2020年夏津县实验中学人教版七年级上学期期中质量数学试题及答案(A卷全套)

合集下载

2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷(word,解析版)

2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷(word,解析版)

2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣20222.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106 3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.25.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+27.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.88.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3| 9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.000110.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有个.14.(4分)单项式的次数是.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=.16.(4分)如果与2x2y n+1是同类项,则mn的值.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣2022【分析】直接根据相反数的概念解答即可.【解答】解:2022的相反数等于﹣2022,故选:D.2.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【解答】解:253200=2.532×105.故选:A.3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃【分析】根据温差=等于最高气温﹣最低气温,列式求解即可.【解答】解:这一天的温差是13﹣(﹣3)=13+3=16℃.故选:B.4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.2【分析】根据有理数的相关概念直接作答.【解答】解:易得,故选:B.5.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元【分析】“正”和“负”是表示互为相反意义的量,如果向北走记作正数,那么向北的反方向,向南走应记为负数;如果盈利记为正数,那么亏损表示负数.【解答】解:把盈利100元记为+100元,那么﹣90元表示亏损90元,故选:C.6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+2【分析】根据非负数的性质举特例判断即可.【解答】解:A.a=0时,|a|=0,0既不是正数也不是负数,故本选项不合题意;B.a=﹣2时,a+2=0,0既不是正数也不是负数,故本选项不合题意;C.a<0时,2a<0,是负数,故本选项不合题意;D.∵a2≥0,∴a2+2>0,是正数,故本选项符合题意.故选:D.7.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.8【分析】根据数轴的性质即可求解【解答】解:在数轴上与原点距离为8的点表示的数是±8,故选:C.8.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3|【分析】利用绝对值的代数意义,即可求解.【解答】解:A.因为﹣5<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣5<4,不符合题意;B.去括号后原式=5.5>5,不符合题意;C.因为﹣4<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣4<4,不符合题意;D.因为﹣3<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣3<3,符合题意;故选:D.9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.0001【分析】根据近似数的精确度的定义逐一判断即可得.【解答】解:A、0.1精确到0.1,正确;B、0.05精确到百分位,正确;C、0.05精确到百分位,此选项错误;D、0.0502精确到0.0001,正确;故选:C.10.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.【分析】利用题干中的数量关系分别表示出参加文艺类社团的人数和参加科技类社团的人数,将参加三类社团的人数相加即可得出结论.【解答】解:∵参加文艺类社团的人数比参加体育类社团的人数多6人,∴参加文艺类社团的人数为:(m+6)人.∵参加科技类社团的人数比参加文艺类社团人数的多2人,∴参加科技类社团的人数为:(m+6)+2=(m+5)人.∴参加三类社团的总人数为:m+(m+6)+(m+5)=(m+11)人.故选:D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c【分析】A、B直接利用去括号法则,C、D注意利用乘法分配律.【解答】解:A、根据去括号法则可知,a+(﹣2b+c)=a﹣2b+c,故此选项错误;B、根据去括号法则可知,a﹣(﹣2b+c)=a+2b﹣c,故此选项正确;C、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误;D、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误.故选:B.12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061【分析】根据图形的变化发现规律即可求解.【解答】解:图①中的正方形剪开得到图②,图②中共有3×1+1=4个正方形;将图②中一个正方形剪开得到图③,图③中共有3×2+1=7个正方形;将图③中一个正方形剪开得到图④,图④中共有3×3+1=10个正方形……发现规律:第n个图中共有正方形的个数为:3(n﹣1)+1=3n﹣2则第2020个图中共有正方形的个数为3×2020﹣2=6058.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有3个.【分析】根据有理数的分类即可求出答案.整数包括正整数、0和负整数.【解答】解:|﹣44|=44,∴在|﹣44|,+0.002,π,0,﹣110这五个数中,整数有|﹣44|,0,﹣110,共3个.故答案为:3.14.(4分)单项式的次数是5.【分析】根据单项式中所有字母的指数之和是单项式的次数进行作答即可【解答】解:单项式的次数是2+3=5,故答案为:5.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=0.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:根据题意得:m﹣2=0,2n+4=0,解得:m=2,n=﹣2,则m+n=2﹣2=0.故答案为:0.16.(4分)如果与2x2y n+1是同类项,则mn的值0.【分析】根据同类项的定义,列方程求解即可.【解答】解:∵与2x2y n+1是同类项,∴m=2,n+1=1,∴m=2,n=0,∴mn=0,故答案为:0.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=19.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:(﹣5)☆(﹣3)=(﹣3)2﹣2×(﹣5)=9﹣(﹣10)=9+10=19.故答案为:19.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】数轴上点的运动位置问题,可以转化为“有理数”的加法问题来处理.即p0﹣1+2﹣3+4﹣5+…=n+2.【解答】解:根据题意,可以得到方程p0﹣1+2﹣3+4﹣5+…+2n=n+2.得p0+1×n=n+2,解得p0=2.故答案为:2.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据乘法分配律进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可.【解答】解:(1)原式=﹣23+32﹣67+48=﹣90+80=﹣10;(2)原式=﹣12+(﹣12)=﹣24;(3)原式==﹣3+6﹣9+12=6;(4)原式==﹣9﹣(﹣2)=﹣7.20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).【分析】(1)直接合并同类项即可得答案;(2)先去括号,再合并同类项即可.【解答】解:(1)3x2y﹣2x2y+x2y=(3﹣2+1)x2y=2x2y;(2)3a2﹣2a+2(a2﹣a)=3a2﹣2a+2a2﹣2a=5a2﹣4a.21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b<0,a+b=0,a﹣c>0,b﹣c<0;(2)化简:|a﹣b|+|b+c|﹣|a|.【分析】(1)根据数轴得出b<c<0<a,|a|=|b|>|c|,求出b<0,a+b=0,a﹣c>0,b ﹣c<0即可;(2)先去掉绝对值符号,再合并即可.【解答】解:(1)∵从数轴可知:b<c<0<a,|a|=|b|>|c|,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.【分析】根据整式的加减进行化简后,代入值计算即可.【解答】解:原式=10ab﹣8b2﹣9ab+6b2+2b2=ab,当a=2,b=﹣时,原式=2×(﹣)=﹣1.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.【分析】(1)由2A+B=C,可求出B所表示的代数式;(2)求出B所表示的代数式,再计算2A﹣B的结果即可;(3)代入求值即可.【解答】解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;因正确结果中不含c,所以小强的说法对,正确结果的取值与c无关;(3)将a=,b=,代入(2)中的代数式,得:8a2b﹣5ab2=8×()2×﹣5××()2=﹣=0.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?【分析】(1)用记录中最大的数减去最小的数即可;(2)根据非正数是达标成绩,根据达标人数除以总人数,可得达标率;(3)根据平均数的意义,可得答案.【解答】解:(1)10﹣(﹣13)=10+13=23(分钟),故这个班最快的一组比最慢的一组少用23分钟;(2)﹣13,﹣8,﹣4,﹣5,﹣3,﹣6是达标成绩,达标率为=75%;(3)60+(﹣13+5﹣8﹣4+10﹣5﹣3﹣6)÷8=60﹣3=57(分钟),答:这个班8个小组的平均成绩为57分钟.25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为4;(2)如果点P到点M、点N的距离相等,那么x的值是1;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.。

