七年级数学一元一次方程应用题复习题及答案
完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
初一数学一元一次方程应用题复习练习及答案

初一数学一元一次方程应用题复习练习及答案列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率 ,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为: 。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?甲处乙处原有人数2718现有人数27+18-相等关系2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析 设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:甲处乙处原有人数2718增加人数20-现有人数27+18+20-等量关系+23某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。
30道初一数学 一元一次方程应用题(含答案)

30道初一数学一元一次方程应用题(含答案)一、直列法T1、小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(12年后爸爸的年龄是小明年龄的2倍)T2、甲仓库有粮食72t,乙仓库有粮食54t,现又调入粮食42t,问如何分配,才使乙仓库的粮食存量是甲仓库的2/3倍还多3t?(应调入乙仓库粮食15t,调入甲仓库粮食27t)T3、在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?(应调往甲处17人,乙处3人)T4、某厂甲车间有工人32人,乙车间有62人,现从厂外招聘工人98名分配到两车间,应该如何分配才能使乙车间人数是甲车间人数的3倍?(甲车间16人,乙车间82人)T5、甲工程队有28人,乙工程队有35人,先要从甲队抽调若干人到乙队,使乙队人数是甲队的2倍,应从甲队抽调多少人到乙队?(应从甲队抽调7人到乙队)T6、某单位三年购买电脑170台,去年购买数量比前年多10台,今年购买数量又是前年的2倍,求前年购买了多少台电脑。
(前年购买了40台)T7、汽车从甲地到乙地用去油箱中汽油的1/4,由乙地到丙地用去剩下汽油的1/5,油箱中还剩下6升,求箱中原有汽油多少升?(油箱中原有汽油10升)T8、某饮料店的A种果汁比B种果汁贵1元,小明和他的四位朋友共要了2杯A种果汁和3 杯B种果汁,一共花了17元,问这两种果汁的单价分别是多少?(A种果汁的单价为4元,B种果汁的单价为3元)T9、鸡兔同笼,共有头12个,脚36只.问:笼中有鸡兔各几只?(笼中有鸡6只,有兔6只)T10、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.(甲每小时加工16个零件,乙每小时加工14个零件)T11、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克)T12、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8 只鸽子,原有多少只鸽子和多少个鸽笼?(答案:原有27只鸽子,4个鸽笼)T13、某中学七年级某班48名同学去公园划船,一共乘坐10条船,已知大船坐5人,小船坐3人,正好全部坐满.则大船小船各有多少条?(大船9条,小船1条)T14、某中学现有学生4200人,计划在一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,这所学校现在的初中在校生和高中在校生人数分别是多少?(初中在校生1400人,高中在校生2800人)T15、制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿,现有12m3木材,应怎样计划用材才能制作尽可能多的桌子?(10m3制作200个桌面,2m3制作800条桌腿)T16某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.有一考生虽然做了全部的题,但所得总分为零,他做对的题有多少道?(他做对的题有10少道)二、公式法(一)行程问题:T1、有两列火车,一列长320米,每秒行18米,另一列以每秒22米的速度迎面开来,两车从相遇到相离共用了15秒。
初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
人教版七年级上册期末复习试题:第三章《一元一次方程》应用题专练(四)

