1.2.2简单组合体的三视图

合集下载

1.2.2空间几何体的三视图2

1.2.2空间几何体的三视图2
Biblioteka 例1:画出下列几何体的三视图。
分析:画三视图之前,先把几何体的结构弄清楚。
(1)
(2)
(3)
练一练:让学生完成P15练习第1题 例2:根据下列三视图,说出立体图形的形状。
(1)
(2)
(3)
解:
(1)
(2)
(3)
圆台
四棱锥
螺帽
例3:下图是一个物体的三视图,试说出 物体的形状。
主视图
左视图
教学目标: 能利用正投影绘制简单组合体的三视图,并根 据所给的三视图说出该几何体由哪些简单几何 体构成。 复习回顾: 1.中心投影与平行投影的概念: 中心投影:光由一点向外散射形成的投影。 平行投影:在一束平行光线照射下形成的投影。 2.三视图的概念: 正视图:光线从几何体的前面向后面正投影 得到的投影图;
俯视图
解:物体的形状如下:
练一练:学生完成P15练习第2、3、4题
归纳小结: 1.今天我们学习了三视图的画法以及由三 视图说实物。重点要通过三视图识别所表 示的几何体。 2.画三视图应注意:长对正,高平齐, 宽相等,被遮挡的轮廓线应画成虚线。 作业布置: 课本第20-21页 习题1.2的第1、2题。
侧视图:光线从几何体的左面向右面正投影 得到的投影图;
俯视图:光线从几何体的上面向下面正投影 得到的投影图。 几何体的正视图、侧视图和俯视图统称为 几何体的三视图。
在三视图中要注意:(1)要遵守“长对正”, “高平齐”,“宽相等”的规律; (2)要注意三视图的主视图反映上下、左右关系, 俯视图反映前后、左右关系,左视图反映前后、 上下关系,方位不能错。 (3) 画几何体的三视图时,能看见的轮廓线和棱用实线 表示,不能看见的轮廓线和棱用虚线表示。

中考数学 题型02 简单几何体的三视图(解析版)

中考数学 题型02 简单几何体的三视图(解析版)

备考2020年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是( )A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是( )A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是( )A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是( )A .B .C .D .【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D .3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A .B .C .D .【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D .4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是( )A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是( )A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是( )A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B .4.如图所示几何体,从左面看是( )A .B .C .D .【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B .5.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B .6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是( )A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是( )A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。

组合体三视图的画法

组合体三视图的画法
(4)布置图面、绘制底稿
布置视图时,应根据各视图每个方向的最大尺寸,考虑视图间 留出标注尺寸的位置和适当间隔,要注意布图均匀合理。
视图确定后,可以先在图上绘制出确定各视图位置的基准线, 这样的基准线有:底面的积聚直线、大端面的积聚直线、对称图形 的中心线(对称平面位置)或回转体的轴线、对称中心线。
当两组成部分的表面不平齐时,中间应有线隔开。如图4-2b所示, 上下两形体的相应表面没有对齐,不在同一平面内,主、左视图中应 画出两表面的分界线。
(a)
(b)
图4-2 两形体表面平齐与不平齐
(2)相交 当两组成部分的表面相交时,在相交处应画出交线。如 图4-3 所示,底板的前后平面分别与圆柱面相交,相交处产 生交线,则主视图中应画出交线的投影。
最常见的形式。如图4-1c所示的轴承座。 需要注意的是:组合体是一个整体,组合形式是我们分
析组合体的方法,而不是它形成的方法。
2.表面连接关系
组合体上相邻两表面的连接关系可分三种情况:平齐与不平齐、相 交、相切。 (1)平齐与不平齐
当两组成部分的表面平齐(即共面)时,两表面之间不应画分界线。 如图 4-2a所示,上下两形体的相应表面平齐连成一个平面,结合出没 有分界线,因而主视图上箭头所指之处不应画线。
图4-3 两形体表面相交 图4-4 两形体表面相切
(3)相切
当两组成部分的表面相切时,在相切处一般不画出分界线。如图 4-4 所示。底板的前后平面分别与圆柱面相切,相切时面与面之间是 光滑的过渡。但在特殊情况下,当两圆柱面的公切面垂直与投影面时, 应画出相切的素线在该投影面上的投影,也就是画出了两面的分界线。 如图4-5所示。
3)视图中的虚线最少。 具体的做法是:先将图4-7a所示的组合体按自然位置