2019-2020学年山东省德州市夏津实验中学七年级(上)期中数学试卷含解析

2019-2020学年山东省德州市夏津实验中学七年级(上)期中数学试卷含解析

2019-2020学年山东省德州市夏津实验中学七年级(上)期中数学试卷一、选择题1. 等于()A. B. C. D.2. 在墙壁上固定一根横放的木条,则至少需要钉子的枚数是A.枚B.枚C.枚D.任意枚3. 下列方程为一元一次方程的是A. B. C. D.4. 下列各组数中,互为相反数的是( )A.与B.与C.与D.与5. 下列各图中,可以是一个正方体的平面展开图的是A. B. C. D.6. 把两块三角板按如图所示那样拼在一起,则等于()A. B. C. D.7. 由四舍五入法得到的近似数,下列说法中正确的是A.精确到十分位,有个有效数字B.精确到个位,有个有效数字C.精确到百位,有个有效数字D.精确到千位,有个有效数字8. 一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是( )A.新B.年C.愉D.快9. 某文化商场同时卖出两台电子琴,每台均卖元.以成本计算,第一台盈利,另一台亏本.则本次出售中,商场()A.不赚不赔B.赚元C.赚元D.赔元二、填空题(每题2分,共6分)10. 青藏高原是世界上海拔最高的高原,它的面积约为平方千米.将它的面积用科学记数法表示应为________平方千米.11. 若与是同类项,则________,________.12. 计算:________.13. 当时,代数式的值为.则当时,代数式的值为________.14. 若与是同类项,则________.15. 已知线段=,直线上有一点,且=,是线段的中点,则的长是或.三、解答题16. 计算:.17. 先化简,再求值:,其中.18. 已知:线段厘米,点是的中点,点在的中点,求线段的长.19. 如图,,平分,.试求的度数.20. 某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔支,毛笔支,共用了元,其中每支毛笔比钢笔贵元.求钢笔和毛笔的单价各为多少元?21. 如图,已知为上一点,与互补,,分别为,的平分线,若,试求与的度数.参考答案与试题解析一、选择题1.【答案】C【考点】绝对值【解答】解:由于,故选.2.【答案】B【考点】直线的性质:两点确定一条直线【解答】解:∵两点确定一条直线,∴至少需要枚钉子.故选.3.【答案】A【考点】一元一次方程的定义【解答】解:,正确;,含有个未知数,不是一元一次方程,选项错误;,最高次数是次,不是一元一次方程,选项错误;,不是整式方程,不是一元一次方程,选项错误.故选.4.【答案】D【考点】有理数的乘方绝对值相反数【解答】解:、,所以选项错误;、,所以选项错误;、,所以选项错误;、,与互为相反数,所以选项正确.故选.5.【答案】C【考点】几何体的展开图【解答】解:,属于“田”字型,不是正方体的展开图,故选项错误;,属于“”字型,不是正方体的展开图,故选项错误;,属于“”字型,是正方体的展开图,故选项正确;,属于“凹”字型,不是正方体的展开图,故选项错误.故选.6.【答案】D【考点】角的计算【解答】==.7.【答案】C【考点】科学记数法与有效数字【解答】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是的数字有个数字,那么有效数字就是个.故选.8.【答案】B【考点】正方体相对两个面上的文字【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”与“愉”相对,“您”与“年”相对,“新”与“快”相对.故选.9.【答案】D【考点】一元一次方程的应用——工程进度问题【解答】解:设两台电子琴的原价分别为与,则第一台可列方程,解得:.比较可知,第一台赚了元,第二台可列方程,解得:元,比较可知第二台亏了元,两台一合则赔了元.故选.二、填空题(每题2分,共6分)10.【答案】【考点】科学记数法--表示较大的数【解答】=平方千米.11.【答案】,【考点】同类项的概念【解答】解:∵与是同类项,∴,,解得:,.故答案为:,.12.【答案】【考点】度分秒的换算【解答】解:∵,∴.故答案为:.13.【答案】【考点】列代数式求值方法的优势【解答】解:∵当时,,即,∴当时,代数式.故答案为:14.【答案】【考点】同类项的概念【解答】解:根据题意得:,,解得:,则.故答案是:.15.【答案】或.【考点】两点间的距离【解答】①如图所示,当点在点与之间时,∵线段=,=,∴==.∵是线段的中点,∴=,∴===;②当点在点的右侧时,∵=,是线段的中点,∴=,∴===.综上所述,线段的长为或.三、解答题16.【答案】原式==.【考点】有理数的混合运算【解答】原式==.17.【答案】解:原式,当时,原式.【考点】整式的加减--化简求值【解答】解:原式,当时,原式.18.【答案】解:∵厘米,是的中点,∴厘米,∵点在的中点,∴厘米,∴厘米.【考点】比较线段的长短【解答】解:∵厘米,是的中点,∴厘米,∵点在的中点,∴厘米,∴厘米.19.【答案】解:∵,平分,∴,∵,,∴,∴.【考点】角的计算角平分线的定义【解答】解:∵,平分,∴,∵,,∴,∴.20.【答案】钢笔的单价为元,则毛笔的单价为元.【考点】一元一次方程的应用——工程进度问题【解答】解:设钢笔的单价为每只元,则毛笔的单价每只为元,由题意,得,解得:,所以毛笔的单价为:元.21.【答案】解:设,因为与互补,则.由题意,得.∴,∴,解得故,.【考点】余角和补角角平分线的定义【解答】解:设,因为与互补,则.由题意,得.∴,∴,解得故,.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。

2020年部编人教版七年级数学上册期中试卷及答案

2020年部编人教版七年级数学上册期中试卷及答案

祝同学们期中考出好成绩!欢迎同学们下载,希望能帮助到你们!2020年部编人教版七年级数学上册期中试卷及答案一、选择题(每小题3分,共33分)1、在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A 、1个 B 、2个C 、3个D 、4个2、下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数D 、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是 ( ) A 、-12B 、-2C 、12D 、24、如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<05、如果a 2=(-3)2,那么a 等于 ( ) A 、3B 、-3C 、9D 、±36、23表示 ( ) A 、2×2×2B 、2×3C 、3×3D 、2+2+27、近似数4.50所表示的真值a 的取值范围是 ( ) A 、4.495≤a <4.505 B 、4040≤a <4.60 C 、4.495≤a ≤4.505D 、4.500≤a <4.50568、如果 | a + 2 | + ( b-1)2 = 0,那么(a + b )2009的值是 ( ) A 、- 2009B 、2009C 、- 1D 、19、下列说法正确的是 ( ) A 、- 2不是单项式 B 、- a 表示负数C 、3ab 5的系数是3D 、x + ax+ 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有 ( ) A 、1个B 、2个C 、3个D 、4个11、下面用数学语言叙述代数式1a -b ,其中表达不正确的是 ( )A 、比a 的倒数小b 的数B 、1除以a 的商与b 的相反数的差C 、1除以a 的商与b 的相反数的和D 、b 与a 的倒数的差的相反数二、填空题(每小题3分,共30分) 12、若x<0,则x| x |= 。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

人教版七年级数学上学期期中试题(2020年)

