航空发动机发展史

合集下载

航空发动机历史

航空发动机历史

航空发动机历史一、航空发动机的起源航空发动机是现代航空工业的重要组成部分,其起源可以追溯到20世纪初期。

当时,人们开始尝试使用内燃机作为动力源来驱动飞行器。

1903年,莱特兄弟成功飞行了第一架飞机,这标志着现代航空工业的开端。

随后,人们开始研究如何提高飞机的性能和速度,从而推动了航空发动机的发展。

二、早期航空发动机早期的航空发动机主要采用活塞式内燃机结构,包括单缸、多缸和星型等不同类型。

这些发动机具有简单、可靠和易于维护等优点,但是功率输出较低且油耗较大。

此外,在高海拔和高速飞行时,这些发动机也存在一定的性能限制。

三、涡轮喷气式发动机20世纪40年代末期,涡轮喷气式发动机开始逐渐取代活塞式内燃机成为主流。

涡轮喷气式发动机采用了新颖的结构设计和先进的技术原理,包括压气机、燃烧室和涡轮等组成部分。

这些发动机具有功率输出高、油耗低和速度快等优点,被广泛应用于民用和军用飞机中。

四、高温合金技术为了适应涡轮喷气式发动机的高温和高压环境,人们开始研究开发新型的材料技术。

20世纪50年代,高温合金技术开始应用于航空工业中。

这种材料具有耐高温、抗腐蚀和抗疲劳等特点,可以有效提高发动机的性能和寿命。

五、数字化技术随着计算机技术的不断发展,数字化技术开始被广泛应用于航空工业中。

数字化技术可以实现对发动机各个部件的精确控制和监测,从而提高飞行安全性和效率。

此外,数字化技术还可以实现对航空发动机进行虚拟仿真和优化设计,为工程师提供更多的设计思路和方案。

六、未来展望随着航空工业的不断发展,未来航空发动机将进一步提高性能和可靠性。

其中,涡扇发动机、超音速发动机和电动发动机等将成为主流。

此外,人们还将继续研究新型材料技术、数字化技术和智能化技术等,为航空工业的未来发展提供更多的可能性。

七、结语航空发动机历经百年的发展,已经成为现代航空工业的重要组成部分。

从早期的活塞式内燃机到现在的涡轮喷气式发动机,再到未来可能出现的新型发动机,每一次技术革新都推动着航空工业向前迈进。

航空发动机的发展史

航空发动机的发展史

航空发动机的发展史活塞式发动机时期早期液冷发动机居主导地位。

19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。

1903年,美国莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的飞行者一号飞机上进行飞行试验。

这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。

发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。

首次飞行的留空时间只有12s,飞行距离为36.6m。

但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。

在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。

美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。

在前线的美国航空中队的6287架飞机中有4791架是法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的斯佩德战斗机。

这种发动机的功率已达130~220kW, 推重比为0.7kW/daN左右。

飞机速度超过200km/h,升限6650m。

当时,飞机的飞行速度还比较小,气冷发动机冷却困难。

为了冷却,发动机 *** 在外,阻力又较大。

因此,大多数飞机特别是战斗机采用的是液冷式发动机。

期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。

这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。

在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。

航空发动机解析

航空发动机解析

动能而产生反作用力,推动飞机前进。
特点:完全依赖燃气流产生推力,速度较高,油 耗比涡扇发动机高,采用了涡轮驱动压气机,因 而在低速时也有足够的压力来产生强大的推力, 但是又限制了飞机速度。
涡喷发动机
航空发动机类型(三)
• 涡扇发动机
• 工作原理:燃气发生器出口的燃气在低压涡轮中进一 步膨胀做功,用于带动外涵道风扇,使外涵道气流的 喷射速度增大,剩下的可用能量继续在喷管中转变为 高速排气的动能
燃烧室
涡轮机
• 作用:使高温高压燃气膨胀做功,把 燃气中的部分热能转换为机械能,输 出涡轮功带动压气机和其他附件工作 • 分类:轴流式和径流式 • 特点:轴流式,尺寸小、流量大、效 率高,适用于大功率的动力装置 径流式,级功率大,工作可靠 性好,对于小流量的涡轮还具有较 高的效率
• 作用:进一步压缩空气,为燃烧,冷 却等方面提供压缩空气。 • 基本类型:轴流式 离心式 混合式
压气机
• 设计要求:
• (1)满足发动机性能的各项要求,性能稳 定,稳定工作范围宽; • (2)有足够的强度,适宜的刚度和更小的 振动; • (3)结构简单,尺寸小,重量轻; • (4)工作可靠,寿命长; • (5)维修性、检测性好,性能制造成本比 高
航空发动机
小组成员:王晨 赵丹 周玉鑫 李龙
概要
• • • • • 航空发动机发展史 航空发动机类型 核动力在航空中的应用 航空发动机结构组成 国内航空发动机发展
航空发动机发展史(一)
• 1.活塞式发动机时期:
莱特兄弟(1903) 8.95 kW的功率,重量81 kg,功重比为0.11kW/daN 伊斯潘诺-西扎V型液冷发动机 功率 130~220kW, 功重比为0.7kW/daN左右。飞行速度超 过200km/h,升限6650m 双排气冷星型发动机 功率600~820kW, 飞行速度已超过500km/h,飞行高度达10000m,功 重比超过1kW/daN 狄塞尔循环活塞式发动机 功率为150 kW; 耗油率0.22 kg/(kW· h)