必修2课件1.2-2简单组合体的三视图

必修2课件1.2-2简单组合体的三视图

思考1:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并画出其示意图.
正视图
侧视图
俯视图
正视图
侧视图
俯视图
思考2:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并作适当描述.
正视图 正视图 侧视图
侧视图
俯视图
俯视图
理论迁移
例1 下面物体的三视图有无错误? 如果有,请指出并改正.
1.2
空间几何体的三视图和直观图
第二课时
简单组合体的三视图
问题提出
1.柱、锥、台、球是最基本、最简单的 几何体,由这些几何体可以组成各种各 样的组合体,怎样画简单组合体的三视 图就成为研究的课题. 2.另一方面,将几何体的三视图还原几 何体的结构特征,也是我们需要研究的 问题.
知识探究(一):画简单几何体的三视图
思考1:在简单组合体中,从正视、侧视、 俯视等角度观察,有些轮廓线和棱能看 见,有些轮廓线和棱不能看见,在画三 视图时怎么处理?
思考2:如图所示,将一 个长方体截去一部分, 这个几何体的三视图是 什么?
正视图
侧视图
正视
俯视图
思考3:观察下列两个实物体,它们的结 构特征如何?你能画出它们的三视图吗?
正视图
侧视图
俯视图
正视图
侧视图
俯视图
思考4:如图,桌子上放着一个长方体和 一个圆柱,若把它们看作一个整体,你 能画出它们的三视图吗?
正视图
侧视图
正视 俯视图
知识探究(二):将三视图还原成几何体
一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?

1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图

1.2.1 中心投影与平行投影  1.2.2 空间几何体的三视图

2-2:如图,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平 面截去该正方体的上部分,则剩余几何体的正视图为( )
解析:设过点A,E,C1的截面与棱DD1相交于点F,则F是棱DD1的中点,截去 正方体的上部分,剩余几何体的直观图如图所示,则其正视图为C.故选C.
题型三 由三视图还原几何体 【例3-1】 如图所示为一个简单几何体的三视图,则其对应的实物图是 ()
自我检测(教师备用)
1.已知△ABC,选定的投影面与△ABC所在的平面平行,则经过中心投影后
(投影线与投影面相交)所得的三角形与△ABC( B )
(A)全等
(B)相似
(C)不相似
(D)以上均有可能
2.在三棱锥、正方体、长方体、圆柱、圆锥、圆台、球中,正视图、俯视
图、侧视图都相同的几何体有( B )
3-3:某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
(A)1
(B) 2
(C) 3
(D)2
解析:该几何体是底面为正方形,一侧棱垂直于底面的四棱锥,最长棱的 棱长为 12 12 12 = 3 ,故选C.
点击进入 课时作业
解析:根据三种视图的对角线的位置,可以判断A是正确的.故选A.
变式探究:本例中三视图对应的几何体是一个什么样的组合体?
解:因为实物图为A,所以该几何体是由一个直三棱柱和一个四棱锥组成的.
【3-2】 某多面体的三视图如图所示,其中正视图和侧视图都由正方形 和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该 多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )
(A)10 (B)12 (C)14 (D)16
解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形 的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰 长为 2,直三棱柱的高为 2,三棱锥的高为 2,易知该多面体有 2 个面是梯形,这些