人教版七年级数学上学期期中试题(2020年)
(1) 2(2a 3b) 3(2b 3a)
(2) 3( ab 2a) (3a b) 3ab
第 3页 共 9页
2020年最新 (3) 2( x2 xy) 3(2x2 3xy) 2[ x 2 (2x2 xy y 2 )]
23.(本题有 2 个小题,第 1 题 4 分,第 2 题 8 分,共 12 分) (1)小明是个小马虎,他在计算多项式 M减去多项式 ab-2 bc+3ac 时,把减号误看成加号, 结果得到答案 -2 ab+bc+8ac,请你帮小马虎小明求出正确答案 .
A. 4x-9x+6x=- x
) B
) B

1
x
y
2
的次数
2
2
5 xy 2
5
D.的系数是-2来自211 . a- a=0
22
C. x 3 — x 2 =x
D
. xy— 2xy=3xy
10.已知 a,b 互为相反数,且 a b 6 ,则 b 1 的值为(

第 1页 共 9页
2020年最新
A. 2
B. 2 或 3
景区门票收入为 369.7 万元 , 将这一数据用科学记数法表示为
元.
15.已知点 A 和点 B 在同一数轴上, 点 A 表示数- 2,点 B 和点 A 相距 5 个单位长度, 则
点 B 表示的数是 _________ .
16.计算 6a 2 5a 3 与 5a 2 2a 1 的差,结果是 _______________.
的树比第二队种的树的一半少 6 棵,三队共种树
棵.
三、解答题(共 60 分)
21.计算(每小题 4 分,共 12 分)
3 57

2020年人教版七年级数学上册期中考试试题及答案

2020年人教版七年级数学上册期中考试试题及答案

精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@2020年人教版七年级数学上册期中考试试题及答案一、选择题(每小题3分,共33分)1、在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A 、 1个B 、2个C 、3个D 、4个2、下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数D 、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是 ( ) A 、-12B 、-2C 、12D 、24、如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<05、如果a 2=(-3)2,那么a 等于 ( ) A 、3B 、-3C 、9D 、±36、23表示 ( ) A 、2×2×2B 、2×3C 、3×3D 、2+2+27、近似数4.50所表示的真值a 的取值范围是 ( ) A 、4.495≤a <4.505 B 、4040≤a <4.60C 、4.495≤a ≤4.505D 、4.500≤a <4.50568、如果 | a + 2 | + ( b-1)2= 0,那么(a + b )2009的值是 ( )A 、- 2009B 、2009C 、- 1D 、19、下列说法正确的是 ( ) A 、- 2不是单项式 B 、- a 表示负数C 、3ab5的系数是3D 、x + ax+ 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有 ( ) A 、1个B 、2个C 、3个D 、4个11、下面用数学语言叙述代数式1a -b ,其中表达不正确的是 ( )A 、比a 的倒数小b 的数B 、1除以a 的商与b 的相反数的差C 、1除以a 的商与b 的相反数的和D 、b 与a 的倒数的差的相反数二、填空题(每小题3分,共30分) 12、若x<0,则x| x |= 。

夏津县实验中学第一学期七年级期中数学试题及答案

夏津县实验中学第一学期七年级期中数学试题及答案

夏津县实验中学第一学期七年级期中数学试题及答案数学试题2020.10一、选择题1.2-等于()A.-2 B.12-C.2 D.122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是 ( )A.y+3= 0 B.x+2y=3 C.x2=2A.20、某中学为了表彰在书法竞赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.求钢笔和毛笔的单价各为多少元?(8分)21.如图所示,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.(8分)MBCD答案一、选择题:1、C 2、B 3、A 4、D 5、C6、D7、C 8.C 9.B二、10、2.5×10 611、m=1 n=3 12、58°28′ 13、—2010. 14、3. 15、12或8. 三、16、解:原式=-1-41×(-2-9)=-1-41×(-7)=-1+47=4317、解:原式=-x 2+21x-2+21x+1=-x 2-1 当x=21时,原式=-41-1=-4518、解:∵C 是AB 的中点,AB=6cm ∴AC=BC=21AB=3cm ∵D 是AC 的中点∴CD=21AC=1.5cm ∴BD=3+1.5=4.5cm19、解:∵OC 平分∠AOB ,∠AOB=90°∴∠COB=45°∵∠COD =90°∴∠BOD =45°∵∠BOD=3∠DOE ∴∠DOE=15°∴∠COE=75°20、解:设钢笔每只x 元,则毛笔每只(X+4)元,由题意得: 30x+45(X+4)=1755 解得:x=21 X+4=25答:钢笔和毛笔的单价各为21元和25元 21、解:设∠AON 等于x 度 ∵ON 平分∠AOBN A∴∠AOB=2是∠AOC∴∠AOC=2∠AOM=80+2x∵∠AOC与∠AOB互补∴2x+80+2x=180解得x=25∴∠AOB=50 ∠AOC=130答:∠AOC与∠A OB的度数分别是130度和50度。

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷七年级数学满分:120分时间:90分钟一、选择题。

(每小题3分,共30分)1.下列各式不成立的是A. |−2| = 2B. |+2 |= |−2|C. −|+2| =±|−2| C. −|3| = + (−3)2.在+3.5、−43、0、−2、−0.56、−0.101001中,负分数有A. 4个B. 3个C. 2个D. 1个3.已知有理数a,b在数轴上的位置如图所示,比较a、b、−a、−b的大小,正确的是A. a<b<−a<−bB. b<−a<−b<aC. −a<a<b<−bD. −b<a<−a<b4.冰箱冷冻室的温度为−6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高A. 26℃B. 14℃C. −26℃D. −14℃5.下列判断中,正确的是A. 若a是有理数,则|a|−a=0一定成立B. 两个有理数的和一定大于每个加数C. 两个有理数的差一定小于被减数D. 0减去任何数都等于这个数的相6.计算(−2)2022+(−2)2023的结果是A. −1B. −2C. −22022D. 220237.如果一个多项式的次数是6,那么这个多项式的任何一项的次数A. 都小于6B. 都等于6C. 都不小于6D. 都不大于68.在式子:−35ab、2x2y5、x+y2、−a2bc、1、x2−2x+3、3a、1x+1中,单项式个数为A. 2B. 3C. 4D. 59.如果整式x n−3−5x2+2是关于x的三次三项式,那么n等于A. 3B. 4C. 5D. 610.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是A. (1−10%)(1+15%)x万元B. (1−10%+15%)x万元C. (x−10%)(x+15%)万元D. (1+10%−15%)x万元二、填空题。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案

人教版2020---2021学年度七年级数学(上)期中考试卷及答案

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

人教版数学七年级上册《期中检测试卷》(带答案)

