形状记忆材料-形状记忆效应

合集下载

形状记忆材料及其应用

形状记忆材料及其应用
✓ 温度升高到Af温度以上时,完全恢复到原来的形状,天 线向宇宙空间撑开。
❖ 美国宇航局根据达一想法研制了安放在月球表面上 的抛物面天线组件。
❖ 形状记忆合金管接头具有高度的可靠性,不需熔焊 的高温高热,不会损害周围材料,在低温下易拆卸, 便于检修检查。
❖ 这种管接头在F-14战斗机上使用了10万个以上,从 未出现过漏油等事故。
❖ 可以用形状记忆合金制造人工心脏用人造肌肉,用 以充当人造心脏的驱动源。
人造心脏
❖ 去掉保温材料,管接头温度上升 到室温,内径恢复到扩径前状态, 牢牢箍紧被接管。
形状记忆管接头
智能机器人
❖ 形状记忆合金可制成驱动器、 控制器等应用在智能机器人中。
❖ 形状记忆驱动器通过适当加热 和控制,可完成往返或旋转运 动,兼之具有感温功能。
❖ 形状记忆控制机构同传统伺服 控制机构相比,一个形状记忆 元件就可起到传统机构中传感、 驱动和传递三系统功能的作用。
医疗应用
❖ 治疗粉碎性髌骨骨折比较困难,我国设计了一种用 于治疗髌骨骨折的形状记忆NiTi聚髌器,现已成功 用于临床治疗之中。
❖ 聚髌器由功能爪和连接腰组成,能从多个方向产生 恢复力并作用于髌骨,持续地以纵向聚合加压,将 粉碎的髌骨聚合于解剖位置直至骨折愈合。
ห้องสมุดไป่ตู้聚髌器
❖ 当心脏出现毛病,不可能用手术治疗时,不得不依 赖于心脏移植或人工心脏。
智能控制器
下图为具有相当于肩、肘、腕、指等的5维自由度的 微型机器人试制品,形状记忆合金可应用于其中。
靠形状记忆合金动作的微型机器人结构图
电子仪器仪表
❖ 用形状记忆合金制造的温度保险器不同于熔断保险 丝,可产生很强的力拉断接点,消弧效应明显,适 合于作大功率、高电压用保险器。

浅谈形状记忆合金材料

浅谈形状记忆合金材料

浅谈形状记忆合金材料引言:时代的发展与材料的发展是相辅相成的。

随着科学技术的进步,材料研究变得尤为重要。

现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。

例如形状记忆材料就是一种典型的新型功能材料。

形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。

一、形状记忆合金及形状记忆效应形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记忆材料中较为重要的材料之一。

形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。

1、形状记忆合金分类到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。

在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。

(a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定,相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。

但由于其原材料Ni 、Ti价格昂贵,且加工成本高等因素,其应用受到限制。

(b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。

铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和Cu-Al-Ni两种。

(c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。

2、呈现形状记忆效应的合金的必备条件(a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母相之间的界面的移动是完全可逆的(b)合金中的异类原子在母相与马氏体中必须为有序结构(c)马氏体相变在晶体学上是完全可逆的3、状记忆效应的分类(a)单程记忆效应形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