简单组合体的三视图

简单组合体的三视图

注意:在三视图中,边 界线和可见轮廓线都用实 线画出,不可见轮廓线, , 用虚线画出。
例3、4、5:见P.12
注意: 1、若相邻两物体的表面相交,表面的交线 是它们的边界线,不可见轮廓线用虚线画 出。 2、绘制与检查时,应先从整体到局部顺序 进行。 3、先定主视俯视左视方向,同一物体放的 位置不同,三视图可能不一样。 4、观察组合体由哪些基本几何体形成,什 么形成方式,交线位置如何。
探究实践 练习 p16: 1,2 作业 p18: A5,6
简单组合体的三视图
温故知新
组合体的基本结构形式 1将基本几何体拼接而成的 几何体 2从基本几何体中切掉或挖 掉部分构成的几何体
Байду номын сангаас
组合体三视图画法步骤 A.作主视图 B.作俯视图 C.作左视图
三视图特点
主视图,俯视图长对正 主视图,左视图高平齐 左视图,俯视图宽相等
例1 :见P.14 :见P.14

组合体三视图讲解

组合体三视图讲解

视图 机件向多面投影体系的各投影面做正
投影所得的图形。
组合体的三视图一般是指:
主视图、俯视图、左视图。
三视图的投影规律——三等规律
主、俯视图——长对正; 主、左视图——高平齐; 俯、左视图——宽相等。
“三等规律”是画图、看图的基本投影规律。
二、 形体分析方法
形体分析法 假想把组合体分解为若干个基本几何形
使主视图符合机件的自然安放位置。
尽量减少其它视图中的虚线,因为虚线不便于读图和标注尺 寸。
A D
A向:虚线过多
B向:虽然较好地反映
了各形体的相对位置, 但左视图虚线过多
C B
综合考虑图幅布局
等因素,选择C 向视图 作为主视图较D 向视图
更好一些。
C向:较好地反映轴承 D向:较好地反映了各
按形体分析法分解各组成形体以及确定它们之间的相对位 置,逐个画出各形体的视图。必须注意:在逐个画形体时,应 严格遵循“长对正、高平齐、宽相等”的三等规律,同时画出 主、俯、左三个视图,这样既能保证各形体之间的相对位置和 投影关系,又能提高绘图速度;在形状较复杂的局部。例如具 有相贯线和截交线的地方,宜适当配合线面分析,几个视图结 合起来看,才能保证所绘图线的准确性。
座的轮廓特征,可选作 形体的相对位置,可选
主视图
作主视图
3. 选择图纸幅面进行布局
根据组合体的大小,按国标选定图样的比例(尽量按1:1绘 制)和图纸幅面,绘制基准线将三个视图的位置均匀地布置在 图面内,在布局时,还应预留尺寸标注的位置。
布局:绘制基准线,确定主、俯、左三个视图的位置
4. 画图步骤
擦去圆筒的 部分轮廓线
擦去此处 虚线
肋板4
(5)画出凸台的三视图;

1.1.2简单组合体的结构特征1.2空间几何体的三视图

1.1.2简单组合体的结构特征1.2空间几何体的三视图
1.1.2简单组合体的结构特征
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么? 由柱、锥、台、球组成了一些简单的组合体.认 识它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
D
A B a b C D A B C
d
c a b
d
c
投射线与投影面 相倾斜的平行投 影法 -----斜投影法
平行投影法
投射线与投影面相互垂 直的平行投影法 ----------正投影法。
中心投影形成的直观图能非常逼真地反映原来的物 体,主要运用于绘画领域。
平行投影形成的直观图则能比较精确地反映原来物体 的形状和特征。因此更多应用于工程制图或技术图样
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体
一个几何体的三视图如下,你能说出它是 什么立体图形吗?
四棱锥
回忆初中已经学过的正方体、长方体、圆 柱、圆锥、球的三视图.
正方体的三视图


长方体的三视图


长方体
圆柱的三视图


圆柱
圆锥的三视图


圆锥
球的三视图


球体
小节三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图. 光线自物体的前面向后投影所得的投影图 称为“正视图” ,自左向右投影所得的投影图 称为“侧视图”,自上向下投影所得的投影图 称为“俯视图”.