人教版数学七年级上册《期中检测试卷》(带答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数:111,,5.11201940,,3.1427π--,,其中有理数有( ) A.个 B.个 C.个 D.个2.下列各数中,一定互为相反数的是( )A. ()1--和B. 2-和2+C. ()3--和3--D.和m - 3.下列各式中运算正确的是( )A. 22a a -=B. 22234a b a b a b -=-C. 224a a a +=D. 235a b ab +=4.万众期待的第七届军运会在武汉开幕了,这是中国首次承办国际军体综合性运动会, 也是中国2019年承办的最重要的国际体育赛事之一.届时,有250000名志愿者为世界各地的来宾们奉上微笑服务与武汉热情,将250000用科学记数法表示为( )A. 60.2510⨯B. 62.510⨯C. 52.510⨯D. 42.510⨯ 5.下列语句表述正确的是( )A. 单项式mn π的次数是B. 多项式2435a b ab -+-的常数项为C. 单项式23a b 的系数是D. 21xy +是二次二项式. 6.某公司在销售一种智能机器人时发现,每月可售出100个,当定价每降价元时,每月可多售出个.如果定价降价元,那么每月可售出机器人的个数是( )A. 5xB. 1055x +C. 100x +D. 1005x +7.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 值为( ) A. 820B. 830C. 840D. 850 8.下列推理正确的是( )A. 若01a <<,则32a a a <<B. 若22a b =,则a b =C. 若a a =,则0a >D. 若,a b >则11a b< 9.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为.若知道的值,则不需测量就能知道周长的正方形的标号为( )A ① B. ② C. ③ D. ④10.已知a b c d ,,,为非零实数,则ab cd ad abcd cd ad abcd bc ab bc ++++的可能值的个数为( ) A B. C. D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.一个数的倒数是-4,那么这个数是_____.12.如果132m x y --与n xy 是同类项,那么()2019m n -__________.13.一件羽毛球拍先按成本价提高50%标价,再将标价打折出售,若这件羽毛球拍的成本价是元.那么售价可表示为__________.14.已知|x |=5,y 2=9,且|x ﹣y |=y ﹣x ,则x ﹣y =_____.15.将长为40cm ,宽为15cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为5cm ,则张白纸粘合后的总长度为__________.16.当422a b b +-++取最小值时,代数式x a b x b ++--的最小值为__________.三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:(1)()222420.545⎛⎫-⨯--÷- ⎪⎝⎭ (2)2125233⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭18.为庆祝国庆70华诞,近日某检修小组从A 地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km). 第一次 第二次 第三次 第四次 第五次 第六次 第七次﹣6+8 ﹣7 +5 +4 ﹣5 ﹣2(1)收工时距A 地的距离是_____.(2)在第_____次记录时距A 地最远.这个距离是______km(3)若每km 耗油0.2升,问这七次共耗油多少升?19.()1计算并填写下表: 序号①51+n ②21n - ③()2观察、思考:当的值逐渐变大时,你预计代数式的值最先超过500的是_ (填序号),此时的值为_ . (以上内容,只需直接写出结果)20.如图1是2019年11月的日历,用如图2所示的曲尺形框框(有三个方向,从左往右依次记为一、二、三个框) ,可以框住日历中的三个数,设被框住的三个数中最大的数为日一 二 三 四 五 六20 2224 25 26 27 28 29()1请用含的代数式填写以下三个空:第一个框框住的最小的数是_ ,第二个框框住的最小的数是__ ,第三个框框住的三个数的和是_ _.()2这三个框分别框住的中间的数之和能恰好是的倍数吗?如能请求出的值,若不能请说明理由. 21.()1化简:()()322352363x y xy xyx y +-- ()2已知8,15a b ab +==,求()()()211532104335a ab ab a ab b -++--+的值.22.已知22122321,23A a ab a B a ab =+--=-++, ()1当1,2a b =-=-时,求()432A A B --的值;()2若代数式()432A A B --的值与的取值无关,求43b A b B +的值.23.滴滴快车是种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程公里以内(含公里不收远途费,超过公里的,超出部分每公里收0.4元.()1若小东乘坐滴滴快车,行车里程为20公里,行车时间为分钟,则需付车费元;()2若小明乘坐滴滴快车,行车里程为公里,行车时间为分钟,则小明应付车费多少元(用含a b、的代数式表示,并化简) ;()3小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?24.如图,在数轴上点表示的数为,点表示的数为,且,a b满足()2250a b++-=,为原点.若动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动的时间为(秒) .()1求,a b的值;()2当点运动到线段OB上时,分别取OB和AP的中点E F,,试探究下列结论:①AB OPEF-的值为定值;②AB OPEF+的值为定值,其中有且只有一个是正确,请将正确的选出来并求出该值;()3当点从点出发运动到点时,另一动点Q从点出发,以每秒个单位长度速度在OB间往返运动,当1PQ=时,求动点运动的时间的值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数:111,,5.11201940,,3.1427π--,,其中有理数有( )A.个B.个C.个D.个 【答案】B【解析】【分析】根据有理数分为整数和分数,进而可得答案.【详解】在所列的6个数中,有理数的是111,5.11201940,,3.147--,这5个,故选B【点睛】此题考查有理数,解题关键在于掌握有理数的概念.2.下列各数中,一定互为相反数的是( )A. ()1--和B. 2-和2+C. ()3--和3--D.和m - 【答案】C【解析】【分析】根据绝对值的性质和相反数的概念分别进行化简,然后可得答案.【详解】A. ()1--=,()1--和不是相反数,故此选项错误;B. |−2|=2,|+2|=2,不是相反数,故此选项错误;C. =3()3--,3--=-3,是相反数,故此选项正确;D. |m|与|−m|不是相反数,故此选项错误;故选:C.【点睛】此题考查绝对值、相反数,解题关键在于确定绝对值的值.3.下列各式中运算正确的是( )A. 22a a -=B. 22234a b a b a b -=-C. 224a a a +=D. 235a b ab +=【答案】B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A. 2a a a -=,故该选项计算错误;B. 22234a b a b a b -=-,该选项正确;C. 2222a a a +=,故该选项计算错误;D. 235a b ab +=, 2a 与不是同类项,不能合并,故该选项计算错误.故选B.【点睛】此题考查整式的加减,熟练掌握合并同类项法则是解题关键.4.万众期待的第七届军运会在武汉开幕了,这是中国首次承办国际军体综合性运动会, 也是中国2019年承办的最重要的国际体育赛事之一.届时,有250000名志愿者为世界各地的来宾们奉上微笑服务与武汉热情,将250000用科学记数法表示为( )A. 60.2510⨯B. 62.510⨯C. 52.510⨯D. 42.510⨯【答案】C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,【详解】∵250000=52.510⨯故选C.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握科学记数的法则.5.下列语句表述正确的是( )A. 单项式mn π的次数是B. 多项式2435a b ab -+-的常数项为C. 单项式23a b 的系数是D. 21xy +是二次二项式. 【答案】D【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】A. 单项式mn π的次数是2,故该选项错误;B. 多项式2435a b ab -+-的常数项为,故该选项错误;C. 单项式23a b 的系数是1,故该选项错误;D. 21xy +是二次二项式,正确; 故选D.