形状记忆材料

形状记忆材料

形状记忆材料形状记忆材料(Shape Memory Materials,SMMs)是一类具有形状记忆效应的智能材料,其在外界作用下可以实现形状的可逆变化。

形状记忆材料广泛应用于医疗器械、航空航天、汽车、电子、纺织等领域,具有巨大的应用前景。

形状记忆材料的工作原理是基于其特殊的微观结构和相变特性。

在低温状态下,形状记忆材料处于一种固定的形状,一旦受到外界温度、应力或磁场等作用,就会发生相变,从而恢复到其原始形状。

这种形状记忆效应使得形状记忆材料具有自修复、自组装、自适应等智能特性。

形状记忆材料的应用领域非常广泛。

在医疗器械领域,形状记忆材料可以用于制作支架、缝合线、植入物等,具有良好的生物相容性和可调节的形状,可以更好地适应人体器官的形状和运动。

在航空航天领域,形状记忆材料可以用于制作飞机零部件、卫星结构等,具有轻质、高强度、耐高温等优点,可以大大减轻航空器的重量,提高飞行性能。

在汽车领域,形状记忆材料可以用于制作车身零部件、发动机零部件等,具有抗冲击、耐磨损、自修复等特性,可以提高汽车的安全性和可靠性。

在电子和纺织领域,形状记忆材料可以用于制作智能传感器、智能纺织品等,具有快速响应、多功能性、耐用性等特点,可以实现智能化、可穿戴化。

形状记忆材料的研究和应用仍面临一些挑战。

首先,形状记忆材料的制备工艺和性能优化仍需进一步提升,以满足不同领域的需求。

其次,形状记忆材料的成本较高,需要降低生产成本,提高市场竞争力。

最后,形状记忆材料的环境适应性和可持续性也需要加强,以减少对环境的影响。

总的来说,形状记忆材料作为一种新型智能材料,具有巨大的应用潜力和发展前景。

随着科技的不断进步和创新,形状记忆材料必将在各个领域发挥重要作用,为人类社会的进步和发展做出更大的贡献。

记忆合金特点

记忆合金特点

记忆合金特点
记忆合金特点
记忆合金是一种具有形状记忆效应和超弹性的材料。

它的特点包括以下几个方面:
一、形状记忆效应
形状记忆效应是指材料在经历过程变形后,可以恢复到原来的形态。

这种效应可以用于制造各种自动控制系统和机械装置,如自动开关、自动调节阀门等。

二、超弹性
超弹性是指材料在受到外力作用后能够产生大量变形,但当外力消失时,材料能够迅速恢复到原来的状态。

这种特性使得记忆合金在医学领域有着广泛的应用,如支架、牙套等。

三、高耐腐蚀性
记忆合金具有高耐腐蚀性,因此可以在恶劣环境中使用。

它们可以抵
抗氧化、酸碱等化学物质的侵蚀,在海水或其他盐溶液中也不易生锈。

四、低温稳定性
记忆合金具有低温稳定性,可以在极低温度下使用。

这使得它们成为
航空航天领域中的重要材料,如用于制造卫星、火箭等。

五、易加工性
记忆合金易于加工,可以通过压力、热处理等方式进行形状调整。


种特性使得它们在制造各种复杂形状的零件时具有优势。

六、高强度
记忆合金具有高强度,可以承受较大的载荷。

这种特性使得它们在制
造高强度零件时具有优势。

七、可重复使用
记忆合金可以多次使用,不会因为变形而失去作用。

这使得它们成为
一种环保材料。

总结:
记忆合金具有形状记忆效应、超弹性、高耐腐蚀性、低温稳定性、易加工性、高强度和可重复使用等特点。

这些特点使得它们在医学、航空航天等领域得到广泛应用,并且将来还有更多的应用前景。

形状记忆合金材料

形状记忆合金材料
低,相变温度区间宽,低滞后以及导热性好。
3.铁系形状记忆合金

与Ni-Ti基及Cu基合金相比,铁基合金价格低、
加工性好、机械强度高、使用方便。目前已发现
的铁基形状记忆合金的成分、结构和性能,其中
应用前景最好的合金是FeMnSiCrNi和FeMnCoTi
系。
铁基形状记忆合金的成分和性能
四、形状记忆合金的应用
却到Ms点以下,马氏体晶核随温度下降逐渐长大,弯度回升
是马氏体片又反过来同步地随温度上升而缩小,这种马氏体 叫热弹性马氏体。


在Ms以上某一温度对合金施加外力也可引起马氏体转变,
形成的马氏体叫应力诱发马氏体。 有些应力诱发马氏体也属弹性马氏体,应力增加时马氏 体长大,反之马氏体缩小,应力消除后马氏体消失,这种马 氏体叫应力弹性马氏体。

如在NiTi合金中,加入W,会产生明显的固溶 强化,提高NiTiW合金的强度和力学性能。但是W
的加入不会改变整个NiTi合金的相变温度。
2.Cu系形状记忆合金

Cu基记忆合金分为Cu-Al系和Cu-Zn系,比NiTi
合金生产成本低(10%),而且加工性能好,应用日益
广泛,但是相变温度稳定性差,韧性不好;但是价格
四、形状记忆合金的应用
五、形状记忆合金的发展
六、形状记忆合金的制备
一、形状记忆效应
原来弯曲的合金丝被拉直后,当温度升高到 一定值时,它又恢复到原来弯曲的形状。人们把 这种现象称为形状记忆效应(SMF),具有形状
记忆效应的金属称为形状记忆合金(SMA)。
形状记忆效应有三种形式:单程形状记忆效应,
双程形状记忆效应,全程形状记忆效应。
4.马氏体相变