航空发动机发展历程和趋势

航空发动机发展历程和趋势

航空发动机发展历程和趋势航空发动机是现代航空技术的核心之一,它的发展经历了一个漫长而又充满挑战的历程。

本文将从航空发动机的起源开始,梳理其发展历程,并探讨未来的发展趋势。

一、航空发动机的起源航空发动机的起源可以追溯到19世纪末的内燃机发明。

德国工程师尼古拉斯·奥托发明了第一个四冲程内燃机,开创了航空发动机的先河。

随后,法国工程师尚·布鲁瓦雷成功将内燃机应用于飞行器,并于1908年获得了第一架飞机的专利。

二、早期航空发动机的发展早期的航空发动机以活塞式发动机为主,其工作原理类似于汽车发动机。

这种发动机通过活塞在气缸内往复运动,通过点火、燃烧混合物来产生推力。

然而,由于其结构复杂、体积庞大和重量较重,限制了飞机的速度和飞行高度。

三、涡轮喷气发动机的诞生20世纪30年代,涡轮喷气发动机的问世标志着航空发动机的重大突破。

涡轮喷气发动机利用燃烧室中的高温燃气推动涡轮旋转,从而驱动飞机前进。

与传统活塞式发动机相比,涡轮喷气发动机具有体积小、重量轻、推力大和燃油效率高等优点,为航空业带来了巨大的变革。

四、涡扇发动机的崛起20世纪50年代,随着涡扇发动机的问世,航空发动机进入了一个新的时代。

涡扇发动机是在涡轮喷气发动机的基础上发展而来,其特点是在喷气口外部增加了一个大风扇,进一步提高了推力和燃油效率。

涡扇发动机的出现使得喷气式飞机速度大幅提升,航程延长,为民航业的发展提供了强大的动力。

五、高温合金技术的应用为了提高发动机的效率和性能,航空发动机制造商开始研发和应用高温合金技术。

高温合金可以在极端高温下保持稳定性,使发动机能够承受更高的温度和压力,提高燃烧效率和推力。

此外,高温合金还具有抗腐蚀和抗磨损等优点,延长了发动机的使用寿命。

六、绿色环保技术的发展随着环境保护意识的增强,航空发动机也在不断追求更加环保和节能的技术。

绿色环保技术包括燃烧室设计的优化、燃料喷射和燃烧控制系统的改进,以及废气处理和噪音减少技术的应用。

航空发动机技术的发展历程

航空发动机技术的发展历程

航空发动机技术的发展历程随着人们的生活水平不断提高,越来越多的人开始旅行和探索,而航空技术则成为了连接世界各地的最便捷方式。

而航空发动机则是航空技术的核心,在航空发动机技术的不断进步中,促进了航空业的快速发展。

本文将从航空发动机技术的起源、发展历程、现状以及未来展望四个方面来阐述。

一、航空发动机技术的起源早在古代,人们就开始尝试运用风动力形成船帆,实现航行,这也可以算是人类最早的航空探索。

而真正意义上的发动机则是在19世纪末期才诞生。

那时,内燃机和蒸汽机的发明为现代发动机的开发奠定了基础。

叶片式的风扇引擎由Francis Turbine引入,并用于水力发电厂。

然而,第一次世界大战的爆发推动了航空发动机技术的快速进步。

飞机的使用使小型内燃发动机在质量、效率和重量方面得到了极大改进。

二氧化碳的电气分解和氮分子的燃烧,以及射线计数器,让化学理论充实了计算机系统,从而为航空发动机的发展奠定了基础。

二、航空发动机技术的发展历程20世纪20年代,涡轮增压器发明,大幅提升了飞机的高空飞行性能。

二战期间,喷气式发动机的发明使得飞机飞行速度的最高值倍增,并大大提升了飞行升限。

六十年代末,高温合金开始应用于发动机转子,以提高发动机的热效率,并使用了一些新材料,如碳纤维和冲压铝,以减轻飞行器的质量。

近年来,电能、无反动发动机、燃料电池等技术得到迅猛发展。

三、航空发动机技术的现状当前,航空发动机技术处于高速发展阶段。

涵道比、风扇直径、涡轮材料和涡轮叶片的热效率等主要技术数据不断被提高。

现代航空发动机尤以飞机引擎目前进入了一个能源效率较高的全新高峰。

飞机越来越大,越来越安静。

涵道比是一个重要的变化。

过去,涵道比较低,而今涵道比超过了14当然,灵活性是这个构成的地方。

四、航空发动机技术的未来展望未来航空发动机技术的主要发展趋势定在高效、生态、环保与安全方向上。

越来越多的新材料的应用将使发动机的性能越来越好。

飞行器领域的专家认为,未来十年内,飞行器将采用更加环保、更加节能的发动机。

航空发动机历史

航空发动机历史

航空发动机历史
航空发动机是飞机的心脏,是飞机能够在空中飞行的关键部件。

随着航空技术的不断发展,航空发动机也经历了多年的发展历程。

20世纪初,航空发动机还处于起步阶段,主要采用的是内燃机。

这种发动机的缺点是重量大、功率小、燃油消耗量大,无法满足飞机的高速、高空飞行需求。

随着航空技术的不断发展,涡轮发动机逐渐成为主流。

涡轮发动机采用了涡轮增压技术,可以在高空高速飞行时提供更大的推力,大大提高了飞机的性能。

20世纪50年代,喷气式发动机开始逐渐普及。

喷气式发动机采用了高速喷射燃料的方式,可以提供更大的推力,使飞机的速度和高度都得到了大幅提升。

同时,喷气式发动机还具有噪音小、燃油消耗少等优点,成为了现代航空发动机的主流。

近年来,随着环保意识的不断提高,航空发动机也在不断创新。

新一代航空发动机采用了更加先进的材料和技术,可以提供更高的推力,同时还具有更低的噪音和更少的排放。

例如,波音公司的787梦想飞机采用了先进的涡扇发动机,可以提供更高的推力和更低的噪音,同时还可以减少燃油消耗和排放。

航空发动机的发展历程是航空技术发展的缩影。

随着科技的不断进步,航空发动机也在不断创新,为人类的空中旅行提供了更加安全、舒适和环保的选择。

航空发动机的发展历史

航空发动机的发展历史

航空发动机的发展历史在19世纪末,德国工程师尤安·奥托·里登贝恩设计了第一台可用于飞行器的内燃机,这是一台四冲程发动机。

然而,当时的技术和材料限制,使得这台发动机的重量过重,难以用于实际的飞行器上。

不过,这台发动机的诞生明确了未来发动机的发展方向。

到了20世纪初,法国工程师亨利·贝格涅(Henri Breguet)和英国工程师亨利·罗伊斯(Henry Royce)分别独立开发了第一台成功的航空发动机。

贝格涅设计了一种具有较高功率输出的内燃机,他的设计大大改善了航空器的性能。

而罗伊斯的发动机更加注重可靠性和耐用性,他的设计成为了英国皇家空军在两次世界大战期间的首选发动机。

随着航空工业的发展,第一次世界大战期间,航空发动机得到了巨大的发展。

德国的奥托·魏茨克(Otto Weisskopf)在1913年研发出了第一台具有可变推力功能的涡桨发动机,使得飞机能够在起飞和巡航时根据需要调整推力。

20年代末,美国科学家弗兰克·惠特尔(Frank Whittle)和德国工程师汉斯·冯·奥罗(Hans von Ohain)几乎同时研制出了喷气式发动机。

这标志着航空发动机的革命性进步,推动了喷气式飞机的发展。

在第二次世界大战期间,喷气式发动机得到了广泛的应用。

英国的惠特尔喷气式发动机首次装备在飞机上,在英国皇家空军成功进行了飞行测试。

在德国,汉斯·冯·奥罗开发的发动机被用于德国空军的喷气式战斗机。

与此同时,美国工程师弗兰克·韦尔(Frank Whittle)和约翰·塞尔德里奇(John Seidrich)也研发出了燃烧室前置的喷气式发动机,成为美国军航领域的重要突破。