【点睛】此题考查单项式、多项式,解题关键在于掌握单项式、多项式的定义即可.6.某公司在销售一种智能机器人时发现,每月可售出100个,当定价每降价元时,每月可多售出个.如果定价降价元,那么每月可售出机器人的个数是( )A. 5xB. 1055x +C. 100x +D. 1005x + 【答案】D【解析】【分析】根据题意,可以列出相应代数式,本题得以解决.【详解】如果每个降价x 元,那么每月可售出机器人的个数是:1005x +,故选:D.【点睛】此题考查列代数式,解题关键是明确题意,列出相应的代数式.7.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 的值为( ) A. 820B. 830C. 840D. 850 【答案】C【解析】【分析】对于ba A (b <a )来讲,等于一个乘法算式,其中最大因数是a ,依次少1,最小因数是b .依此计算即可.【详解】解:根据规律可得: 47A =7×6×5×4=840;故选C .【点睛】本题考查了规律型-数字的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到b a A (b <a )中的最大因数,最小因数.8.下列推理正确的是( )A. 若01a <<,则32a a a <<B. 若22a b =,则a b =C. 若a a =,则0a >D. 若,a b >则11a b < 【答案】A【解析】【分析】原式各项利用绝对值的代数意义及有理数的乘法法则判断即可得到结果.【详解】A. 若01a <<,则32a a a <<,故这个说法正确;B. 若22a b =,则a b =±,故这个说法错误;C. 若a a =,则0a ≥,故这个说法错误;D. 若,a b >则11a b <或11a b>,,故这个说法错误; 故选A.【点睛】此题考查绝对值、有理数大小比较,解题关键在于掌握绝对值的代数意义.9.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为.若知道的值,则不需测量就能知道周长的正方形的标号为( )A. ①B. ②C. ③D. ④【答案】D【解析】【分析】 设①、②、③、④四个正方形的边长分别为a 、b 、c 、d ,用a 、b 、c 、d 表示出右上角、左下角阴影部分的周长,利用整式的加减混合运算法则计算,得到答案.【详解】设①、②、③、④四个正方形的边长分别为a 、b 、c 、d ,由题意得 (a+d−b−c+b+a+d−b+b−c+c+c)−(a−d+a−d+d+d)=l ,整理得,2d=l ,则知道l 的值,则不需测量就能知道正方形④的周长,故选:D.【点睛】此题考查整式的加减,解题关键在于结合题意列关于l 的整式即可.10.已知a b c d ,,,为非零实数,则ab cd ad abcd cd ad abcdbc ab bc ++++的可能值的个数为( ) A.B. C. D. 【答案】A【解析】【分析】分a 、b 、c 、d 四个数都是正数,三个正数,两个正数,一个正数,都是负数这几种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【详解】①当a 、b 、c 、d 四个数都是正数时,则=1+1+1+1+1=5ab cd ad abcd cd ad abc a dbc b bc ++++; ②当a 、b 、c 、d 四个数有三个正数,一个负数时, 则=-1+1+1-1-1=-1ab cd ad abcd cd ad abc b b dc a bc ++++; ③当a 、b 、c 、d 四个数有两个正数,两个负数时, 则=1-1+1-1+1=1ab cd ad abcd cd ad abc a dbc b bc ++++; ④当a 、b 、c 、d 四个数有一个正数,三个负数时, 则=-1+1+1-1-1=-1ab cd ad abcd cd ad abc b b dc a bc ++++; ①当a 、b 、c 、d 四个数都是负数时, 则=1+1+1+1+1=5ab cd ad abcd cd ad abc a dbc b bc ++++; 综上所述,ab cd ad abcd cd ad abcdbc ab bc ++++的可能值为-1,1,5; 故选A.【点睛】此题考查绝对值,解题关键在于分情况讨论.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.一个数的倒数是-4,那么这个数是_____. 【答案】14-【解析】【分析】根据乘积是1的两个数叫做互为倒数解答. 【详解】解:1414⎛⎫-⨯-= ⎪⎝⎭, 这个数是14-. 故答案为14-. 【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.12.如果132m x y --与n xy 是同类项,那么()2019m n -__________.【答案】【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出n ,m 的值,再代入代数式计算即可.【详解】解:∵-2x m-1y 3与xy n 是同类项,∴m-1=1,n=3,解得m=2,n=3,∴(m-n )2019=(2-3)2019=(-1)2019=-1.故答案为:-1【点睛】此题考查同类项,解题关键在于掌握同类项的定义.13.一件羽毛球拍先按成本价提高50%标价,再将标价打折出售,若这件羽毛球拍的成本价是元.那么售价可表示为__________.【答案】1.2x 元【解析】【分析】已知羽毛球拍的成本价是元,成本价提高50%标价,再将标价打折出售,即为()1+500.8x ⋅⋅%.【详解】∵羽毛球拍的成本价是元,已知成本价提高50%标价,再将标价打折出售,即可得售价为()1+500.8=1.2x x ⋅⋅%故答案为:1.2x 元【点睛】此题考查列代数式,解题关键在于结合题意列数式即可.14.已知|x |=5,y 2=9,且|x ﹣y |=y ﹣x ,则x ﹣y =_____.【答案】-8或-2【解析】【分析】根据绝对值的性质和有理数的乘方求出x 、y ,再根据负数的绝对值等于它的相反数判断出x-y <0,可确定x 值,然后求解即可.【详解】∵|x|=5,y 2=9,∴x=±5,y=±3, ∵|x ﹣y|=y ﹣x ,∴x<y ,∴x=-5,当x=-5,y=3时,x-y=-5-3=-8,当x=-5,y=-3时,x-y=-5-(-3)=-2,故答案为-8或-2【点睛】本题考查了有理数的减法,绝对值的性质,有理数的乘方,判断出x 、y 的对应情况并熟记运算法则和性质是解题的关键.15.将长为40cm ,宽为15cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为5cm ,则张白纸粘合后的总长度为__________.【答案】355n +【解析】【分析】可以先由一张白纸列出式子,再有俩张白纸列出式子,得出规律即可.【详解】一张白纸为0,两张白纸为40×2-5×1; 三张白纸为40×3-5×2; ……N 张白纸为40n-5(n-1)=355n +故答案为:355n +.【点睛】此题考查数字的规律型,解题关键在于由前几式类比列式.16.当422a b b +-++取最小值时,代数式x a b x b ++--的最小值为__________.【答案】【解析】【分析】根据绝对值的定义可知|a+b-4|+2|b+2|的最小值为0,得出a=6,b=-2,代入代数式|x+a+b|-|x-b|计算即可.【详解】解:∵|a+b-4|≥0 2|b+2|≥0∴|a+b-4|+2|b+2|≥0∴根据题意|a+b-4|+2|b+2|=0,得a=6,b=-2把a=-2,b=-2代入|x+a+b|-|x-b|=|x+4|-|x+2|①当x≥-2时,|x+4|-|x+2|=x+4-(x+2)=2②当-4<x <-2时,|x+4|-|x+2|=x+4-(-x-2)=2x+6∵-4<x <-2,-2<2x+6<2③当x≤-4时,|x+4|-|x+2|=-x-4-(-x-2)=-2综上所述,|x+a+b|-|x-b|的最小值为-2.故答案为-2.【点睛】此题考查绝对值的概念和意义,熟练掌握绝对值的概念是解题的关键.值得一提的是,与绝对值相关的题,经常要考虑正负数的绝对值的情况,也就是分类讨论.三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:(1)()222420.545⎛⎫-⨯--÷- ⎪⎝⎭ (2)2125233⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭【答案】(1)1225-(2)-215【解析】【分析】根据有理数的混合运算法则计算即可.【详解】(1)()222420.545⎛⎫-⨯--÷- ⎪⎝⎭ =-4×0.5-1625÷16 =-2-125 =1225-(2)2125 233⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭=143 295 -⨯⨯=-2 15【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.18.为庆祝国庆70华诞,近日某检修小组从A地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km).