形状记忆材料

形状记忆材料

形状记忆效应的机理
大部分合金和陶瓷等记忆材料的形状记忆效应 是通过马氏体相变而完成的。也就是热弹性马氏 体相变产生的低温相在加热时向高温相进行可逆 转变的结果。
这种可逆转换是具有一定条件的: 1.马氏体相变是热弹性的。 2.母体与马氏体相呈现有序点阵结构。 3.马氏体内部是孪晶变形的。 4.相变时在晶体学上具有完全可逆性。
形状记忆聚合物
形状记忆聚合物(Shape Memory Polymers,简称 SMP)又称为形状记忆高分子,是指具有初始形状并 固定后,通过外界条件(如热,光,电,化学感应) 等的刺激,又可恢复其初始形状的高分子材料。 引发形状记忆效应的外部环境因素: 物理因素:热能,光能,电能,声能等。 化学因素:酸碱度,螯合反应和相转变反应等。
形状记忆效应,如左图: OA段:弹性变形线性段 AB段:非线性段 B点处卸载,C点处的残余应变为 OC段,将此材料在一定温度下加热, 经CO段变形,残余应变为零,材料 恢复原来的形状。
三种形状记忆效应
形状记忆效应按照形状恢复情况可以分为三种:
1.单程形状记忆效应 2.双程形状记忆效应 3.全程形状记忆效应
形状记忆陶瓷
在陶瓷中现已发现两种机制的形状记忆效应: 1)和形状记忆合金类似的马氏体相变及逆相变有关 的形状记忆。其中,马氏体相变可以是热诱发的,应 力诱发的,也可以是外电场(磁场)诱发的。 2)粘弹性机制导致的形状恢复。
形状记忆陶瓷 形状记忆陶瓷
按照机理
按照形状记忆机理
马氏体形状 记忆陶瓷
形状记忆合金
形状记忆合金(SMA)特性
集传感,驱动,控制,换能于一身 机械性质优良,能恢复的形变可高达10%,而一般金属材料只 有0.1%以下 有确定的转变温度 在加热时能产生的回复应力非常大,可以达到500Mpa 对环境适应能力强,不受温度以外的其他因素的影响 无振动噪声,无污染 抗疲劳,回忆变形500万次不会产生疲劳变形

4.形状记忆合金

4.形状记忆合金

单斜晶体 马氏体
一定的热 处理或成 分条件 菱面体点阵 R相
34
2.1 Ti-Ni基形状记忆合金
(2) 合金元素对Ti-Ni合金相变的影响 添加少量的第三元素,会引起合金中马氏体内部的显 微组织发生显著变化,同时可能导致马氏体的晶体结
构发生改变,宏观上表现为相变温度点的升高或降低。
Cu的影响(Ti-Ni-Cu合金)
形状记忆材料
制造科学与工程学院材料成型系
目录 形状记忆相关知识 形状记忆材料种类 形状记忆材料应用 形状记忆材料发展 结束语
2
1 形状记忆相关知识
形状记忆效应(特点及分类) 马氏体相变 形状记忆原理
3
1.1 形状记忆效应
形状记忆效应:
具有一定形状(初始形状)的固体材料,在某
一低温状态下经过塑性变形后(另一形状),通过
形状记忆特性比Ti-Ni合金差。
45
2.4 ZrO2形状记忆陶瓷
(1)氧化锆陶瓷的基本结构与相变 随温度的变化纯ZrO2有三种晶型,按温度由高到 低,其结构分别为 立方晶系、四方晶系(t相)、单斜晶系(m相)
加热到这种材料固有的某一临界温度以上时,材料
又恢复到初始形状,这种效应称为形状记忆效应
(SME)。 (Shape Memory Effect)
4
1.1 形状记忆效应
对于普通金属材料,受到外力作用时,当 应力超过屈服强度时,产生塑性变形,应力去
除后,塑性变形永久保留下来,不能恢复原状。
塑性变形——物质在一定的条件下,在外力的作用下产 生形变,当施加的外力撤除或消失后该物体不能恢复原
23
1.2 马氏体相变
在Ms 温度以上变形,因应力使Ms升高,发生M转 变,应力解除,产生逆相变,回到母相状态,在应

马氏体相变与形状记忆效应

马氏体相变与形状记忆效应
– Ms、As、Mf、Af-表征记忆合金热弹性马氏体相变的特征温度,也是 形状记忆过程中变形及形状恢复的特征温度.热滞后(As-Ms)也是记忆 合金的一个重要参量.
5
二.形状记忆效应的晶体学机制
• 形状记忆合金有三个特征: – 合金能够发生热弹性马氏体相变; – 母相和马氏体的晶体结构通常均为有序的(所谓有序结构, 即溶质原子在 晶格点阵中有固定位置); – 母相的晶体结构具有较高的对称性,而马氏体的晶体结构具有较低的对 称性.
• 当母相是B2型有序结构时,马氏体的晶体结构可看成是以图4-5 a) 第一行所 示(下页)的密排面为底面沿z方向按一定方式的堆垛. – 为保证密排堆垛结构,堆垛时必须按照以下的规则:若第一层的原点在A, 则第二层的原点可放在B或C . 若第二层的原点在B,则第三层的原点可 放在A或C,以此类推. • 当堆垛的顺序是ABABAB…时是2H结构 . • 当堆垛的顺序是ABCABC…时是3R结构. • 当堆垛的顺序是ABCBCACABABCBCACAB…时是9R结构,如图45b)所示 .
12
因此,记忆合金能够回复的最大变形不能超出马氏体完全再取向后所能贡 献出的相变应变.
• 如果马氏体完全再取向后继续施加外力,马氏体将以滑移和孪生的形式继续 变形,这时发生的变形是不可回复的塑性变形.组织中出现位错、形变孪晶 等晶体缺陷,破坏合金的热弹性马氏体相变,损害形状记忆效应.
三.应力诱发马氏体相变与记忆合金的超弹性
17
• 双程记忆训练:通过各种工艺处理方法在合金内部产生特定的内应力场,使 合金具有双程记忆效应.
• 双程记忆训练方法主要有: (1)SIM法:在母相态对记忆合金元件施加变形. (2)SME法:在马氏体态对记忆合金元件施加变形. (3)SIM+SME法:在母相状态下进行变形,约束其应变,冷却到Mf点以 下;或在马氏体状态下进行变形,约束其应变,加热 到Af点以上.也可将这二者结合起来. (4)约束ห้องสมุดไป่ตู้热法:将试样变形,约束其变形并在合金析出第二相的温度进 的行适当的加热.