组合体三视图练习题

组合体三视图练习题

组合体三视图练习题随着工程设计和制造技术的进步,组合体的设计已经成为现代工程设计中的重要内容之一。

组合体是由多个不同形状和尺寸的零件组合而成的一个整体。

为了能够准确地理解和表达组合体的形状和结构,工程师和设计师需要学会使用三视图来描述和绘制组合体。

本文将为大家提供一些组合体三视图练习题,帮助读者提高对三视图的理解和绘制能力。

一、基本概念回顾在开始练习之前,我们先来回顾一下组合体三视图的基本概念。

组合体三视图包括正视图、俯视图和侧视图。

正视图是从组合体的正面观察,俯视图是从组合体的上方观察,侧视图是从组合体的侧面观察。

在绘制组合体三视图时,需要注意以下几点:1. 标注清楚主要尺寸和位置;2. 保持三视图的一致性,即相同的部分在不同视图中位置和尺寸要一致;3. 使用适当的比例绘制三视图,以确保其准确性和可读性。

二、练习题一:简单的长方体组合体我们先从一个简单的长方体组合体开始练习。

此组合体由两个长方体构成,它们的尺寸和位置关系如下:长方体A:长30cm,宽20cm,高10cm,位于组合体的左侧;长方体B:长20cm,宽10cm,高15cm,位于组合体的右侧。

请绘制该组合体的三视图,并标注主要尺寸和位置。

(图片示例)在绘制该组合体的三视图时,需注意以下几点:1. 正视图上,长方体A位于左侧,长方体B位于右侧;2. 俯视图上,长方体A和长方体B的相对位置关系与正视图一致;3. 侧视图上,长方体A和长方体B的高度差要清晰可见。

三、练习题二:复杂的组合体接下来,我们来练习一个稍微复杂一些的组合体。

此组合体由一个圆柱体和一个长方体构成,它们的尺寸和位置关系如下:圆柱体:底面半径为5cm,高度为15cm,位于组合体的上方;长方体:长20cm,宽10cm,高10cm,位于组合体的下方。

请绘制该组合体的三视图,并标注主要尺寸和位置。

(图片示例)在绘制该组合体的三视图时,需注意以下几点:1. 正视图上,圆柱体位于长方体上方,两者不重叠;2. 俯视图上,圆柱体的基本形状为一个圆,长方体位于圆的下方;3. 侧视图上,圆柱体和长方体的高度差要清晰可见。

高中数学人教A版必修2第一章1.2.2空间几何体的三视图课件

高中数学人教A版必修2第一章1.2.2空间几何体的三视图课件

教学重难点
重点
• 三视图的画法,及简单物体的三视图。
难点
• 辨认三视图所表示的空间几何体。
1:柱锥台球的三视图
正视图
ba
侧视图
c
俯视图
几何体的正视图、侧视图、俯视图统称为 几何体的三视图。
一个几何体的正视图和侧视图的高度一样, 俯视图和正视图的的长度一样,侧视图和俯视图 的宽度一样.
正视图
ba
前课测评:1.对照三种投影
平行投影
(a)中心投影 (b)斜投 (c)正投影 影
从 不 同 的 角 度 看 建 筑
思考:如果要建造房子,你是工程师,需要给施工员
提供哪几种图纸?
视察
礼品盒到底是什么样的呢?
把一个空间几何体投影到一个平面上,可 获得一个平面图形,但只从一个角度视察很难 把握几何体的全貌,因此需要从多个角度进行 投影,才能较好的把握几何体的形状和大小。 通常选择三种正投影:
正视图:光线从几何体的前面向后面正投影, 得到投影图。
侧视图:光线从几何体的左面向右面正投影,得 到投影图。
俯视图:光线从几何体的上面向下面正投影,得 到投影图。
找出飞机的正视图、侧视图、俯视图。
请你找出汽车的三 视图
1.2 空间几何体的三视图
教学目标
知识与能力
• 会画简单的空间几何体的三视图。 •过程与方法 •主要通过学生自己动手作图,体会三视图的作用 •情感态度与价值观 •培养学生的空间想象能力和空间思维能力。
俯视图 • 大小:长对正,高平齐,宽相等.
几何体
正视图
侧视图
俯视图
·
课堂练习
正视图
侧视图
1. 画出下图的三视图
俯视图