(1)收工时距A地的距离是_____.(2)在第_____次记录时距A地最远.这个距离是______km(3)若每km耗油0.2升,问这七次共耗油多少升?【答案】(1)3km;(2)一,6;(3)共耗油7.4升.【解析】【分析】(1)计算出最后一次所处位置即可;(2)分别计算出每次检修后所处位置即可求解;(3)将各数的绝对值相加可得路程,再将路程乘以每千米耗油量.【详解】解:(1)﹣6+8﹣7+5+4﹣5﹣2=﹣3,答:收工时距A地的距离是3km,故答案为3km;(2)∵第一次距A地|﹣6|=6千米;第二次:|﹣6+8|=2千米;第三次:|﹣6+8﹣7|=5千米;第四次:|﹣6+8﹣7+5|=0千米;第五次:|﹣6+8﹣7+5+4|=4千米;第六次:|﹣6+8﹣7+5+4﹣5|=1千米;第七次:|﹣6+8﹣7+5+4﹣5﹣2|=3千米所以距A地最远的是第一次,故答案为一;6;(3)(6+8+7+5+4+5+2)×0.2=7.4(升).答:共耗油7.4升.【点睛】本题主要考查正数和负数的应用问题,熟练掌握正数和负数的实际意义是解题的关键.19.()1计算并填写下表:()2观察、思考:当的值逐渐变大时,你预计代数式的值最先超过500的是_ (填序号),此时的值为_ .(以上内容,只需直接写出结果)【答案】()111,16,2,6;()29【解析】【分析】先完成图表,观察表中数据可以发现三个代数式的值都逐渐增大,2n的值增大得最快;所以可知2n的值最先超过500,根据幂的性质求解即可.【详解】解:()1填表得:故答案为:11,16,2,6()2由(1)可知这三个代数式的值增加最快的式∴代数式的值最先超过500的是,9∴=,此时的值为.2512【点睛】此题考查代数式求值,解题关键在于将数字依次代入代数式即可.20.如图1是2019年11月的日历,用如图2所示的曲尺形框框(有三个方向,从左往右依次记为一、二、三个框) ,可以框住日历中的三个数,设被框住的三个数中最大的数为日一二三四五六2022242526272829()1请用含的代数式填写以下三个空:第一个框框住的最小的数是_ ,第二个框框住的最小的数是__ ,第三个框框住的三个数的和是_ _.()2这三个框分别框住的中间的数之和能恰好是的倍数吗?如能请求出的值,若不能请说明理由.x=,【答案】(1)x-7,x-8,3x-15;(2)1421,28【解析】【分析】(1)解本题的关键是找出被框住的三个数间的关系,通过观察,不难发现同行相邻两数之间相差1,同列相邻两数之间相差7,从而进行解答.(2)三个框分别框住的中间的数分别为x-6,x-1,x-7,由题意可得x 的值.【详解】(1)设被框住的三个数中最大的数为x .第一个框框住的三个数分别是x ,x-7,x-6,则最小的数是x-7;第二个框框住的三个数分别是x ,x-1,x-8,则第二个框框住的最小的数是x-8;第三个框框住的三个数分别是x ,x-7,x-8,第三个框框住的三个数的和是x+x-7+x-8=3x-15.故答案为:x-7,x-8,3x-15.(2)设三个框分别框住的中间的数分别为x-6,x-1,x-7,∴x-6+x-1+x-7=3x-14,若3x-14是7的倍数,且x 为正整数,则x=7,14,21,28.其中x=7舍去,∴x=14,21,28.【点睛】此题考查一元一次方程的实际运用,找出日历表中的数字排列规律是解题的关键.21.()1化简:()()322352363x y xy xy x y +--()2已知8,15a b ab +==,求()()()211532104335a ab ab a ab b -++--+的值. 【答案】(1)32139x y xy -+;(2) -120【解析】【分析】(1)去括号,再合并同类型;(2)化简整式,把整式转化为m (a+b )+nab 的形式,再整体代入求值.【详解】解:()1原式3223101563x y xy xy x y =+-+ 32139x y xy =-+;()2原式281022412121255a ab ab a ab b a ab b =-++---=--- ()812.5a b ab =-+- 把8,15a b ab +==代入()88121281512055a b ab -+-=-⨯-⨯=-. 【点睛】此题考查整式的加减及整式的化简求值,解题关键在于掌握运算法则.22.已知22122321,23A a ab aB a ab =+--=-++, ()1当1,2a b =-=-时,求()432A A B --的值;()2若代数式()432A A B --的值与的取值无关,求43b A b B +的值.【答案】(1)1103;(2)148 【解析】【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A-(3A-2B )的值与a 的取值无关可知a 的系数为0,可求出b 的值,进而求解.【详解】解:()122122321,23A a ab aB a ab =+--=-++ 原式22414322232124233A A B A B a ab a a ab ab a =-+=+=+---++=-+, 当1,2a b =-=-时,原式11821033=++= ()2由()1得:原式()1423b a =-+ 由结果与的取值无关,得到420b -=,得:11,223b A B =+= 当11 ,223b A B =+=时,()4311111121681616348b A b B A B A B +=+=+=⨯= 【点睛】此题考查整式的加减,解题关键在于代数式的取值与a 无关即可由此求b 值.23.滴滴快车是种便捷的出行工具,计价规则如下表:()1若小东乘坐滴滴快车,行车里程为20公里,行车时间为分钟,则需付车费 元;()2若小明乘坐滴滴快车,行车里程为公里,行车时间为分钟,则小明应付车费多少元(用含a b 、的代数式表示,并化简) ;()3小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?【答案】(1)53.5;(2)当10a ≤时,小明应付费()1.80.45a b +元;当10a >时,小明应付费()2.20.454a b +-元;(3)两人所付费用一样多【解析】【分析】(1)由题意可知行车里程为20公里,行车时间为分钟,根据表内的计费规则即可求得车费;(2)分情况讨论,当10a ≤时与当10a >时两种情况,分别写出小明应付的车费;(3)设小王与小张乘坐滴滴快车分别为分钟,分钟,根据题意得a-b=24,分别列出小王和小张车费,进行做差比较即可求.【详解】解: ()1()1.8200.45300.4201053.5⨯+⨯+⨯-=(元);()2当10a ≤时,小明应付费()1.80.45a b +元;当10a >时,小明应付费()()1.80.450.410 2.20.454a b a a b ++-=+-元;()3小王与小张乘坐滴滴快车分别为分钟,分钟,则24a b -=,小王费用:1.89.50.4517.10.45a a ⨯+=+,小张费用:()1.814.50.450.414.51027.90.45b b ⨯++⨯-=+,()()17.10.4527.90.450.450.4510.8a b a b +-+=--()0.4510.80.452410.80a b =--=⨯-=, 因此,两人所付费用一样多【点睛】此题考查代数式求值,列代数式,解题关键在于结合题意分情况讨论.24.如图,在数轴上点表示的数为,点表示的数为,且,a b 满足()2250a b ++-=,为原点.若动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动的时间为 (秒) .()1求,a b 的值;()2当点运动到线段OB 上时,分别取OB 和AP 的中点E F ,,试探究下列结论:①AB OP EF -的值为定值;②AB OP EF+的值为定值, 其中有且只有一个是正确的,请将正确的选出来并求出该值;()3当点从点出发运动到点时,另一动点Q 从点出发,以每秒个单位长度的速度在OB 间往返运动,当1PQ =时,求动点运动的时间的值.【答案】(1)2,5a b =-=;(2)①正确,2;(3)当1PQ =时,值是103或或或223 【解析】【分析】(1)根据非负数的性质即可求出a 、b 的值;(2)根据中点坐标公式分别表示出点E 表示的数,点F 表示的数,再计算AB OP EF-; (3)分情况讨论PQ=5-(t+2t)=1,PQ=t-5-2t=1,PQ=t-2t-5=1,三种情况分别求出t 值.【详解】解:(1)当()2250a b ++-=时,即20,50a b +=-=得2,5a b =-=; ()2①正确,7,22AB OP t ==-+,当点运动到线段OB 上时,AP 中点表示的数是22422t t -+--= OB 的中点表示的数是,所以549222t t EF --=-= 则()72292t AB OP t EF--+-==- ()3①相遇前()1,2271PQ t t =+-=-.解得103t = ②相遇后1,4PQ t ==或;③点Q 从点返回O,PQ=1,|21-3t|=1.解得t=203(舍去).t=223. 综上所述,当1PQ =时,的值是103或或或223 【点睛】此题考查一元一次方程的应用,非负数的性质,数轴,两点间的距离公式,解题关键是利用数形结合的思想求解.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级上学期期中数学试卷及答案