形状记忆材料

形状记忆材料

形状记忆材料摘要:材料是现代社会发展的三大支柱产业之一,本文介绍了形状记忆材料的概念,发展历史,记忆效应产生的原理和分类应用。

形状记忆材料主要分为三种:形状记忆合金、形状记忆陶瓷、形状记忆聚合物。

由于形状记忆效应的独特记忆效应的性质,广泛的应用于工业领域和医学领域。

关键词:形状记忆材料、记忆效应、形状记忆合金、形状记忆陶瓷、形状记忆聚合物一.引言材料、信息、能源被称为现代社会发展的三大支柱产业,材料对当代社会的进步和发展起着十分重要的作用。

科技的不断进步对材料各个方面的性能的要求越来越高,智能化的材料已经成为一种趋势,而形状记忆材料的更是引起了国内外的研究热潮。

自上个世纪以来,形状记忆材料独特的性能引起了人们的极大的兴趣。

由于形状记忆材料具有形状记忆效应、高温复形变、良好的抗震性和适应性等优异性能,有着传统驱动器不可比拟的性能优点,形状记忆合金由于具有许多优异的性能,而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。

二.形状记忆材料的概念形状记忆材料[1](shape memory materials ,简称SMM)是指具有一定初始形状的材料经过形变并固定成另一种形状后,通过热、光、电等物理或化学刺激处理又恢复成初始形状的材料。

三.形状记忆材料的发展史1932年,瑞典人奥兰德在金镉合金中首次观察到了“记忆”效应,即合金形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般的回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。

1938,当时的美国在Cu-Zn合金里发现了马氏体的热弹件转变,随后前诉苏联对这种行为进行了研究。

1951年美国的里德等人在金镉合金中也发现了形状记忆效应,然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们的足够兴趣和重视。

直到1962年,美国海军机械研究所的一个研究小组从仓库领来一些镍钛合金丝做实验。

在实验的过程中,他们发现,当温度升到一定数值时,这些已经拉直的镍钛合金丝突然又恢复到原来的弯曲状态,他们反复做了多次实验,结果证明了这些细丝确实具有“记忆”。

第三讲-形状记忆材料

第三讲-形状记忆材料

2.1
Ti-Ni系形状记忆合金
目前研究得最全面、记忆性能最好、实用性强的合金材料
优点:记忆效应优良、性能稳定、生物相容性好是目前唯一 作为生物医学材料的形状记忆合金。
缺点:制造过程较复杂,价格高昂
Ti-Ni合金通过在1000℃左右固溶后,在400℃ 进行时效处理,再淬火得到马氏体。
在Ti-Ni合金中添加少量的第三元素,将会引起合金 中马氏体内部的显微组织发生显著变化,同时可能导致马
日本杰昂公司 开发出了以聚 酯为主要成分 的聚酯——合 金类形状记忆 聚合物。
形状记忆材料的种类
形状记忆合金 形状记忆陶瓷 形状记忆聚合物
形状记忆材料
一、
形状记忆效应
• 形状记忆效应
• 马氏体相变
• 形状记忆机理
1.1形状记忆效应
具有一定形状(初始形状)的固体材料,在某一 低温状态下经过塑性变形后(另一形状),通过加 热到这种材料固有的某一临界温度以上时,材料又 恢复到初始形状,这种效应称为形状记忆效应。
形状记忆过程中晶体结构的变化
• 从微观来看,形状记忆效应是晶体结构 的固有变化规律。通常金属合金在固态 时,原子按照一定规律排列起来,而形 状记忆合金的原子排列规律是随着环境 条件的改变而改变的。
• 形状恢复的推动力是由在加热温度下母 相和马氏体相的自由能之差产生的。
二、
形状记忆合金
• 具有形状记忆效应的合金叫形状记忆合金(Shape Memory Alloy,简称SMA)。它是通过热弹性与马 氏体相变及其逆相变而具有形状记忆效应的由两 种以上金属元素所构成的材料。
有记忆的金属
60年代初的一天,美国海军军械实验室的研究人员领来 了一批镍钛合金丝,也许是制造过程中处理不当,合金丝被 弄弯了,他们只能一根一根地将合金丝校直。有人顺手把校 直的合金丝堆放在炉子的旁边。这时意外的事情发生了,一 些校直的的合金丝在炉温的烘烤下,不一会儿就恢复到原来 弯曲的形状。于是不得不重新校直合金丝。起初,他们没有 在意,还是把校直的合金丝堆放在炉旁,结果合金丝又弯曲 了,这种现象重复出现了多次,直到人们把校直的合金丝换 了一地方堆放,不再受到炉温的烘烤以后,合金丝才继续保 持挺直的形状。 军械实验室的研究人员紧紧地抓住了上述的意外的事情, 开展反复的实验研究,终于发现含50%镍和50%钛的合金在温 度升高40℃以上时,能“记住”自己原来的形状。