随着第二次世界大战结束,航空工业进入了一个高速发展的时期。

冷战的到来催生了许多新技术的出现。

引进了电子控制系统、复合材料和降噪技术等等,使得航空发动机在性能、可靠性和效率方面都取得了新的突破。

航空发动机发展历程

航空发动机发展历程

航空发动机发展历程
航空发动机是飞机的核心部件之一,它的发展历程也是航空工业发展历史的重要组成部分。

随着航空技术的不断进步和需求的不断提高,航空发动机经历了从最初的活塞式发动机到现代的高涵道比涡扇发动机的转变。

20世纪初期,活塞式发动机是航空发动机的主流。

它们采用往复运动的活塞来压缩燃料混合物,然后点燃并产生推力。

这种发动机的缺陷是重量大、功率小、燃油消耗大、噪音大等。

到20世纪40年代中期,涡轮喷气式发动机开始进入市场。

它们利用高温高压气体驱动涡轮,从而带动飞机的推进。

这种发动机具有功率大、重量轻、燃油经济等优点,但其高温高压的工作环境使其耐久性和可靠性都受到了挑战。

20世纪60年代,高涵道比涡扇发动机开始成为主流。

这种发动机通过喷出大量的气流来产生推力,其高涵道比设计使得其能够更好地适应高空巡航,进一步提高了飞机的效率和经济性。

随着科技的不断进步,涡扇发动机的性能不断提高,同时也推动了航空业的发展。

目前,航空发动机已经发展到了涡扇发动机的第四代水平,这些发动机具有更高的安全性、更低的噪音和更好的燃油经济性。

未来,随着科技的不断进步,我们可以期待着更先进、更高效的航空发动机的出现,为航空业的发展注入新的动力和活力。

- 1 -。

航空发动机的发展历程

航空发动机的发展历程

航空发动机的发展历程航空发动机是航空器飞行的动力装置,也是现代航空技术的核心之一。

它的发展历程可以追溯到19世纪末的内燃机时代。

本文将从早期的蒸汽动力到现代的高效涡轮发动机,为读者介绍航空发动机的发展历程。

一、蒸汽动力时代19世纪末,蒸汽机成为了最早的航空发动机。

法国工程师德尔夫尔提出了一种使用蒸汽推动的飞机设计,并于1884年成功试飞。

这标志着航空发动机的诞生。

然而,蒸汽动力的航空发动机存在着重量大、效率低等问题,无法满足航空器的需求。

二、内燃机时代20世纪初,内燃机的发明和发展推动了航空发动机的进一步发展。

德国工程师奥托·德尔夫尔斯于1892年发明了第一台四冲程汽油内燃机,为航空发动机的发展奠定了基础。

1903年,莱特兄弟的飞机首次成功飞行,他们采用了由自己改进的内燃机作为动力。

此后,内燃机逐渐成为了航空发动机的主流。

三、涡轮喷气发动机时代20世纪30年代,涡轮喷气发动机的出现彻底改变了航空发动机的格局。

1939年,德国工程师汉斯·冯·奥汉恩将涡轮技术应用于飞机发动机,成功研制出了世界上第一台喷气式发动机-HE S1。

涡轮喷气发动机以其高推力、高速度和高效率的特点成为了当时航空工业的宠儿。

四、涡扇发动机时代20世纪50年代,涡扇发动机的问世开创了航空发动机的新纪元。

涡扇发动机是在喷气发动机的基础上进一步发展而来的,它通过在喷气流前加装一个多级压气机和一个大直径的风扇来提高推力和效率。

涡扇发动机以其较低的噪音、较低的燃油消耗和较高的推力成为了现代喷气式飞机的首选发动机。

五、高温合金和复合材料的应用近年来,随着材料科学和工艺技术的进步,高温合金和复合材料在航空发动机中的应用越来越广泛。

高温合金能够承受高温和高压的环境,提高了发动机的工作效率和寿命。

复合材料的轻量化和高强度特性使得发动机更加节能环保。

六、研发新一代发动机当前,航空发动机的研发方向主要集中在提高推力、降低燃油消耗和减少噪音。

航空发动机技术的发展及未来发展趋势

航空发动机技术的发展及未来发展趋势

航空发动机技术的发展及未来发展趋势航空发动机技术是现代民航业的核心技术之一。

它的发展轨迹,除了反映了人类探究科技前沿的勇气和智慧,更体现了机械工业产业竞争的残酷和对未来需求的洞见。

本文旨在探讨航空发动机技术的发展历程以及未来发展趋势。

一、航空发动机技术的发展历程航空发动机的历史源远流长。

从最早的蒸汽机、内燃机,到现代的高压涡扇发动机和无人机电动发动机,发动机的技术不断创新,不断演进。

20世纪初期,飞机还使用的是螺旋桨、活塞式发动机。

随着航空工业的发展,1930年代引入了涡轮增压技术。

20世纪40年代,轴流涡扇发动机被认为是航空发动机技术发展历程中的重要一步。

1960年代,喷气式发动机的涡喷发动机逐步取代了活塞式发动机的市场份额。

80年代,高涵道比涡扇发动机诞生,大幅提高了发动机的效率。