3.1简单组合体的三视图

3.1简单组合体的三视图

名师点拨1.三视图的排列规则是:先画主视图,俯视图放在主视图 的正下方,长度与主视图一样;左视图放在主视图的正右方,高度与 主视图一样. 2.主视图反映物体的主要形状特征,是三视图中最重要的视图;俯 视图与左视图共同反映物体的宽度.为便于记忆,可简记为“长对正, 高平齐,宽相等”,或“主左一样高,主俯一样长,俯左一样宽”. 如图所示.
解析:结合三视图的画法规则可知B正确. 答案:B
1
2
3
4
5
3.将一个正方体沿其棱的中点截去两个三棱锥后所得几何体如图 所示,则其俯视图为( )
解析:将一个正方体沿其棱的中点截去两个三棱锥后所得几何体的 俯视图应满足:外轮廓是一个正方形,左上角能看到上底面被截所 成的棱,为实线,右下角看不到下底面被截所成的棱,为虚线,综上所 述,选C. 答案:C
题型一
题型二
题型三
题型一
画简单几何体的三视图
【例1】 画出如图所示几何体的三视图. 分析:解题的关键是找准投影角度,并按照画 三视图的方法精确作图. 解:图中的几何体为圆台,且上底面面积大于下底面面积.三视图 如下图所示.
题型一
题型二
题型三
反思画简单几何体的三视图,可以直接从正面、左面、上面三个 方向去观察图形,然后画出三视图,注意三视图之间存在的关系.
(1)
图 (a)
图 (b)
题型一
题型二
题型三
(2)
图 (c)
图 (d)
题型一
题型二
题型三
解:(1)图中几何体是由两个长方体组合而成的,主视图正确,俯视 图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是 一个矩形,有一条可视的交线(用实线表示).俯视图和左视图如下图:

1.2.2 空间几何体的三视图(2)

1.2.2 空间几何体的三视图(2)

c(高) b(宽) a(长)
2
注意:
(1)画几何体的三视图时,
能看见的轮廓和棱用实线表示, 不能看见的轮廓和棱用虚线表示。
(2)长对正, 高平齐, 宽相等。
3
组合体的三视图的作图步骤 1.确定视图方向 俯视图方向 2.先画出能反映物体 真实形状的一个视图 侧视图方向
3.运用长对正、高平 齐、宽相等的原则画 出其它视图 4.检查,加深, 加粗,加虚。

圆锥与四棱柱组合的简单几何体
15
4
正视图方向
1.组合体的三视图
例1、画下图几何体的三视图
5
请同学们试试画出立白洗洁精 塑料瓶的三视图
正视图
侧视图
俯视图
6
练习:
(1)
(2)
7
圆柱 俯
正 视 图 侧 视 图


俯视图
8
正视图
侧视图
侧视图
9
2.还原成实物图:
例3 根据三视图判断几何体
正视图
侧视图
正视图
侧视图 俯视图

俯视图
10
1
三视图能反映物体真实的形状和长、宽、高.
三视图之间的投影规律
正 视 图 侧 视 图 正 视 图 反 映 了 物 体 的 高 度 和 长 度 侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
c(高)
c(高)
a(长)
高 平 长对正 齐
b(宽)
b(宽)
俯 视 图
a(长)宽相等ຫໍສະໝຸດ 俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
例4 根据三视图判断几何体
俯 四 棱 柱
正 视 图
侧 视 图

1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图

1.2.1 中心投影与平行投影  1.2.2 空间几何体的三视图

方体求解.
新知探究 题型探究 感悟提升
解析
由正视图和俯视图可知几何体
是正方体切割后的一部分(四棱锥 C1ABCD),还原在正方体中,如图所 示.
多面体最长的一条棱即为正方体的体对角线,由正方体棱 长 AB=2 知最长棱的长为 2 3.
答案 2 3
[规律方法]
(1)由三视图想象出几何体是关键.(2)由几何体
新知探究
题型探究
感悟提升
4.如图是一个几何体的三视图,则可以判断此几何体是
________.
解析
由三视图可知,此几何体为一个四棱锥.
答案
四棱锥
新知探究 题型探究 感悟提升
5.说出下面的三视图表示的几何体的结构特征.