形状记忆金属知识汇总

形状记忆金属知识汇总

形状记忆效应实验
原始形状
拉直
加热后恢复变形 前形状
4
形状记忆效应示意图
二,机理
形状记忆效应与其组织变化有关,这种组织变化就 是马氏体相变。形状记忆合金应具备以下三个条件:
①马氏体相变是热弹性类型的; ②马氏体相变通过孪生(切变)完成,而不是通过滑移
产生; ③母相和马氏体相均属有序结构。 ④相变时在晶体学上具有完全可逆性。
超弹性合金应力-应变曲线
五、合金材料 人们发现的具有形状记忆效应的合金有50多
种。按组成和相变特征可分为三大类:
Ti-Ni系形状记忆合金:TiNi、Ti2Ni、TiNi3,近年又开发 了Ti-Ni-Cu、Ti-Ni-Fe、Ti-Ni-Cr、Ti-Ni-Pb、Ti-NiNb等新型合金;
铜基系形状记忆合金:主要有Cu-Zn-Al、Cu-Al-Ni、CuAu-Zn;
37
第三元素的引入: Co、Fe等代替部分Ni,降低Ms; V、Cr、Mn代替Ti,降低Ms; Fe代替Ni,Ms下降,但是对R相的起始转变温度无影响, Fe的浓度<4%时,增加R的稳定温度。 Cu代替Ni,相变温度不变,(Af-Mf)减小,脆性增加, 不利于加工。 Pt、Pd的加入,提高Ms, 如Pt全部替代Ni,Ms超过500 C Nb(铌)的加入,使(Af-Mf)增达到150 C。
缺点:强度较低,稳定性及耐疲劳性能差,不 具有生物相容性。
39
C CuAlNi等铜基合金在反复使用中, 较易出现试样断裂现象,其疲劳寿命比 TiNi合金低2~3个数量级。
☞加入适量稀土和Ti、Mn、V、B等或
采用粉末冶金和快速凝固法等使合金晶 粒细化,达到改善合金性能的目的。
表1 铜基形状记忆合金的成分和性能

第十一章 形状记忆材料

第十一章 形状记忆材料

形状回复率η :
η (%)=(l1-l2)/( l1-l0)×100%
母相态的原始形状(若以长度表示)为l0,马氏体态 时经形变(若为拉伸)为l1,经高温逆相变后为l2
11.1.2
马氏体相变
淬火:将材料快速冷却至一定介质使其发生相
变的过程。
马氏体:是高温奥氏体快速冷却形成的体心立
方或体心四角(正方)相。
图11-8 Ni-Ti-Nb宽滞记忆合金管接头与传统连接的比较
最初管接头所采用的合金为Ni-Ti和Ni-Ti-Fe合金,安装前必须保存在液氮中, 实际应用很不方便。
图11-9 记忆合金同轴电缆紧固圈
图11-10 形状记忆合金紧固铆钉
尾部开口状,紧固前,把铆钉在干冰中冷却后把尾部拉直,插入被紧固 件的孔中,温度上升产生形状恢复,铆钉尾部叉开实现紧固。
图11-20 应用形状记忆叠层装置的机械夹持器 20层,200V,4ms的脉冲使4mm的陶瓷位移4um,尖 端位移30um
11.4
形状记忆聚合物
• 聚合物形状记忆机理 • 几种主要的形状记忆聚合物 • 形状记忆高聚物的应用
形状记忆高聚物(shape memory polymers,简写SMP):
(2)飞行器用天线
图11-11 人造卫星天线的示意图
图11-12 形状记忆合金月面天线的自动展开示意图
美国字航局(NASA) 利用Ti-Ni合金加工制成半球状的月面天线,先加以 形状记忆热处理,压成一团,阿波罗运载火箭送上月球表面,小团天线 受太阳照射加热恢复原状,即构成正常运行的半球状天线,
(3)驱动元件
利用记忆合金在加热时形状恢复的同时其恢复力
可对外作功的特性,制成各种驱动元件。
结构简单,灵敏度高,可靠性好。

