物理机械能守恒定律的应用教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理机械能守恒定律的应用教案
1.在物理知识方面要求.
(1)掌握机械能守恒定律的条件;
(2)理解机械能守恒定律的物理含义.
2.明确运用机械能守恒定律处理问题的优点,注意训练学生运用本定律解决问题的思路,以培养学生正确分析物理问题的习惯.
3.渗透物理学方法的教育,强调用能量的转化与守恒观点分析处理问题的重要性.
1.机械能守恒定律是力学知识中的一条重要规律.是一个重点知识.特别是定律的适用条件、物理意义以及具体应用都作为较高要求.
2.机械能守恒定律的适用条件的理解以及应用,对多物理生来说,虽经过一个阶段的学习,仍常常是把握不够,出现各式各样的错误.这也说明此项正是教学难点所在.
投影片若干,投影幻灯,彩笔,细绳,小球,带有两个小球的细杆,定滑轮,物块m、M,细绳.
(一)复习引入新课
1.提出问题(投影片).
(1)机械能守恒定律的内容.
(2)机械能守恒定律的条件.
2.根据学生的回答,进行评价和归纳总结,说明(1)机械能守恒定律的物理含义.
(2)运用机械能守恒定律分析解决物理问题的基本思路与方法.
(二)教学过程设计
1.实例及其分析.
问题1 投影片和实验演示.如图1所示.一根长L的细绳,固定在O点,绳另一端系一条质量为m的小球.起初将小球拉至水平于A 点.求小球从A点由静止释放后到达最低点C时的速度.
分析及解答:小球从A点到C点过程中,不计空气阻力,只受重力和绳的拉力.由于绳的拉力始终与运动方向垂直,对小球不做功.可见只有重力对小球做功,因此满足机械能守恒定律的条件.选取小球在最低点C时重力势能为零.根据机械能守恒定律,可列出方程:
教师展出投影片后,适当讲述,然后提出问题.
问题2 出示投影片和演示实验.在上例中,将小球自水平稍向下移,使细绳与水平方向成角,如图2所示.求小球从A点由静止释放后到达最低点C的速度.
分析及解答:仍照问题1,可得结果
问题3 出示投影片和演示实验.现将问题1中的小球自水平稍向上移,使细绳与水平方向成角.如图3所示.求小球从A点由静止释放后到达最低点C的速度.
分析及解答:仿照问题1和问题2的分析.
小球由A点沿圆弧AC运动到C点的过程中,只有重力做功,满足机械能守恒.取小球在最低点C时的重力势能为零.
根据机械能守恒定律,可列出方程:
2.提出问题.
比较问题1、问题2与问题3的分析过程和结果.可能会出现什么问题.
引导学生对问题3的物理过程作细节性分析.起初,小球在A点,绳未拉紧,只受重力作用做自由落体运动,到达B点,绳被拉紧,改做
进一步分析:小球做自由落体运动和做圆周运动这两个过程,都只有重力做功,机械能守恒,而不是整个运动过程机械能都守恒,因此原分析解答不合理.
引导学生进一步分析:小球的运动过程可分为三个阶段.
(1)小球从A点的自由下落至刚到B点的过程;
(2)在到达B点时绳被拉紧,这是一个瞬时的改变运动形式的过程;
(3)在B点状态变化后,开始做圆周运动到达C点.
通过进一步讨论,相互启迪,使学生从直觉思维和理论思维的结合上认识到这一点.前后两个过程机械能分别是守恒的,而中间的瞬时变化过程中由于绳被拉紧,vB在沿绳方向的分速度改变为零,即绳的拉力对小球做负功,有机械能转化为内能,机械能并不守恒.因此,对小球运动的全过程不能运用机械能守恒定律.
正确解答过程如下:(指定一个学生在黑板上做,其余学生在座位上做,最后师生共同讨论裁定.)
小球的运动有三个过程(见图4):
(1)从A到B,小球只受重力作用,做自由落体运动,机械能守恒.到达B点时,悬线转过2角,小球下落高度为2Lsin,取B点重力势能为零.根据机械能守恒定律
(2)小球到达B点,绳突然被拉紧,在这瞬间由于绳的拉力作用,小球沿绳方向的分速度vB∥减为零,垂直绳的分速度vB不变,即
(3)小球由B到C受绳的拉力和重力作用,做初速度为vB的圆周运动,只有重力做功,机械能守恒,有:
联立①、②、③式可解得vC.
教师对问题1、2、3的分析及解答过程,引导学生归纳总结.
进一步提出问题.
问题4 出示投影片和演示实验.
如图5所示,在一根长为L的轻杆上的B点和末端C各固定一个质量为m的小球,杆可以在竖直面上绕定点A转动,现将杆拉到水平位置
与摩擦均不计).
解法(一):取在C点的小球为研究对象.在杆转动过程中,只有重力对它做功,故机械能守恒.有:
解法(二):取在B点的小球为研究对象,在杆转动过程中,只有重力对它做功,故机械能守恒:
由于固定在杆上B、C点的小球做圆周运动具有相同的角速度,则vB∶vC=rB∶rC=2∶3,
现比较解法(一)与解法(二)可知,两法的结果并不相同.
提出问题:
两个结果不同,问题出现在何处呢?
学生讨论,提出症结所在.教师归纳总结,运用机械能守恒定律,应注意研究对象(系统)的选取和定律守恒的的条件.在本例题中出现的问题是,整个系统机械能守恒,但是,系统的某一部分(或研究对象)的机械能并不守恒.因而出现了错误的结果.
师生共同归纳,总结解决问题的具体办法.
由于两小球、轻杆和地球组成的系统在运动过程中,势能和动能相互转化,且只有系统内两小球的重力做功,故系统机械能守恒.选杆在水平位置时为零势能点.
则有 E1=0.
而 E1=E2,
教师引导学生归纳总结以上解法的合理性,并进一步提出问题,对机械能守恒定律的理解还可有以下表述:
①物体系在任意态的总机械能等于其初态的总机械能.
②物体系势能的减小(或增加)等于其动能的增加(或减小).
③物体系中一部分物体机械能的减小等于另一部分物体机械能的增加.
请同学分成三组,每组各用一种表述,重解本例题.共同分析比较其异同,这样会更有助于对机械能守恒定律的深化.为此,给出下例,并结合牛顿第二律的运用,会对整个物理过程的认识更加深刻.
已知,小物体自光滑球面顶点从静止开始下滑.求小物体开始脱离球面时=?如图6所示.