞机等结构体的应变情况,及时发现并修复潜在的结构问题。
2. 材料力学测试:应变式电阻传感器可以用于测量材料的力学性能,如材料的强度、刚度等参数。
3. 汽车工程:应变式电阻传感器可以用于测量汽车零部件的应变情况,如发动机支架、悬挂系统等。
电阻应变式称重传感器原理
当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。
对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:
所用的粘结剂分为有机粘结剂和无机粘结剂两类。在一般情况下,前者用在温度低于400℃时,后者则用于高温条件下。有机粘结剂包括硝化纤维、氰基丙烯酸酯、环氧树脂、酚醛树脂、有机硅树脂、聚酰亚胺等。除前两种之外,使用时一般都要加温加压使其固化。常用的无机粘结剂有磷酸盐和喷涂用的金属氧化物。前者在使用时须加温固化。用作基底的材料有纸、胶膜、玻璃纤维布、金属薄片(或金属网)等。
粘贴式应变计 它主要由 4部分组成。①由电阻丝制成的敏感栅:是应变计的敏感部分;②衬底和保护层:敏感栅粘贴在衬底上,衬底是将传感器弹性元件表面的应变传递到电阻丝栅上的中间介质,起绝缘作用;保护层起保护电阻丝的作用;③粘合剂:它将电阻丝与衬底粘贴在一起;④引出线:它起连接测量导线的作用。按衬底材料和安装方法的不同,可把粘贴式应变计分为纸衬式、胶衬式、金属衬底式和临时衬底式等。敏感栅又有多种结构形式,可分为测量单方向应变的单轴式和测量两个方向以上应变的多轴式(又称应变花)两类。
ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2)
用式(2--1)去除式(2--2)得到
ΔR/R = Δρ/ρ + ΔL/L – ΔS/S (2—3)
另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以
ΔS/S = 2Δr/r (2—4)
以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。
简述电阻应变计的工作原理及应用
简述电阻应变计的工作原理及应用工作原理电阻应变计(strain gauge)是一种常用的应变测量传感器,它利用导电材料在受力或应变作用下的电阻值发生变化的特性,来测量被测物体的应变情况。
电阻应变计的工作原理基于金属或半导体导体材料的电阻随着应变而发生变化。
当一个金属导线或电阻片受到外力拉伸或压缩时,导线或电阻片的几何尺寸发生变化,导致电阻值发生改变。
根据电阻的变化情况,可以推测出受力或应变的大小。
电阻应变计通常由导电材料制成,这些导电材料可以是金属薄膜、金属丝或薄膜电阻。
当被测物体发生应变时,电阻应变计也会发生相应的应变,从而引起电阻值的变化。
通过测量电阻的变化,就可以了解被测物体的应变情况。
应用电阻应变计作为一种常用的应变测量传感器,其应用十分广泛。
下面列举了一些主要的应用领域:1.结构应变测量:电阻应变计可以用于测量结构件受力情况,如建筑物、桥梁、机械构件等。
通过安装电阻应变计在结构件上,并连接到测量设备,可以实时监测结构件的应变变化,从而判断结构件的受力情况,提供结构安全性评估的依据。
2.材料力学测试:电阻应变计在材料力学测试中有广泛应用。
通过将电阻应变计粘贴或焊接到材料试件的表面,可以测量材料在受力过程中的应变情况,从而了解材料的强度、刚度等力学性质。
3.汽车工程:在汽车工程中,电阻应变计常用于测量车辆的悬挂系统、刹车系统的应变情况。
通过测量这些部件的应变,可以评估车辆在行驶过程中的安全性和稳定性。
4.电子设备:电阻应变计可以应用于电子设备的应变测量。
如在电路板的表面安装电阻应变计,可以测量电路板在热膨胀或机械载荷作用下的应变情况,从而评估电路板的可靠性和性能。
5.材料研究:在材料研究领域,电阻应变计可以用于研究材料的应变特性和变形机制。
通过对不同材料或材料结构上的电阻应变计进行测量,可以获取材料的力学性能参数,进而优化材料设计和加工工艺。
总的来说,电阻应变计的工作原理简单而有效,应用广泛。
电阻应变式传感器实验报告资料
电阻应变式传感器实验报告资料
摘要
电阻式应变传感器(Resistive Strain Gage,RSG)是一种能够产生电阻变化的应变测试仪, 它可以检测外界物体表面变化的微弱变化。
本实验是用RSG测量分摊在不同类型材料上的负荷,以及测得不同应变率特性下材料抗拉强度和塑性性质。