形状记忆合金的形状记忆效应

形状记忆合金的形状记忆效应

形状记忆合金的形状记忆效应嘿,朋友们!今天咱来聊聊一个特别神奇的东西——形状记忆合金!这玩意儿可有意思啦!你想想啊,一般的材料变形了就是变形了,很难再恢复原来的样子。

但形状记忆合金就不一样啦,它就像有魔法一样,能记住自己原来的形状呢!这就好比一个人走丢了,但是心里一直记着回家的路,最后总能找回去。

比如说,你把一块形状记忆合金做成一个特定的形状,然后给它来个大变身,把它弄成别的样子。

但是呢,只要给它一些特定的条件,比如加热一下,哇塞,它就会像突然觉醒一样,“嗖”地变回原来的形状!这多神奇呀!这不就像是一个武林高手,隐藏了自己的真实功夫,到关键时刻才显露出来嘛。

而且哦,这形状记忆合金的用途可广啦!在医学领域,它可以被做成各种医疗器械,帮助医生更好地治疗病人呢。

就好像是医生的秘密武器,关键时刻能发挥大作用。

在航空航天领域,它也能大显身手,让那些高科技的设备运行得更加可靠。

你再想想,要是咱们生活中的东西都能用形状记忆合金来做,那该多有趣呀!比如你的眼镜腿不小心被压弯了,不用着急,放太阳下面晒晒,它自己就变直啦!或者你的雨伞被风吹变形了,没关系,回家用热水泡一泡,嘿,又跟新的一样啦!还有啊,它的这种记忆效应真的是太奇妙了。