目前,随着无人机市场的不断扩大,电动发动机也成为了航空发动机技术发展的新宠。

它不仅能够为无人机提供实现自主起降、远程飞行、近地观测等多项功能,还对环保产生了重要影响。

二、未来发展趋势未来,航空发动机技术的发展将面临更广泛、更复杂、更高效的需求。

为了应对未来的发展趋势,航空发动机技术将呈现出以下几种方向的趋势:1. 电动化:未来的航空发动机技术将更加电动化。

随着电池技术的进步,电动发动机已经逐步取代传统内燃机发动机,这一趋势在未来会愈加明显。

未来的电动发动机将更加高效、轻便、紧凑,使航空器更加环保、更加安全,同时也将为航空业带来新的机遇。

2. 数据化:未来的航空发动机技术将更加关注数据化技术的应用。

航空器通过智能化技术获得的数据将为航空发动机技术的研究和开发提供更多更精确的数据支持。

通过数据分析,可以让航空业更好地预判飞行姿态,增强远程自主控制能力,提高航空器的安全性和效率。

3. 材料升级:未来的航空发动机技术将重点推进新材料的研发和应用。

这些材料包括高温合金、复合材料、纳米材料等。

新材料能够更加轻便、更加耐用、更加高效,因此将在未来的航空发动机技术中占据重要的位置。

航空发动机的发展历史及工作原理

航空发动机的发展历史及工作原理
第一次世界大战期间
飞机开始用于军事用途,对航空发动机的需求增加。
活塞发动机时代
20世纪20年代至40 年代:活塞发动机成 为主流动力装置。
第二次世界大战期间: 活塞发动机的制造规 模和性能达到高峰。
20世纪30年代:随 着材料和制造技术的 进步,活塞发动机的 性能得到提升。
喷气发动机时代
01
02
喷气发动机
工作原理
喷气发动机通过高速喷射 燃料和空气混合物产生推 力,其工作原理与活塞发 动机截然不同。
高速飞行
喷气发动机适合高速飞行, 能够在短时间内加速至最 大速度,使飞机达到较高 的飞行速度。
广泛应用
喷气发动机广泛应用于现 代民航客机、战斗机和轰 炸机等。
涡轮发动机
工作原理
涡轮发动机利用燃气在涡轮中膨胀产生动力,驱 动压气机和风扇旋转,产生推力。
03
20世纪40年代
喷气发动机的发明,标志 着航空发动机进入新的时 代。
20世纪50年代
喷气发动机的制造技术和 材料取得突破,性能得到 显著提升。
冷战期间
喷气发动机成为军用飞机 和导弹的主要动力装置。
涡轮发动机的崛起
20世纪60年代至今
涡轮发动机在民航和军用领域得到广泛应用。
20世纪70年代
涡扇发动机的出现提高了燃油效率和推进效率。
活塞发动机
1 2
早期航空发动机类型
活塞发动机是早期飞机的主要动力来源,其工作 原理是通过燃料燃烧产生高压气体,推动活塞运 动,进而驱动螺旋桨旋转。
效率与功率
活塞发动机的效率与功率相对较低,且随着飞行 速度的增加,功率逐渐下降,限制了飞机的性能。
3
应用范围
目前活塞发动机主要用于轻型飞机、直升机和部 分小型公务机。

航空发动机的发展历史

航空发动机的发展历史
涡扇发动机的优势
涡扇发动机在燃油效率、推进效率和噪音控制方面具有明显优势,逐渐成为现代民航客机的主要动力来源。
涡扇发动机的崛起
现代涡轮发动机具有较高的推重比、燃油效率和可靠性,能够提供更好的飞行性能。
高性能
通过采用先进的材料和设计技术,现代涡轮发动机的油耗较低,有助于降低航空运输成本。
低油耗
现代涡轮发动机具有较长的使用寿命和维护周期,降低了运营成本和维护难度。
发展趋势
随着技术的不断进步,航空发动机的研发和生产成本也在不断增加,同时需要解决新型材料和制造工艺的可靠性和耐久性问题。
挑战
THANKS FOR
WATCHING
感谢您的观看
早期喷气式发动机的挑战与突破
ห้องสมุดไป่ตู้
喷气式发动机的优势与影响
总结词:喷气式发动机的高推进效率和轻量化特点使其成为航空工业的主流发动机,对航空运输、军事和民用领域产生了深远的影响。
03
涡轮发动机的时代
喷气时代的开启
涡轮喷气发动机的出现,标志着航空工业进入喷气时代,实现了超音速飞行。
英国的领先地位
英国在涡轮喷气发动机的研发上处于领先地位,为世界航空工业的发展做出了重要贡献。
早期发展
起源与早期发展
活塞式发动机的进步
进步
随着技术的发展,活塞式发动机在功率和效率方面得到了显著提升,成为了早期航空器的主要动力装置。
应用
活塞式发动机广泛应用于飞机、直升机和无人机等领域,为航空器的起飞、巡航和降落提供了稳定可靠的动力。
早期航空发动机具有功率小、重量大、油耗高等特点,但随着技术的不断进步,这些缺点逐渐得到改善。
技术进步与挑战
随着技术的不断进步,涡轮喷气发动机的推力和效率得到显著提升,但同时也面临着燃油效率低、噪音大等挑战。