几何体为三棱台,结构特征如下图:
新知探究
题型探究
感悟提升
课堂小结
(1)画三视图时要注意正侧等高,正俯等长,侧俯等宽.画
答案
2
6
新知探究
题型探究
感悟提升
方法技巧
三视图间的推断问题
利用正、俯视图长相等,正、侧视图宽相等,俯、侧视图高相 等进行推断三视图之间的推断,是高考对视图考查的新热点. 的俯视图不可能是 ( ).
【示例】 某几何体的正视图和侧视图均如图所示,则该几何体
新知探究
题型探究
感悟提升
[思路分析] 解析
由正视图、侧视图相同按其上、下部分分别考
观察,先认识它的基本结构,然后再画它的三视图. (2)画简单组合体的三视图应注意两个问题:首先,确定正 视、侧视、俯视的方向,同一物体放置的位置不同,所画的 三视图就可能不同;其次,简单组合体是由哪几个基本几何
体构成的,并注意它们的构成方式 ,特别是它们的交线位

1.2空间几何体的三视图和直观图

1.2空间几何体的三视图和直观图

1 V ( S S S S )h 3
柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
S 0
S S V 1 Sh 1 V ( S S S S )h 3 3
S为底面面积, h为锥体高
S , S 分别为上、下
底面面积,h 为台体 高
柱体(棱柱、圆柱)的体积公式:
V Sh
(其中S为底面面积,h为柱体的高)
锥体体积
h
椎体(圆锥、棱锥)的体积公式:
1 V Sh 3
(其中S为底面面积,h为高)
由此可知, 棱柱与圆柱的体积公式类似,都是 底面面积乘高; 棱锥与圆锥的体积公式类似,都是 1 底面面积乘高的 . 3
台体体积
台体(棱台、圆台)的体积公式

考向二 空间几何体的三视图

【例2 】►(2012·湖南) 某几何体的正视图和侧视图均如图 所 示 , 则 该 几 何 体 的 俯 视 图 不 可 能 是 ( ).


[审题视点] 根据正视图和侧视图相同逐一判断.
正视图
侧视图
圆台
俯视图
根据三视图想象它们表示的几何体的结构特征
正视图
侧视图
正四棱台 俯视图
简单组合体的三视图
水平直观图
正方形的水平直观图
y y
0 0
x
x
1. 水平方向线段长度不变;
变化 规则
2. 竖直方向的线段向右倾斜450,长度减半;
3. 平行线段仍然平行.
水平直观图
正三角形的水平直观图

由三视图求几何体的相关量
若一个正三棱柱的三视图如图所示, 求这个三棱 柱的高和底面边长以及左视图的面积.

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二第1章空间几何体1.2.2空间几何体的三视图学案【要点梳理夯实基础】知识点1投影的概念阅读教材P11~P12第二行内容,完成下列问题.1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[思考辨析学练结合]判断(正确的打“√”,错误的打“×”)(1)矩形的平行投影一定是矩形.()(2)平行四边形的平行投影可能是正方形.()(3)两条相交直线的平行投影可能平行.()(4)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()【解析】利用平行投影的概念和性质进行判断.【答案】(1)×(2)√(3)×(4)√知识点2三视图阅读教材P12第三行~P14内容,完成下列问题.1.三视图的有关概念空间几何体的三视图是用正投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.正视图:光线从几何体的前面向后面正投影得到的投影图。