一、实验原理
电阻式应变传感器主要原理是使用离散的电阻形成一组电路,当材料受外力变形时,表面的电阻发生变化,这种变化通过电路放大器连接到计算机上,从而记录应变变化值。
二、实验装置
实验装置由负载系统、传感器系统、圆柱体标准物体和电路放大器组成。
负载系统是一体式设计,由电机和脉冲输入装置协调运行而实现负载控制,传感器系统负责测量不同负载下应变量,而电路放大器可以放大传感器信号后输入计算机。
三、实验结果
1、应变图:实验将传感器安装于不同的标准物体上,根据负载、应变值范围和读数精度等参数设定,完成了不同类型标准物体的应变测量,获得了可靠的应变数据和应变图(如图1)。
2、材料抗拉强度和塑性性质:根据实验获取的应变数据,结合材料相关理论,可以计算出该材料抗拉强度及塑性性质,详细数据见表1。
四、结论
本实验使用电阻应变传感器,在不同类型材料上测量了负载和应变特性,获得了可靠的应变图和抗拉强度和塑性性质的实验数据。
电阻应变式传感器的工作原理
电阻应变式传感器的工作原理1. 介绍电阻应变式传感器是一种常见的力、压力、扭矩、重量等物理量测量装置。
它通过测量物体受力或变形引起的电阻变化来实现物理量的测量。
本文将详细介绍电阻应变式传感器的工作原理及其应用。
1.1 传感器分类传感器可以根据其工作原理和测量物理量进行分类。
根据工作原理,传感器可以分为电阻、电容、电感、霍尔等类型。
根据测量物理量,传感器可以分为力、压力、温度、光等类型。
1.2 电阻应变式传感器的概述电阻应变式传感器属于电阻型传感器的一种。
它利用电阻材料的应变效应,将外界的力、压力等物理量转换为电阻值的变化。
电阻应变式传感器具有结构简单、精度高、可靠性好的特点,在工业领域得到广泛应用。
2. 原理电阻应变式传感器的工作原理基于电阻材料的应变效应,即当电阻材料受到外界力或压力作用时,材料的几何形状和尺寸发生变化,从而引起电阻值的变化。
2.1 电阻应变效应电阻应变效应是指电阻材料在受到应变作用下,电阻值发生变化的现象。
根据应变的类型,电阻应变效应可以分为拉伸应变效应和压缩应变效应。
拉伸应变效应是指电阻材料受到拉伸力作用后,电阻值增加;压缩应变效应是指电阻材料受到压缩力作用后,电阻值减小。
2.2 应变片电阻应变式传感器通常采用由电阻材料制成的应变片作为敏感元件。
应变片的几何形状和尺寸可以根据测量需求进行设计。
当外界力或压力作用于应变片时,应变片发生应变,从而导致电阻值的变化。
2.3 桥式电路为了能够测量电阻值的变化,电阻应变式传感器通常采用桥式电路进行测量。
桥式电路由四个电阻组成,其中两个电阻为应变片,另外两个电阻为补偿电阻。
当应变片受到力或压力作用时,其电阻值发生变化,从而使桥路出现失衡,产生输出信号。
2.4 输出信号电阻应变式传感器的输出信号通常为电压信号。
输出信号的大小和方向取决于桥路失衡的程度和方向,可以通过增益电路和滤波电路进行信号处理和放大。
3. 应用电阻应变式传感器广泛应用于力学实验、工业自动化、航空航天等领域。
第5章-电阻应变式传感器
第5章电阻应变式传感器学习要点:1.掌握传感器的工作原理及性能2.了解传感器的结构、种类3.掌握测量电路及其补偿方法4.掌握应变片的布置及接桥方式5.了解传感器的应用电阻应变式传感器的基本原理是将被测非电量转换成与之有确定对应关系的电阻值,再通过测量此电阻值达到测量非电量的目的。
一、工作原理及结构参数1. 电阻应变片的工作原理电阻应变片分为金属电阻应变片和半导体应变片。
金属电阻应变片的工作原理是基于导体材料的“电阻应变效应”,半导体应变片的工作原理是基于半导体材料的“压阻效应”。
当电阻丝受到拉伸或压缩时,其几何尺寸和电阻值同时发生变化,电阻的相对变化为ρρ+εμ+=d)21(RdRx对于金属材料来说,电阻应变效应是主要的。
由于压阻系数很小,电阻率的变化可以忽略不计,所以有 x)21(RdRεμ+=其灵敏度 0/12xdRRSμε==+对于半导体材料来说,其压阻效应远大于其应变效应,所以有xLEdRdRεπρρ==其灵敏度 ERdRSLxπε==0和金属电阻应变片相比,半导体应变片具有灵敏度系数大,横向效应小,机械滞后小,尺寸小等优点,但是,半导体应变片多数用薄硅片制成,容易断裂,其测试时的可测应变范围通常限制在3000με左右,而金属电阻应变片的可测应变值达40000με。
另外,半导体应变片的温度稳定性差,测量较大应变时非线性严重,所以其应用仍然受到一定的限制。