航空发动机历史

航空发动机历史

航空发动机历史介绍航空发动机是飞机的核心部件,它负责提供动力以推动飞机在空中飞行。

航空发动机的发展历史可以追溯到19世纪末20世纪初,随着航空技术的不断进步,航空发动机也经历了多个阶段的演进和改进。

本文将深入探讨航空发动机的历史发展,介绍各个阶段的重要发展和突破。

甲壳虫式发动机的诞生早期的航空发动机在航空发动机出现之前,飞机通常是通过螺旋桨手摇式发动机进行推动。

这种发动机的动力十分有限,无法满足飞机长时间飞行的需求。

为了解决这个问题,人们开始研发更加高效的航空发动机。

1903年,著名发明家奥托·冯·利利登塞尔(Otto von Lilienthal)发明了一种新型发动机——甲壳虫式发动机。

甲壳虫式发动机的原理甲壳虫式发动机基于内燃机原理,通过燃烧燃料产生的气体压力驱动活塞,从而带动螺旋桨转动。

这种发动机结构简单,重量轻,功率较高,大大提高了飞机的飞行速度和高度。

甲壳虫式发动机的诞生标志着航空发动机迈向了一个新的时代。

喷气式发动机的出现渦輪噴射發動機20世纪30年代,德国工程师汉斯·冯·奥汀汉(Hans von Ohain)和弗里茨·韦克斯尔(Fritz Wrtz)独立发明了第一个喷气式发动机——渦輪噴射發動機。

这种发动机通过将空气加热并喷射出来产生推力,与传统发动机不同的是,它不需要螺旋桨来提供推力。

喷气式发动机的优势相比于传统的螺旋桨发动机,喷气式发动机具有许多优势。

首先,喷气式发动机的动力更大,可以推动飞机飞行更远更高。

其次,喷气式发动机的结构更简单,维护成本更低。

此外,喷气式发动机的噪音更小,燃料效率更高。

因此,喷气式发动机迅速取代了螺旋桨发动机,成为现代航空发动机的主流。

高涵道比涡扇发动机的革新高涵道比涡扇发动机的原理高涵道比涡扇发动机是20世纪60年代发展起来的一种新型航空发动机。

它通过增加涡扇发动机的涡轮级数和改进涡轮的设计,提高发动机的推力和燃烧效率。

航空发动机

航空发动机

莱特兄弟成功的原因?
• 众所周知:莱特兄弟并不是第一个尝试做飞机的人? 那么为什么他们的前辈无法成功?
莫急!莫急! 答案即将揭晓
当然是有一颗“强劲”的发动机呀!
• 1903年,莱特兄弟把一台4缸、水平直列式水冷发 动机改装之后,成功地用到他们的"飞行者一号"飞 机上进行飞行试验。首次飞行的留空时间只有12s,
未来无人机的动力源
在世界航空发展史上,飞机性能的提高都离不 开性能更好的航空发动机的支持。新时代的无人机 的发展离不开更加先进的发动机,然而放眼当下, 最常见的则是使用清洁能源的电动机,其次就是以 汽油等为燃料的活塞发动机。 最近有人提出用燃料电池作为电动机动力源, 而且实验成功。而我个人则认为多种能源混合型的 发动机或许就是未来几年的主流。 当然,我们可大胆设想,未来的发动机的动力 是否会是核能、太阳能等能源呢?发挥我们的想象, 一切皆有可能!
涡桨发动机
涡桨工作原理图
5.桨扇(无涵道风扇发动机)
桨扇发动机
桨扇工作原理图
6.脉冲式发动机
脉冲发动机
脉冲工作原理图
7.超燃冲压式发动机(超声速燃烧冲压式发动机)
超燃冲压发动机
超燃冲压工作原理图
各类航空发动机的优缺点
一.活塞式发动机
1.自重大 2.震动大 1.低速情况下发动机 3.高速时耗油量大
Part
2
航空发动机的历史
航空发动机百年史——两个时期
• 第一个时期 从1903年莱特兄弟 的首次飞行开始到第 二次世界大战结束为 止。 活塞式发动机统治 了40年左右。
• 第二个时期 从第二次世界大战 结束至今。 60年来,航空燃气 轮机取代了活塞式发 动机。 航空燃气轮机开创 了喷气时代。