人教版七年级上学期期中数学试卷及答案

人教版七年级上学期期中数学试卷及答案一、单选题(每题3分,共24分)1.(3分)下列各组数中,数值相等的是()A.﹣12和(﹣1)2B.(﹣2)3和﹣23C.﹣3×23和﹣(3×2)3D.﹣(﹣3)和﹣|﹣3|2.(3分)下列计算错误的是()A.4÷(﹣)=4×(﹣2)=﹣8B.(﹣2)×(﹣3)=2×3=6C.﹣(﹣32)=﹣(﹣9)=9D.﹣3﹣5=﹣3+(+5)=23.(3分)钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A.4.4×106B.0.44×107C.44×105D.4.4×1054.(3分)若ab<0,则++的值为()A.1B.﹣1C.1或﹣1D.不能确定5.(3分)若关于x,y的多项式x2+axy﹣(bx2﹣y﹣3)不含二次项,则a﹣b的值为()A.0B.﹣2C.2D.﹣16.(3分)有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a+2b﹣2c B.0C.﹣2c D.2a7.(3分)甲、乙、丙三家超市为标价相同的同一种商品搞促销活动,甲超市一次性降价40%,乙超市连续两次降价20%,丙超市第一次降价30%,第二次降价10%.此时顾客要想购买这种商品更划算,应选择的超市是()A.甲B.乙C.丙D.都一样8.(3分)一组数据:2,1,3,x,7,﹣9,…,满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到,那么该组数据中的x为()A.﹣2B.﹣1C.1D.2二、填空题(每题3分,共24分)9.(3分)下列各数﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中正分数有,非负整数有.10.(3分)﹣的系数是,次数是.11.(3分)如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2021的值是.12.(3分)如果关于x、y的多项式是三次三项式,则a的值为.13.(3分)已知一个多项式与2x2﹣8x的和等于5x2+3x﹣7,则这个多项式是.14.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.15.(3分)已知|x﹣2|+(y+3)2=0,那么y x的值为.16.(3分)已知代数式x﹣2y+1的值是3,则2x﹣4y+1代数式的值是.三、解答题(共66分)17.计算:(1)﹣7+(﹣3)﹣4﹣|﹣8|;(2);(3);(4).18.化简:(1);(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].19.若|x﹣5|+|y+1|=0,那么3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy的值是多少?20.若单项式(m﹣3)x2y n﹣1与单项式5x m y5的和还是单项式,求m,n的值.21.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:a﹣c0,b﹣c0;(2)化简|a﹣1|﹣|b﹣1|.22.已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)求A﹣2B的值;(2)若A﹣2B的值与x无关,则求y的值.23.国庆节放假七天,高速公路免费通行,各地风景区游人如织,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的六天中,每天的游客人数变化(单位:万人)如表:(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月2日10月3日10月4日10月5日10月6日10月7日人数变化+0.6﹣0.2+0.1+0.2﹣0.8﹣1.6(1)10月3日的人数为万人;(2)这七天,游客人数最多的是10月日,达到万人,游客人数最少的是10月日,为万人;(3)请计算这7天参观故宫的总人数.24.如图,一块正方形的铁皮,边长为x米(x>4),如果一边截去宽4米的一条,另一边截去宽3米的一条.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,阴影部分的面积.(3)用含x的代数式直接写出阴影部分的周长.25.某公园的成人票每张20元,儿童票每张8元,甲旅行团有x名成人,y名儿童;乙旅行团的成人数是甲旅行团成人数的2倍,儿童数是甲旅行团儿童数的一半.(1)求甲旅行团的门票总费用;(2)求乙旅行团的门票总费用;(3)求两个旅行团的门票的总费用;(4)当x=10,y=4时,两个旅行团的总费用是多少?参考答案与试题解析一、单选题(每题3分,共24分)1.(3分)下列各组数中,数值相等的是()A.﹣12和(﹣1)2B.(﹣2)3和﹣23C.﹣3×23和﹣(3×2)3D.﹣(﹣3)和﹣|﹣3|【分析】把每一选项的算式计算出结果,然后进行比较.【解答】解:A、﹣12=﹣1,(﹣1)2=1,∴不符合题意;B、(﹣2)3=﹣8,﹣23=﹣8,∴符合题意;C、﹣3×23=﹣24,﹣(3×2)2=﹣36,∴不符合题意;D、﹣(﹣3)=3,﹣|﹣3|=﹣3,∴不符合题意;故选:B.【点评】本题主要考查了有理数乘方、有理数乘法、相反数、绝对值,掌握这四个知识点的性质应用是解题关键.2.(3分)下列计算错误的是()A.4÷(﹣)=4×(﹣2)=﹣8B.(﹣2)×(﹣3)=2×3=6C.﹣(﹣32)=﹣(﹣9)=9D.﹣3﹣5=﹣3+(+5)=2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=4×(﹣2)=﹣8,不符合题意;B、原式=6,不符合题意;C、原式=﹣(﹣9)=9,不符合题意;D、原式=﹣8,符合题意,故选:D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A.4.4×106B.0.44×107C.44×105D.4.4×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4400000用科学记数法表示为:4.4×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)若ab<0,则++的值为()A.1B.﹣1C.1或﹣1D.不能确定【分析】先判断a、b中一个正数、一个负数,然后根据绝对值的意义计算.【解答】解:∵ab<0,∴a、b中一个正数、一个负数,∴原式=1﹣1﹣1=﹣1.故选:B.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.也考查了相反数.5.(3分)若关于x,y的多项式x2+axy﹣(bx2﹣y﹣3)不含二次项,则a﹣b的值为()A.0B.﹣2C.2D.﹣1【分析】先对多项式进行化简可得(1﹣b)x2+axy+y+3,然后根据题意可得:a=0,1﹣b=0,从而可得a=0,b=1,最后代入式子中进行计算即可解答.【解答】解:x2+axy﹣(bx2﹣y﹣3)=x2+axy﹣bx2+y+3=(1﹣b)x2+axy+y+3,由题意得:a=0,1﹣b=0,解得:a=0,b=1,∴a﹣b=0﹣1=﹣1,故选:D.【点评】本题考查了合并同类项,多项式,熟练掌握合并同类项的法则是解题的关键.6.(3分)有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a+2b﹣2c B.0C.﹣2c D.2a【分析】根据数轴可知b<c<0<a,且|b|>|a|,再由绝对值的意义,化简运算即可.【解答】解:由数轴可知,b<c<0<a,且|b|>|a|,∴|c﹣a|﹣|a+b|﹣|b﹣c|=a﹣c+(a+b)﹣(c﹣b)=a﹣c+a+b﹣c+b=2a+2b﹣2c,故选:A.【点评】本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.7.