当同样长度的线材制成金属电阻应变片时,试件的轴向应变使敏感栅电阻发生变化,同时敏感栅半圆弧部分产生的横向应变也将使其电阻发生变化。
应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。
横向效应的存在使得在测量纵向应变时,圆弧部分产生了一个负的电阻变化,从而降低了应变片的灵敏度系数。
减小横向效应的措施主要有:1)按标称灵敏度系数的测定条件使用;2)减小横向效应系数C,采用短接措施或采用箔式应变片;3)针对实际情况,重新标定在实际使用的应变场下,应变片的应变灵敏度系数。
电阻应变式压力传感器工作原理
电阻应变式压力传感器工作原理
电阻应变式压力传感器是一种常用的压力测量装置,它基于电阻应变效应来测量被测介质的压力。
该传感器的工作原理如下:在传感器的感应元件上贴有一层薄膜,该膜片具有电阻应变特性。
当被测介质的压力作用于膜片上时,膜片会产生变形,从而引起感应元件上电阻的改变。
这是因为在应变作用下,导电材料的电阻会发生变化。
一般情况下,电阻应变式压力传感器采用电桥的形式进行测量。
电桥的四个臂分别是两个电阻应变元件和两个固定电阻。
其中,两个电阻应变元件分别用作测量臂和补偿臂。
当无压力作用时,电桥处于平衡状态,此时输出电压为零。
而当被测介质的压力作用在感应元件上时,电桥会失去平衡,产生微小的电阻差,从而造成电桥的输出电压发生变化,该变化与被测介质的压力成正比。
为了提高传感器的灵敏度和测量精度,一般会采取一些措施,如增大感应元件的应变量、采用负载电阻匹配等。
总的来说,电阻应变式压力传感器利用电阻应变特性将被测介质的压力转化为电阻的改变,通过测量电桥的输出电压来间接获得压力值。
这种传感器具有体积小、响应速度快、测量范围广等优点,因此在工业控制、仪器仪表等领域得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专科毕业论文(设计)题目:电阻应变式传感器的原理与应用系院:电子工程系学生姓名:王宇鹏学号:0861520226专业:应用电子年级:3年级完成日期:11月29日指导教师:樊翠玲电阻应变式传感器设计原理与应用电阻应变式传感器概述以电阻应变计为转换元件的电阻式传感器。
电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。
弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。
电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。
常用的电阻应变式传感器有应变式测力传感器、应变式压力传感器、应变式扭矩传感器(见转矩传感器)、应变式位移传感器(见位移传感器)、应变式加速度传感器(见加速度计)和测温应变计等。
电阻应变式传感器的优点是精度高,测量范围广,寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、整体化和品种多样化等。
它的缺点是对于大应变有较大的非线性、输出信号较弱,但可采取一定的补偿措施。
因此它广泛应用于自动测试和控制技术中。
电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。
电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。
半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
关键词:应变片;电阻;组桥方式;误差补偿目录电阻应变式称重传感器原理一、电阻应变片二、弹性体三、检测电路称重传感器的选择应变片的粘贴技术电阻应变片选用方法与原则应变片的组桥方式温度补偿电阻应变式称重传感器原理电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片[2]变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。
下面就这三方面简要论述。
电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。
他的一个重要参数是灵敏系数K。
我们来介绍一下它的意义。
设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。