飞机发动机发展历程

飞机发动机发展历程

飞机发动机发展历程飞机发动机发展历程始于20世纪初,随着科技的进步和需求的增长,飞机发动机在性能、工艺和材料方面都得到了重大的突破和改进。

本文将从早期的蒸汽动力到现代的高效涡轮发动机,总结出飞机发动机发展的主要里程碑。

第一阶段:蒸汽动力(19世纪末至20世纪初)早期的飞机发动机基本上使用蒸汽动力,其中最有代表性的是美国著名飞行家莱特兄弟使用的内燃机飞行器发动机。

蒸汽动力的不足之处在于重量和功率比不高,对机身结构和空气动力学效能的要求高。

第二阶段:活塞引擎(20世纪20年代至50年代)活塞引擎是飞机发动机的重要里程碑,它将航空发动机技术推向了新的高度。

早期的活塞引擎包括液冷和空冷两种,液冷活塞发动机由于复杂性和重量问题逐渐被空冷活塞发动机取代。

活塞引擎的飞机在二战期间发挥了重要作用,同时也在民航领域广泛使用。

第三阶段:涡轮风扇引擎(20世纪50年代至70年代)涡轮风扇引擎的出现标志着飞机发动机进入一个新的发展阶段。

涡轮风扇引擎利用燃气涡轮原理,通过高速旋转的涡轮推动空气进入压缩机,并产生推力。

这种引擎具有较高的推力和燃油经济性,并且噪音低,成为民航飞机的主流发动机。

第四阶段:高涵道比涡轮风扇引擎(20世纪70年代至今)高涵道比涡轮风扇引擎以其更高的效率和更低的燃油消耗率,成为现代航空发动机的代表。

它在设计上增加了风扇的直径,使得发动机能够更有效地推动空气。

高涵道比涡轮风扇引擎具有更好的经济性和环保性能,广泛应用于大型客机和远程飞行。

第五阶段:新一代发动机技术(21世纪至今)随着航空业的快速发展和对更高性能的需求,新一代发动机技术已经出现。

其中最值得注意的是超高涵道比涡扇引擎和无人机用发动机。

超高涵道比涡扇引擎进一步提高了效率和推力,并减少了噪音和排放。

无人机发动机的需求方面则更注重轻量化和高效能。

飞机发动机的发展历程是科技进步和需求驱动的结果。

从蒸汽动力到现代的高效涡轮发动机,飞机发动机的性能和性格得到了巨大的提升。

航空发动机技术的发展及未来趋势

航空发动机技术的发展及未来趋势

航空发动机技术的发展及未来趋势随着技术的不断发展,航空发动机也逐渐成为了航空工业的核心。

航空发动机的发展几乎决定了现代民航的航行能力和安全水平。

从早期的活塞式发动机,到现代的涡轮喷气发动机,航空发动机经历了漫长的探索和飞跃的进步,成为了航空工业中最为重要的组成部分。

一、航空发动机技术的发展早期的飞机采用的是活塞式发动机,也叫往复式发动机。

火花塞在燃油喷入燃烧室后引燃气体,产生高温高压的气体从喷气口喷出,带动涡轮的旋转。

这种发动机具有结构简单、可靠性高等优点,但是机身较大,重量较重,燃油消耗量大,功率有限等不足。

20世纪40年代末到50年代初,随着发动机科技的进步和涡轮技术的创新,涡轮喷气发动机逐渐取代了往复式发动机。

涡轮喷气发动机采用的是压气机将进气压缩,将压缩后的气体引入燃烧室,燃油与空气混合后点燃,放出高温高压气体推动发动机输出动力。

这种发动机效率高、噪音低、耗油量小、功率大、速度快等特点,成为了现代民航飞机上的主力动力系统。

二、航空发动机技术的未来趋势在涡轮喷气发动机的基础上,航空发动机技术正在不断地向更加高效、更加节能、更加环保的方向发展。

1.提高发动机效率目前,航空发动机的效率已经很高,但是在实际应用中,还存在着折减和浪费的问题。

未来,航空发动机技术发展的关键就是提高其效率,将燃料的能量转化为动力的能量,并尽可能的减少能量损失。

其中,提高涡轮的热效率和压缩比,采用最新的材料技术,减小机身重量,都是提高效率的有效途径。

2.研发更加环保的发动机航空运输业对环保的要求越来越高,发动机燃烧产生的废气排放也成为了环境污染的一个关键因素。

未来,发动机技术将朝着更加环保的方向发展,例如使用生物燃料、燃氢技术、降低排放等。

3.数字化技术的应用数字化技术在航空工业中的应用越来越广泛,未来,数字化技术也将成为航空发动机的一大趋势。

数字化技术可以实现对发动机的监测、分析和预测,通过数据的分析和模拟,在发动机研发和运行维护中形成闭环式的监测和反馈,以优化发动机的研发和维护,提高效率和性能。

飞机发动机的发展历程

飞机发动机的发展历程

飞机发动机的发展历程飞机发动机是现代航空工业中最重要的关键技术之一,航空发动机的发展对飞机的运行性能和航程都有着决定性的影响。

下面我们将从早期的蒸汽动力飞机到现代的喷气发动机来回顾飞机发动机的发展历程。

早在19世纪末,人们就开始探索用于飞行的动力,最早的飞机发动机是蒸汽动力。

1884年,英国工程师霍普基尔斯(Herbert Akroyd Stuart)发明了一种蒸汽发动机,称为霍普基尔斯循环发动机。

这种发动机结构简单,但效率低下,无法满足飞机的需求。

随着内燃机的出现,飞机的动力问题得到了解决。

1903年,美国兄弟莱特成功制造出第一架能够自由起降的飞机,他们使用的是自制的内燃发动机。

这一成功标志着飞机发动机的革命性进步,蒸汽动力逐渐被淘汰。

接下来的几十年间,飞机发动机的发展经历了不断改进和革新的过程。

1920年代,涡轮喷气发动机的原型出现。

1930年代,西方国家基本确定了涡轮喷气发动机的发展方向,并相继投入使用。

第二次世界大战期间,喷气发动机得到了大规模的发展和应用。

德国人发明了双流涡轮喷气发动机,并应用在他们的喷气式战斗机上,使其性能大幅度提升。

同一时期,美国人则发明了涡轮螺旋桨发动机,用于提高战斗机的升力和速度。

战后,喷气发动机得到了更加广泛的应用。

20世纪50年代,苏联科学家发明了高空高速飞机的涡轮喷气发动机,使得飞机的续航能力大大增加。

同时,各国纷纷研发改进和新型的喷气发动机,使得飞机的性能水平达到了一个新的高度。

到了20世纪60年代,人们又开始试图开发更高级别的发动机。

1969年,美国的勃兰登·雅各布斯的研发团队在喷气发动机上进行了一次重大的突破,发明了涡扇发动机。

这一发动机搭载在了波音747飞机上,成为了世界上第一架商用的宽体喷气飞机。

涡扇发动机的出现使得大型飞机的运输效率大大提高。

从那时起,喷气发动机在不断发展和创新,并得到了广泛应用。

现代的喷气发动机在结构和材料上有了巨大的突破,使得飞机的性能进一步提高。

当代-航空发动机的发展历史和趋势

当代-航空发动机的发展历史和趋势

波音777-300ER大型双发旅客机
2014-12-25
航空发动机原理与构造
45
2014-12-25
航空发动机原理与构造
46
活塞式发动机
2014-12-25 航空发动机原理与构造 47
喷气发动机的早期设想
2014-12-25 航空发动机原理与构造 48
到40年代末,活塞发动机达到了发展的顶峰
航空发动机原理与构造 22
2014-12-25
活塞式发动机时期