侧视图:光线从几何体的左面向右面正投影得到的投影图。

俯视图:光线从几何体的上面向下面正投影得到的投影图。

规律:一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样。

2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线;(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图;(3)观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.[思考辨析学练结合]1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台[解析][先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.][答案] D2. 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)球的任何截面都是圆.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×3.下列命题中正确的是()A.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.正方形的直观图是正方形[解析]B[用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;平行四边形的直观图是平行四边形;有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱;正方形的直观图是平行四边形,故选B.][答案]B【合作探究析疑解难】考点1 中心投影与平行投影[典例1]如图,点E,F分别是正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把可能的序号都填上)[点拨]利用点B,F,D1,E在正方体各面上的正投影的位置来判断.[解答]其中(2)可以是四边形BFD1E在正方体的面ABCD或在面A1B1C1D1上的投影.(3)可以是四边形BFD1E在正方体的面BCC1B1上的投影.[答案](2)(3)[解法总结]画投影图的关键及常用方法1.关键:画一个图形在一个投影面上的投影的关键是确定该图形的关键点(如顶点,端点等)及这些关键点的投影,再依次连接就可得到图形在投影面上的投影.2.常用方法:投影问题与垂直关系紧密联系,投影图形的形状与投影线和投射图形有关系,在解决有些投影问题时,常借助于正方体模型寻求解题方法.1.在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.图1-2-3①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.[解析]①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的边长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形.但AE=1,D′E =5,故四边形AGD′E不是菱形;对于③,由②知是两个边长分别相等的平行四边形,从而③正确.[答案]①③考点2 画空间几何体的三视图[典例2]画出下列几何体的三视图.(1)(2)(3)[点拨]确定正前方→画正视图→画侧视图→画俯视图[解答]三视图如图(1)(2)(3)所示.画三视图的注意事项1.务必做到长对正,宽相等,高平齐.2.三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.3.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.2.画出如图所示几何体的三视图.解:图①为正六棱柱,正视图和侧视图都是矩形,正视图中有两条竖线,侧视图中有一条竖线,俯视图是正六边形.图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示.考点3 由三视图还原空间几何体探究1如图是一个立体图形的三视图,请观察三视图,由三视图,你能知道该几何体是什么吗?并试着画出图形.[提示]由三视图可知,该几何体为正四棱锥,如图所示.探究2若某空间几何体的正视图和侧视图均为正三角形,请探究该几何体的形状.[提示]若该几何体的正视图和侧视图均为正三角形,则该几何体为轴截面为等边三角形的圆锥,如图所示.[典例3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[点拨]由正视图、侧视图确定几何体为锥体,再结合俯视图确定其是四棱锥,由俯视图可知其底面形状,再结合正视图、侧视图所给信息画直观图.[解答]由俯视图知,该几何体的底面是一直角梯形;再由正视图和侧视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.[解法总结]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.3.如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体?()[解析]由俯视图可知该几何体为旋转体,由正视图、侧视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D【学习检测巩固提高】1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点[解析]当直线与平面垂直时,其正投影为点,其他位置时其正投影均为直线,故选D.[答案] D2.已知某物体的三视图如图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥[解析]俯视图是圆,所以为旋转体,可排除A、C,又正、侧视图为矩形,所以不是圆锥,排除D.故选B.[答案] B3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析][由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.][答案] A4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④[解析][P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][答案] B5.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析][由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.][答案] B6.水平放置的下列几何体,正视图是长方形的是______(填序号).①②③④[解析]①③④的正视图为长方形,②的正视图为等腰三角形.[答案]①③④7.一物体及其正视图如图所示:①②③④则它的侧视图与俯视图分别是图形中的________.[解析]侧视图是矩形中间有条实线,应选③;俯视图为矩形中间有两条实线,且为上下方向,应选②.[答案]③②8.如图所示的三视图表示的几何体是什么?画出物体的形状.[解]该三视图表示的是一个四棱台,如图.[解题反思]已知三视图,判断几何体的技巧①一般情况下,根据主视图、俯视图确定是柱体、锥体还是组合体.②根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.③综合三视图特别是在俯视图的基础上想象判断几何体.④一定要熟记常见几何体的三视图!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档