当这根电阻丝未受外力作用时,它的电阻值为R:R = ρL/S(Ω)(2—1)当他的两端受F力作用时,将会伸长,也就是说产生变形。
设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。
此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。
对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。
我们有:ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2)用式(2--1)去除式(2--2)得到ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3)另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以ΔS/S = 2Δr/r (2—4)从材料力学我们知道Δr/r = -μΔL/L (2—5)其中,负号表示伸长时,半径方向是缩小的。
μ是表示材料横向效应泊松系数。
把式(2—4)(2—5)代入(2--3),有ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L=(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L= K *ΔL/L (2--6)其中K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7)式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。
需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。
在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便常常把它的百万分之一作为单位,记作με。
这样,式(2--6)常写作:ΔR/R = Kε (2—8)二、弹性体弹性体是一个有特殊形状的结构件。
它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变枣电信号的转换任务。
以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。
设有一带有肓孔的长方体悬臂梁。
肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。
主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。
下面列出肓孔底部中心点的应变表达式,而不再推导。
ε = (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3)(2--9)其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。
需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。
三、检测电路检测电路的功能是把电阻应变片的电阻变化转变为电压输出。
因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。
因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。
称重传感器的选择:TR系列TR 系列(GEFRAN)称重传感器用于测量在机械引导滚筒上的上经常用来缠绕用的张力塑料膜或胶带的张力。
它可以安装在机械底盘上的固定和传送轴上,它对末端轴所起到的作用是一个压力敏感元件和负载的功能。
它可以用于固定和旋转两种轴上。
TR 系列传感器可与固定的,4 M6 螺纹或中心螺纹是与M10或M12 的适配法兰一起供货。
主要特征:测量范围为从 100N 到 2KN精度等级:0.5%抗腐蚀内部形成的校准信号最小灵敏度轴线方向是从固定孔开始的35 度。
保护等级:IP65(DIN40050)形成过载保护TC系列TC 系列负载单元是张力测量传感器,它常用于静态测量和动态测量,压缩形式,具有较好的精度。
它的机械部分是由一整块的金属部分组成,所以这个基本的测量元件和它的外壳部分没有焊接过程,从而使尺寸更小,并且加强了保护等级,这种点部测量的结构,具有8 个张力测量,减少因负载的不完善的应用带来的误差。