活塞式发动机固有的缺陷

功率与重量的矛盾

发动机功率与飞行速度的三次方成正比 发动机功率的增加,将导致发动机重量迅速增大 (接近三次方关系)

螺旋桨的局限


接近音速时,导致螺旋桨工作不稳定,推进效率 急剧下降 “音障”的出现
2014-12-25
航空发动机原理与构造
31
涡轮喷气发动机

50年代末至60年代初,各国研制了M2飞机的 一批涡喷发动机


如J79、J75、埃汶、奥林帕斯、阿塔9C、R-11和 R-13 推重比已达5~6


60年代中期用于M3飞机的J58和R-31 70年代初,用于“协和”超声速客机的奥林帕 斯593涡喷发动机定型 从此再没有重要的涡喷发动机问世
航空发动机原理与构造 25
2014-12-25
2014-12-25
航空发动机原理与构造
26
燃气涡轮发动机时期

第二个时期:从第二次世界大战结束至今



60年来,航空燃气涡轮发动机取代了活塞 式发动机 开创了喷气时代,居航空动力的主导地位 喷气发动机的早期设想
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空发动机发展史摘要:航空发动机的历史大致可分为两个时期。

第一个时期从首次动力开始到第二次世界大战结束。

在这个时期,活塞式发动机统治了40年左右。

第二个时期从第二次世界大战至今。

60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。

关键词:活塞式喷气式航空发动机诞生一百多年来,主要经过了两个阶段。

前40年(1903~1945),为活塞式发动机的统治时期。

后60年(1939~至今),为喷气式发动机时代。

在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。

亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。

一、活塞式发动机统治时期很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。

最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。

到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。

1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。

这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。

发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。

首次飞行的留空时间只有12s,飞行距离为36.6m。

但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。

在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。

发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。

20世纪30~40年代是活塞式发动机的全盛时期。

活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋翼,构成所有直升机的动力装置。

著名的活塞式发动机有:英国的梅林V型12缸液冷式发动机,功率1120kW,用于“飓风”、“喷火”和“野马”战斗机;美国普拉特·惠特尼公司(简称普·惠公司)的“黄蜂”系列星形气冷发动机,气缸7~28个,功率970~2500kW,广泛用于各种战斗机、轰炸机和运输机。

带螺旋桨的活塞式发动机的最大缺点是飞行速度受到限制(800km/h以下)。

一方面,因为发动机需要功率与飞行速度的三次方成正比,随着速度的提高,所需发动机功率急剧增大,而通过增加汽缸数目来增大功率所带来的重量负荷飞机不能承受;另一方面,随着飞行速度的提高,螺旋桨的效率急剧下降并有机毁人亡的危险。

因此,为了实现高速飞行,必须寻求新的动力装置,这就是喷气式发动机。

第二次世界大战之后,随着涡轮喷气发动机的发展,活塞式发动机逐渐退出了航空领域的霸主地位。

二、喷气推进新时代(1)喷气发动机的诞生喷气式发动机是一种直接反作用推进装置。

低速工质(空气和燃料)经增压燃烧后以高速喷出而直接产生反作用推力。

由于喷气发动机没有了限制飞行速度的螺旋桨,而且单位时间流入发动机的空气流量比活塞式发动机大得多,从而能产生很大的推力,使飞机的飞行速度得到极大的提高。

与喷气发动机原理有关的研究已有久远的历史,中国古代的火箭和走马灯就是喷气推进和涡轮机原理的体现。

1913年,法国工程师雷恩·罗兰获得第一个喷气发动机专利,它属于无压气机式空气喷气发动机,与后来的冲压发动机基本相同。

冲压发动机结构简单、推力大,特别适合高速飞行。

无压气机式喷气发动机还有脉冲式发动机和火箭发动机。

脉冲式发动机是冲压喷气发动机的一种特殊形式,没有得到广泛应用。

有压气机式空气喷气发动机是由英国人弗莱克·惠特尔和德国人汉斯·冯·奥海因在同一时期分别发明的。

压气机有离心式、轴流式、组合式等多种,由后面的燃气涡轮带动,所以这类发动机又称为涡轮喷气发动机。

空军少校惠特尔1930年申请了专利,1937年4月研制出世界上第一台离心式涡轮喷气发动机,试验中的推力达到的推力为200daN。

1941年5月,推力为650daN的改进型惠特尔发动机装在格罗斯特公司的E28/29飞机上进行了成功的首飞。

奥海因在1938年10月试验了采用轴流—离心组合式压气机的HeS3涡轮喷气发动机,实测推力400daN,推力重力比1.12。

1939年8月27日,装在德国亨克尔公司的He—178飞机上成功首飞。

这是世界上第一架试飞成功的涡轮喷气发动机。

(2)涡轮喷气发动机的发展早期的涡轮喷气发动机和飞机尚处于试验阶段,在第二次世界大战中并没有发挥多大的作用,到战后特别是20世纪50年代才获得迅速的发展。

战后第一批装备部队使用的喷气式战斗机是1944年美国制造的F—80和1946年苏联制造的米格—9,飞机为平直梯形机翼,发动机推力800~900daN,飞行速度900km/h 左右。