就好像是它的身体里有一个小开关,一旦触发了那个开关,它就会按照设定好的程序行动起来。

这难道不是很让人惊叹吗?咱平时常见的材料哪有这本事呀!形状记忆合金可真是材料界的明星呢!它的存在让我们看到了科技的魅力和无限可能。

所以说呀,形状记忆合金这玩意儿可真是个宝贝!它的形状记忆效应就像是一个隐藏的宝藏,等待着我们去挖掘和利用。

我相信,随着科技的不断进步,它会在更多的领域发挥出更大的作用,给我们的生活带来更多的惊喜和便利。

难道你不想看看它还能创造出哪些神奇的事情吗?。

形状记忆材料的生物医学应用

形状记忆材料的生物医学应用

形状记忆材料的生物医学应用形状记忆材料是一种具有形状记忆效应的材料,能够在一定的条件下从临时形状回复到原始形状。

这种材料的生物医学应用已经得到了广泛的关注和研究。

下面将对形状记忆材料的生物医学应用进行详细介绍。

一、形状记忆材料的特性形状记忆材料具有以下特性:1.形状记忆效应:在一定的温度和湿度条件下,形状记忆材料能够从临时形状回复到原始形状。

这种形状记忆效应可以用于制造智能材料和智能结构。

2.良好的生物相容性:形状记忆材料具有良好的生物相容性,可用于生物体内植入材料和生物医学工程中。

3.耐磨性和耐腐蚀性:形状记忆材料具有较好的耐磨性和耐腐蚀性,可用于制造医疗器械和生物传感器等。

二、形状记忆材料的生物医学应用1.医用缝合线:形状记忆材料可以制成医用缝合线。

在手术过程中,医生可以将形状记忆线临时变形,然后植入人体内。

当线接触到人体温度时,形状记忆效应会使得线恢复到原始形状,从而完成缝合。

这种缝合线具有愈合效果好、伤口愈合快等优点。

2.血管支架:形状记忆材料可以制成血管支架,用于治疗血管狭窄或阻塞的疾病。

在低温下,医生可以将临时变形的血管支架植入人体内。

当支架接触到人体温度时,形状记忆效应会使得支架恢复到原始形状,从而撑开血管,恢复血流。

这种血管支架具有创伤小、并发症少等优点。

3.牙齿矫正器:形状记忆材料可以制成牙齿矫正器,用于矫正牙齿排列不齐或咬合不良等问题。

在口腔医生的指导下,患者可以将临时变形的牙齿矫正器佩戴在牙齿上。

当矫正器接触到口腔温度时,形状记忆效应会使得矫正器恢复到原始形状,从而对牙齿进行矫正。

这种牙齿矫正器具有使用方便、舒适度高、效果显著等优点。

4.组织工程支架:形状记忆材料可以制成组织工程支架,用于修复或再生损伤的人体组织。

在低温下,医生可以将临时变形的组织工程支架植入人体内。

当支架接触到人体温度时,形状记忆效应会使得支架恢复到原始形状,从而为组织生长提供合适的微环境。

这种组织工程支架具有生物相容性好、能够促进组织生长等优点。

形状记忆材料原理和制备方法总结

形状记忆材料原理和制备方法总结

形状记忆材料原理和制备方法总结
形状记忆材料是一种可以根据外界刺激改变形状,并恢复原状的特殊材料。

其原理基于相变效应和形状记忆效应,通过合理的制备方法可以获得不同形状记忆材料。

原理
形状记忆材料的原理主要有以下几个方面:
1. 形状记忆效应:形状记忆材料可以在经历形状改变后恢复原来的形状。

这是由于材料中存在特殊的相变结构,通过应力诱导相变或温度诱导相变来实现形状的改变和恢复。

2. 相变效应:形状记忆材料的相变效应是材料的理想弹性成分与相互作用的结果。

在相变的过程中,晶格结构发生改变,使材料产生形状记忆效应。

3. 容积相变效应:形状记忆材料中的相变不仅限于表面形状的改变,还可以引起材料的容积变化。

这是由于相变过程中,晶格结构的变化导致材料的体积发生变化。

制备方法
形状记忆材料的制备方法主要有以下几种:
1. 合金法:通过合金化改进晶格结构,使材料具有形状记忆性能。

常用的合金有铜铝合金、镍钛合金等。

2. 多层薄膜法:利用不同材料的热膨胀系数不同,通过堆叠多层薄膜形成形状记忆材料。

如利用金属和陶瓷薄膜的结合。

3. 共沉淀法:通过共沉淀制备形状记忆材料。

将合适的元素混合溶液共沉淀形成材料的晶体结构。

4. 拉伸法:通过拉伸形状记忆材料,引起材料的相变,使其固化在新的形状上。

总之,形状记忆材料的原理基于相变效应和形状记忆效应,制备方法包括合金法、多层薄膜法、共沉淀法和拉伸法等。

这些方法可以根据具体需求选择并进行相应制备。

形状记忆材料

形状记忆材料

形状记忆材料形状记忆效应的机理主要涉及材料的晶体结构和相变过程。

在形状记忆合金中,晶体结构发生相变时会产生马氏体相和奥氏体相两种不同的晶体结构。

马氏体相具有较小的晶体形状,而奥氏体相具有较大的晶体形状。

当形状记忆合金在高温相状态下被加工成一定形状后,经过冷却形成低温相状态时,马氏体相会发生形变,而奥氏体相保持不变。

当形状记忆合金被加热到高温相状态时,马氏体相会发生逆相变,恢复到原来的形状,而奥氏体相则不发生相变。

这种相变过程是可逆的,因此形状记忆效应可以反复发生。

改写:形状记忆效应的机理主要与材料的晶体结构和相变过程有关。

形状记忆合金中,晶体结构发生相变时会产生马氏体相和奥氏体相两种不同的晶体结构。

马氏体相的晶体形状较小,而奥氏体相的晶体形状较大。

当形状记忆合金在高温相状态下被加工成一定形状后,冷却成低温相状态时,马氏体相会发生形变,而奥氏体相保持不变。

当形状记忆合金被加热到高温相状态时,马氏体相会发生逆相变,恢复到原来的形状,而奥氏体相则不发生相变。

这种相变过程是可逆的,因此形状记忆效应可以反复发生。

第二节形状记忆材料的应用形状记忆材料的应用范围十分广泛,已经应用于多个领域,如航空航天、机器人、医疗器械等。

以下是形状记忆材料在不同领域的应用情况:1.航空航天形状记忆合金被广泛应用于航空航天领域,如机翼、发动机、襟翼等。

形状记忆合金的形状记忆效应可以使机翼、襟翼等部件在不同的飞行状态下自动调整形状,提高了飞行性能和安全性。

2.机器人形状记忆材料可以用于机器人的运动控制和形状变化。

例如,可以将形状记忆合金制成机器人的关节,使机器人可以自动调整姿态和形状以适应不同的工作环境和任务。

3.医疗器械形状记忆合金可以用于医疗器械,如支架、导丝、植入物等。

形状记忆合金的形状记忆效应可以使医疗器械在体内自动调整形状,提高了手术成功率和患者的治疗效果。

改写:形状记忆材料的应用范围广泛,已经应用于多个领域,如航空航天、机器人、医疗器械等。

光致形状记忆材料

光致形状记忆材料

光致形状记忆材料1. 引言光致形状记忆材料(Photoinduced Shape Memory Materials,PSMM)是一类具有形状记忆效应的材料,其形状可以通过光照进行可逆调控。