并联的称重元件的典型应用是:贮藏箱、加料斗、大的称重平台。
不锈钢结构适合于石油化学和化学工业中攻击性环境的应用。
主要特征:测量范围为从 100 到 20.000Kg精度等级:0.2%全部不锈钢结构抗腐蚀内部形成的校准信号保护等级:IP67(DIN40050)TU系列TU 系列负载单元是张力测量传感器,它常用于静态测量和动态测量,压缩形式,具有较好的精度。
所有变送器的每个负载单元质块(Kg)经过校准。
TU 系列准负载从50Kg 到1 吨的均可供货。
这种型号具有IP67 的保护等级,所以它可以用来使用到一些具有危险的化学工业中,它的机械部分是由一整块的金属部分组成,所以没有焊接过程。
这意味着它可以高度防止机械冲击和振动。
这种致密的尺寸意味着这些单元可以使它放置在难于进入和空间较小的位置。
主要特征:测量范围为从 50 到 1000Kg精度等级:0.2%全部不锈钢结构抗腐蚀保护等级:IP67(DIN40050)应变片的粘贴技术在电测技术中,应变片粘贴质量的优劣对测量的可靠性影响很大,是一个非常关键性的环节,必须予以注意.为提高电测结果的准确性,我们应在应变片的粘贴过程中做到认真操作,一丝不苟.应变片的种类很多,有金箔式、丝式、薄膜式、半导体式.鉴于目前在电测实验中较为常用的电阻应片是金箔式应变片(以下简称箔式应变片),下面我们就以箔式电阻应变片为例,谈一谈电测应力实验中应变片的粘贴技巧.箔式应变片是用厚变为0.0o3~0.01mm 的康铜或镍铬箔片借光刻和腐蚀工艺制作成栅状,它由电阻丝、基片和引出线三大部分组成(如图1).这种应变片由于其具有线条均匀、灵敏度分散性小,测试范围广等优点,故而得到广泛应用.在做电测实验之前,我们面临的第一个问题是如何选择正确的应变片.由于箔式应变片的主要参数指标有:应变片的几何尺寸(包括敏感栅基长、应变片基底长、敏感栅基宽、应变片基底宽)、名义阻值、灵敏度系数、允许电流、线性度、滞后、零漂、极限应变等,能否正确选择适当正确的应变片将直接影响到电测法的测试结果.为合理选用应变片,我们应对其性能作一些了解.一般而言,大尺寸的应变片,能感受较多的平均应变量,有利于测量精度的提高;小尺寸的应变片,虽然感受平均应变量较少,但能较好地反映出“点”的应力,所以对于应变片尺寸的选择,应根据构件受力后的应力分布情况和构件自身相关尺寸来决定.在选好应变片准备粘贴之前,我们应对应变片作严格仔细地检查,检查的内容包括:(1)应变片的外形检查,即检查应变片是否存在断路、短路现象、片中各部位是否有损伤、折断发生、片内是否夹有气泡或霉变现象等等.(2)应变片电阻值的检测.为保证使用的应变片的电阻误差不超过允许范围(这个范围通常在±0.5Q),可事先用精度较高的欧姆表或采用直流电桥对其进行检测,以免因同组使用的应变片的阻值误差太大而造成测量结果欠准.(3) 检查应变片上是否标有中心线.若无,则应在其基盖上补画出纵、横线条,这样可方便粘贴应变片.与此同时,被测试件的表面上应划出定位线。
以确保应变片的粘贴到位.若被测试件的表面质量不高,将会影响应变片的粘贴,为此,我们应用刮刀或锉刀清除被测点处的氧化皮及污垢,然后用细砂皮纸在试件粘贴部位(一般应大于应变片面积3~5倍左右的表面)进行打磨,沿贴片方向打出45。
交叉纹,以保证表面的足够光滑,最后用划针在被测点处进行画线,从而保证应变片能牢固顺利地粘贴.粘贴应变片前,还需用脱脂棉球蘸上清洁溶剂,如丙酮、无水酒精、四氯化碳等溶剂擦洗被测点处的油污,直至棉球上无明显油渍为止,且注意此时勿用手触摸清洗后的表面.然后在应变片的粘贴面处涂上薄薄一层胶水,如KH501、KH502胶,一般宜薄不宜厚.将应变片的方位线对准事先在试件上的划线,此时应密切注意应变片的方位线与试件的划线是否重合,这时可在应变片上盖上一层透明纸(或腊纸),一一只手捏住应变片的引出线,另一只手的手指反复轻轻滚压透明纸表面,以便将里面多余的胶水和气泡挤出.滚压应变片时切记不能垂直用力,不能产生滑动或转动,待胶水和气泡被完全挤出后,还应保持手指不动约一分钟左右.当然也可以在试件表面盖上一层玻璃纸,然后垫上一块硅皮,用夹具或平整的压块轻压应变片的粘贴处,这些做法的目的均是为了保证应变片在粘贴过程中不发生错移,保证其方位线与被测试件测试点处的定位线完全重合.粘贴后的应变片可让其在室温中自然干燥15至24h.为节省时间,也可在自然干燥数小时后,用红外线灯进行烘烤,但温度应控制在不超过40。