飞机速度达到声速以后,为了突破“声障”,在涡喷发动机上加装了加力燃烧室,它可以在短时间内加幅度提高推力。

以后,战斗机继续向高空高速发展。

1958年美国推出F—104战斗机,最大飞行马赫数2.2,使用升限17.68km。

动力为J79单转子加力式涡轮喷气发动机,最大推力7020daN,推重比4.63。

涡轮喷气发动机在军用战斗机上广泛应用的同时,也被其他机种所选用。

首先是轰炸机,随后是运输机、旅客机和侦察机。

如果把20世纪40~50年代研制的单轴涡轮喷气发动机算为第一代,那么50~60年代研制的加力式涡轮喷气发动机为第二代,其循环和性能参数水平为:涡轮前燃气温度950~1100℃,推重比4.5~5.5,不加力耗油率0.9~1.0kg/(daN·h),加力耗油率2.0 kg/(daN·h)左右。

(3)涡轮风扇发动机的发展涡喷发动机有一个致命的缺点,就是耗油率太高,涡扇发动机既能克服这个缺点又保有它原有的优点。

涡扇发动机与涡喷发动机的区别在于低压压气机变成叶片的风扇,风扇出口气流分成两股通过内外两个环形涵道流过发动机。

内涵与前述涡轮喷气发动机的情况相同,外涵空气经过涵道直接排出,或在低压涡轮后与主流混合后经喷管排出,或加力补燃后排出。

在核心相同的条件下,由于涡轮风扇发动机总空气流量大,排气速度低,所以与涡轮喷气发动机相比,推力大,推进效率高,耗油率低。

涡轮风扇发动机实质上仍属于直接反作用式涡轮喷气发动机。

涡扇发动机诞生于20世纪50年代,首先用于民用飞机,随后扩展到军用飞机。

20世纪60年代出现涡扇化热潮,70~80年代发展提高、广泛应用,90年代以后高度发展,取代涡喷发动机成为军民用飞机的主动力和航空推进技术研究发展的主要方向。

世界上第一台运转的涡轮风扇发动机是德国戴姆勒-奔驰研制的DB670(或109-007),于1943年4月在实验台上达到840千克推力,但因技术困难及战争原因没能获得进一步发展。

世界上第一种批量生产的涡扇发动机是1959年定型的英国康维,推力为5730daN,用于VC-10、DC-8和波音707客机。

涵道比有0.3和0.6两种,耗油率比同时期的涡喷发动机低10%~20%。

1960年,美国在JT3C 涡喷发动机的基础上改型研制成功JT3D涡扇发动机,推力超过7700daN,涵道比1.4,用于波音707和DC-8客机以及军用运输机。

以后,涡扇发动机向低涵道比的军用加力发动机和高涵道比的民用发动机的两个方向发展。

在低涵道比军用加力涡扇发动机方面,20世纪60年代,英、美在民用涡扇发动机的基础上研制出斯贝-MK202和TF30,分别用于英国购买的"鬼怪"F-4M/K战斗机和美国的F111(后又用于F-14战斗机)。

它们的推重比与同时期的涡喷发动机差不多,但中间耗油率低,使飞机航程大大增加。

在70~80年代,各国研制出推重比8一级的涡扇发动机,如美国的F!00、F404、F110,西欧三国的RB199,前苏联的RD-33和AL-31F。

它们装备目前在一线的第三战斗机,如F-15、F-16、F-18、"狂风"、米格-29和苏-27。

目前,推重比10一级的涡扇发动机已研制成功,即将投入服役。

它们包括美国的F-22/F119、西欧的EFA2000/EJ200和法国的"阵风"/M88。

其中,F-22/F119具有第四代战斗机代表性特征--超声速巡航、短距起落、超机动性和隐身能力。

超声速垂直起飞短距着陆的JSF动力装置F136正在研制之中,预计将于2010~2012年投入服役。

自20世纪70年代第一代推力在20000daN以上的高涵道比(4~6)涡扇发动机投入使用以来,开创了大型宽体客机的新时代。

后来,又发展出推力小于20000daN 的不同推力级的高涵道比涡扇发动机,广泛用于各种干线和支线客机。

10000~15000daN推力级的CFM56系列已生产13000多台,并创造了机上寿命超过30000h的记录。

民用涡扇发动机依然投入使用以来,已使巡航耗油率降低一半,噪声下降20dB, CO、UHC、NOX分别减少70%、90%、45%。

90年代中期装备波音777投入使用的第二代高涵道比(6~9)涡扇发动机的推力超过35000daN。

其中,通用电气公司GE90-115B在2003年2月创造了56900daN的发动机推力世界纪录。

目前,普·惠公司正在研制新一代涡扇发动机PW8000,这种齿轮传动涡扇发动机,推力为11 000~16 000daN,涵道比11,耗油率下降9%。

三、涡轮螺旋桨发动机和涡轮轴发动机在涡轮喷气发动机蓬勃发展的过程中,驱动飞机螺旋桨和直升机旋翼的动力也实现了涡轮化,派生出两种新型航空燃气涡轮发动机——涡轮螺旋桨发动机和涡轮轴发动机。

它们的工作原理基本相同,都是靠动力涡轮把燃气发生器出口燃气中的绝大部分可用能量转变为轴功率,通过减速器驱动螺旋桨或旋翼。

它们与活塞式发动机相比,重量轻、振动小、功率重力比大。

(1)涡浆发动机在第二次世界大战中,英国开始研制本国第一台涡桨发动机罗尔斯-罗伊斯RB.50 Trent。

美国、法国、苏联等国也都积极发展了这项技术。

因为它比涡喷和涡扇发动机耗油率低、经济性好、起飞推力大、曾得到相当的发展。

目前,在中小型运输机和通用飞机上仍有广泛用途。

其中加拿大普·惠公司的PT6A发动机是典型代表,40年来,这个功率范围为350~1100kW的发动机系列已发展出30多个改型,用于144个国家的近百种飞机,共生产了30000多台。

相关文档
最新文档