七年级上册期末复习试题:第三章《一元一次方程》应用题专练(四)1.元旦期间,某商场用1400元购进了甲、乙两种商品,共100件,进价分别是18元、10元.(1)求甲、乙两种商品各购进了多少件?(2)商场搞促销活动,若同时购买甲、乙两种商品各1件,可享受标价的8折优惠,此时这两种商品的利润率是10%,求这两种商品的标价总共多少元?2.为丰富校园文化生活,某学校在元旦之前组织了一次百科知识竞赛.竞赛规则如下:竞赛试题形式为选择题,共50道题,答对一题得3分,不答或错一题倒扣1分.小明代表班级参加了这次竞赛,请解决下列问题:(1)如果小明最后得分为142分,那么他回答对了多少道题?(2)小明的最后得分可能为136分吗?请说明理由.3.2019年元旦期间,某超市打出促销广告,如下表所示:一次性所购物品的原价优惠办法不超过200元没有优惠超过200元,但不超过600元全部按九折优惠超过600元其中600元仍按九折优惠,超过600元部分按8折优惠(1)小张一次性购买物品的原价为400元,则实际付款为元;(2)小王购物时一次性付款580元,则所购物品的原价是多少元?(3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?4.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t 秒.(1)数轴上点B表示的数为;点P表示的数为(用含t的代数式表示).(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.5.已知线段AB=a,点P从点A出发沿射线AB以每秒3个单位长度的速度运动,同时点Q 从点B出发沿射线AB以每秒2个单位长度的速度运动,M、N分别为AP、BQ的中点,运动的时间为t.(1)若a=12,MN=AB,求t的值,并写出此时P、Q之间的距离;(2)点M、N能否重合为一点,若能,请直接写出此时线段PQ与线段AB之间的数量关系;若不能,说明理由.6.某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?7.A、B、C、D、E、F六个球队进行单循环比赛(每两队之间赛一场,比赛结果必须分出胜负),每天同时在三个场地各进行一场比赛,前四天的积分表如下(E、F的积分被遮挡):(1)根据积分榜,胜一场积几分,负一场积几分?(2)若E队前四天积分比F队多4分,问E、F两队前四天的战绩分别是几胜几负?(3)已知第一天B与D对阵,第二天C与E对阵,第三天D与F对阵,第四天B与C对阵,试分析第五天A和谁对阵比赛.8.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?(请列一元一次方程求解)9.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请回答以下问题.(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?(2)如何选择更省钱?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案1.解:(1)设甲购进了x件,则乙购进了(100﹣x)件,由题意,得:18x+10(100﹣x)=1400,解得:x=50,100﹣x=50,答:甲、乙两种商品各购进了50件;(2)设两种商品的标价总共y元.由题意,得:(18+10)×(1+10%)=0.8y,解得:y=38.5,答:两种商品的标价总共38.5元.2.解:(1)设小明回答对了x道题,根据题意,得:3x﹣(50﹣x)=142,解得:x=48,答:小明答对了48道题;(2)不可能得到136分,设小明回答对了y道题,根据题意,得:3y﹣(50﹣y)=136,解得y=46.5,∵46.5不是整数,∴不可能得到136分.3.解:(1)小张一次性购买物品的原价为400元,则实际付款为400×0.9=360(元),故答案为:360.(2)若所购物凭的原价为600元,则实际付款为540元,因为580>540,所以小王所购物品原价超过600元,设小王所购物品原价为x元,根据题意,得:600×0.9+0.8(x﹣600)=580,解得x=650,答:所购物品的原价是650元;(3)∵小赵和小李各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,所以小赵所购物品的原价低于600元,小李所购物品的原价高于600元,设小赵所购物品原价为y元,则小李所购物品的原价为(1200﹣y)元,①若小赵所购物品的原价低于200元,根据题意,得:y+600×0.9+0.8(1200﹣y﹣600)=1074,解得y=270>200,不符合题意;②若小赵所购物品的原价超过200元,但不超过600元,根据题意,得:0.9y+600×0.9+0.8(1200﹣y﹣600)=1074,解得:y=540,∴1200﹣540=660,符合题意;答:小赵所购物品原价为540元,则小李所购物品的原价为660元.4.解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣3+2t,故答案为:9,﹣3+2t;(2)①根据题意,得:(1+2)t=12,解得:t=4,∴﹣3+2t=﹣3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t=;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.5.解:(1)由题意得,AP=3t,BQ=2t,∵M、N分别为AP、BQ的中点,∴AM=PM=AP=t,AN=AB+BN=AB+BQ=a+t∴MN=|t﹣(a+t)|=||,PQ=|3t﹣a﹣2t|=|t﹣a|,若a=12,MN=AB=4,∴||=4,解得:t1=32或t2=16当t=32时,PQ=|32﹣12|=20,当t=16时,PQ=|16﹣12|=4;综上所述:若a=12,MN=AB,则t=32时,PQ=20,或t=16时,PQ=4,(2)结论:点M、N能重合为一点,此时PQ=AB;理由如下:若点M、N重合为一点,即MN=0,∴||=0,解得t=2a,则PQ=|2a﹣a|=a,此时PQ=AB.6.解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得 200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.7.解:(1)由D队情况可得,负4场积4分∴负一场得1分设胜一场积x分,得:3x+1=10解得:x=3答:胜一场积3分,负一场积1分.(2)设E队胜y场,F队胜z场,依题意得:解得:答:E队3胜1负,F队1胜3负.(3)由条件可知,第二天B与A或F对阵,若第二天B与A对阵,即当天比赛是:B与A,C与E,D与F(与第三天才有D与F对阵矛盾),不成立∴第二天B与F对阵,比赛为:C与E,B与F,A与D∴第五天B与A对阵答:第五天A和B对阵比赛.8.解:设经过x分钟后两人第一次相遇,可列方程:105x﹣25x=400解得x=5答:经过5分钟,两人第一次相遇.9.解:(1)设复印张数为x页,(x>20),列方程得:20+0.4(x﹣20)=0.8x解得:x=30答:复印张数为30页时,某眷印社与某图书馆的收费相同.(2)20+0.4(x﹣20)>0.8x解得:x<30答:当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.。
初一数学 一元一次方程应用题经典汇总(含答案)

一元一次方程应用题知识点一:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知识点点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元, 经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨, 但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜, 在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
七年级数学一元一次方程练习题(含答案)

七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.
2.和差倍分问题
增长量=原有量×增长率现在量=原有量+增长量
3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h= r2h
②长方体的体积 V=长×宽×高=abc
4.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
5.市场经济问题
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润
商品成本价
×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7.工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
8.储蓄问题
利润=每个期数内的利息
本金
×100% 利息=本金×利率×期数
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得1
6
×
1
2
+(
1
6
+
1
4
)x=1
解这个方程,得x=11 5
11
5
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
π ·(2002)2
x=300×300×80 x ≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x 分. 过完第二铁桥所需的时间为
250600x -分. 依题意,可列出方程 600x +560=250600
x - 解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x 克,
那么红色和白色配料分别为3x 克和5x 克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x 名工人加工甲种零件,
则这天加工甲种零件有5x 个,乙种零件有4(16-x )个.
根据题意,得16×5x+24×4(16-x )=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a )×0.40×70%=30.72
解得a=60
(2)设九月份共用电x 千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A ,B 两种,B ,C 两种,A ,C 两种电视机这三种方案分别计算,
设购A 种电视机x 台,则B 种电视机y 台.
(1)①当选购A ,B 两种电视机时,B 种电视机购(50-x )台,可得方程
1500x+2100(50-x )=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.。