相比传统的热致形状记忆材料,PSMM具有响应速度快、操作方便等优势,因此在智能材料领域具有广泛的应用前景。

本文将从材料的基本原理、制备方法、应用领域等方面对光致形状记忆材料进行详细介绍。

2. 基本原理光致形状记忆材料基于光敏材料和形状记忆材料的结合,通过光照引发材料的相变,从而实现形状记忆效应。

光照可以改变材料内部的结构和性质,进而导致材料形状的变化。

光致形状记忆材料通常由光敏分子和形状记忆聚合物组成。

光敏分子可以吸收特定波长的光,并产生光化学反应,从而改变材料的结构和性质。

形状记忆聚合物具有形状记忆效应,即在经历外力作用后,可以恢复到其原始形状。

基本原理可以简单描述为以下几个步骤:•光照:通过照射特定波长的光,激活光敏分子。

•光化学反应:光敏分子发生光化学反应,导致材料内部结构的改变。

•形状变化:材料的形状随着内部结构的改变而发生变化。

•形状记忆效应:当外力作用消失时,材料可以恢复到其原始形状。

3. 制备方法光致形状记忆材料的制备方法多种多样,常见的制备方法包括:3.1 光敏聚合物交联光致形状记忆材料可以通过光敏聚合物的交联反应制备而成。

首先,选择合适的光敏单体和交联剂,将其混合并加热至适当温度,使其发生光敏聚合反应。

光敏聚合物的交联结构赋予了材料形状记忆效应。

3.2 光致变色材料改性光致形状记忆材料还可以通过对光致变色材料的改性来实现。

光致变色材料是一类可以在光照下改变颜色的材料。

通过在光致变色材料中引入形状记忆聚合物,可以实现光致形状记忆效应。

3.3 其他制备方法除了上述两种方法,还可以利用纳米技术、溶液法、共聚合等方法制备光致形状记忆材料。

这些方法各有优劣,可以根据具体需求选择合适的制备方法。

4. 应用领域光致形状记忆材料具有广泛的应用领域,以下列举几个典型的应用领域:4.1 智能材料光致形状记忆材料可以应用于智能材料领域,例如智能玩具、智能家居等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章形状记忆材料
形状记亿材料是一种特殊功能材料,这种集感知和驱动于一体的新型材料可以成为智能材料结构,而备受世界瞩目。

1951年美国Read等人在Au—Cd合金中首先发现形状记忆效应(Shape Memory Effect,简称SME)。

1953年在In—T1合金中也发现了同样的现象,但当时未能引起人们的注意!直到1964年布赫列等人发现Ti—Ni合金具有优良的形状记忆性能,并研制成功实用的形状记忆合金“Nitinol”,引起了人们的极大关注,世界各国科学工作者和工程技术人员进行了广泛的理论研究和应用开发。

形状记忆合金已广泛用于人造卫星天线、机器人和自动控制系统、仪器仪表、医疗设备和能量转换材料。

近年来,又在高分子聚合物、陶瓷材料、超导材料中发现形状记忆效应,而且在性能上各具特色,更加促进了形状记忆材料的发展相应用。

第一节形状记忆效应
一、形状记忆效应
具有一定形状的固体材料,在某一低温状态下经过塑性变形后,通过加热到这种材料固有的某一临界温度以上时,材料又恢复到初始形状的现象,称为形状记忆效应。

具有形状记忆效应的材料称为形状记忆材料。

例如,在高温时将处理成一定形状的金属急冷下来,在低温相状态下经塑性变形成另一种形状,然后加热到高温相成为稳定状态的温度时通过马氏体逆相变会恢复到低温塑性变形前的形状。

具有这种形状记忆效应的金属,通常是由2种以上的金属元素构成的合金,故称为形状记忆合金(Shape Memory Alloys ,简称SMA)。

形状记忆效应可分为3种类型:单程形状记忆效应、双程形状记忆效应和全程形状记忆效应。

图4—l表示3种不同类型形状记忆效应的对照。

所谓单程形状记忆效应就是材料在高温下制成某种形状,在低温时将其任意变形,再加热时恢复为高温相形状,而重新冷却时却不能恢复低温相时的形状。

若加热时恢复高温相时的形状,冷却时恢复低温相形状,即通过温度升降自发可逆的反复恢复高低温相形状的现象称为双程形状记忆效应。

当加热时恢复高温相形状,冷却时变为形状相同而取向相反的高温相形状的现象称为全程形状记忆效应。

它是一种特殊的双程形状记忆效应,只能在富Ti-Ni合金中出现。

1。

相关文档
最新文档