(3分)甲、乙、丙三家超市为标价相同的同一种商品搞促销活动,甲超市一次性降价40%,乙超市连续两次降价20%,丙超市第一次降价30%,第二次降价10%.此时顾客要想购买这种商品更划算,应选择的超市是()A.甲B.乙C.丙D.都一样【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【解答】解:设该商品定价为m元,降价后三家超市的售价是:甲为(1﹣40%)m=0.6m,乙为(1﹣20%)2m=0.64m,丙为(1﹣30%)(1﹣10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是甲.故选:A.【点评】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.8.(3分)一组数据:2,1,3,x,7,﹣9,…,满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到,那么该组数据中的x为()A.﹣2B.﹣1C.1D.2【分析】根据数列中数的规律即可得出x=2×1﹣3=﹣1,此题得解.【解答】解:根据题意得x=2×1﹣3=﹣1.故选:B.【点评】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x值是解题的关键.二、填空题(每题3分,共24分)9.(3分)下列各数﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中正分数有 3.14,9.7,,非负整数有10,0,+58.【分析】根据有理数分类解答即可.【解答】解:在﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中,正分数有3.14,9.7,,非负整数有10,0,+58.故答案为:3.14,9.7,;10,0,+58.【点评】本题考查有理数的分类,解题的关键是掌握有理数分为整数和分数,整数又分为正整数、0和负整数,分数分为正分数和负分数.10.(3分)﹣的系数是﹣,次数是3.【分析】根据单项式的概念解答即可.【解答】解:﹣的系数是﹣,次数是3.故答案为:﹣,3.【点评】此题考查的是单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.11.(3分)如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2021的值是﹣1.【分析】由相反数的定义和非负数的性质求出a、b的值,代入计算即可.【解答】解:∵|a+2|与(b﹣1)2互为相反数,∴|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣2+1)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义和非负数的性质,解题的关键是求出a、b的值.12.(3分)如果关于x、y的多项式是三次三项式,则a的值为﹣2.【分析】直接利用绝对值与多项式的定义得出a的值,即可得出答案.【解答】解:∵关于x,y的多项式xy|a|﹣(a−2)y2+1是三次三项式,∴|a|=2且a﹣2≠0,∴a=﹣2.故答案为:﹣2.【点评】此题考查的是多项式,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.13.(3分)已知一个多项式与2x2﹣8x的和等于5x2+3x﹣7,则这个多项式是3x2+11x﹣7.【分析】根据题意可列出相应的式子,再利用整式的减法的法则进行运算即可.【解答】解:由题意得:5x2+3x﹣7﹣(2x2﹣8x)=5x2+3x﹣7﹣2x2+8x=3x2+11x﹣7.故答案为:3x2+11x﹣7.【点评】本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.14.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=4.【分析】根据同类项的意义,列方程求解即可.【解答】解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.【点评】本题考查同类项的意义,理解同类项的意义是正确解答的前提.15.(3分)已知|x﹣2|+(y+3)2=0,那么y x的值为9.【分析】根据非负数的性质求出x、y的值,计算即可.【解答】解:x﹣2=0,y+3=0,解得,x=2,y=﹣3,则y x=9,故答案为:9.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.(3分)已知代数式x﹣2y+1的值是3,则2x﹣4y+1代数式的值是5.【分析】由代数式x﹣2y+1的值是3得x﹣2y=2,再把两边都乘以2可得答案.【解答】解:∵代数式x﹣2y+1的值是3,∴x﹣2y+1=3,∴x﹣2y=2,∴2x﹣4y=4,∴2x﹣4y+1=4+1=5.故答案为:5.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题(共66分)17.计算:(1)﹣7+(﹣3)﹣4﹣|﹣8|;(2);(3);(4).【分析】(1)先化简,进行绝对值运算,再算加减即可;(2)利用乘法的分配律进行运算即可;(3)逆用乘法的分配律进行运算较简便;(4)先算乘方,再算括号里的减法,接着算乘法,最后算加法即可.【解答】解:(1)﹣7+(﹣3)﹣4﹣|﹣8|=﹣7﹣3﹣4﹣8=﹣(7+3+4+8)=﹣22;(2)==﹣18+20﹣21=2﹣21=﹣19;(3)====;(4)=﹣1﹣=﹣1﹣×(﹣7)=﹣1+=.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.18.化简:(1);(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)=2x﹣3y﹣x+4y=x+y;(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣(a2+5a2﹣2a﹣2a2+6a)=5a2﹣a2﹣5a2+2a+2a2﹣6a=a2﹣4a.【点评】本题主要考查整式的加减,解答的关键是去括号时注意符号的变化.19.若|x﹣5|+|y+1|=0,那么3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy的值是多少?【分析】先去小括号,再去中括号,然后合并同类项,最后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy=3x2y﹣(x2﹣2xy+x2y)﹣xy=3x2y﹣x2+2xy﹣x2y﹣xy=2x2y﹣x2+xy,∵|x﹣5|+|y+1|=0,∴x﹣5=0,y+1=0,∴x=5,y=﹣1,∴当x=5,y=﹣1时,原式=2×52×(﹣1)﹣52+5×(﹣1)=2×25×(﹣1)﹣25﹣5=﹣50﹣25﹣5=﹣80.【点评】本题考查了整式的加减﹣化简求值,绝对值的非负性,准确熟练地进行计算是解题的关键.20.若单项式(m﹣3)x2y n﹣1与单项式5x m y5的和还是单项式,求m,n的值.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,可得m=2,n﹣1=5,然后进行计算即可解答.【解答】解:由题意得:m=2,n﹣1=5,解得:m=2,n=6,∴m的值为2,n的值为6.【点评】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.21.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:a﹣c>0,b﹣c<0;(2)化简|a﹣1|﹣|b﹣1|.【分析】(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.【解答】解:(1)由题意可得,b<﹣1<c<0<1<a,|a|=|b|,∴a﹣c>0,b﹣c<0;故答案为:>;<;(2)∵a﹣1>0,b﹣1<0,∴|a﹣1|﹣|b﹣1|=a﹣1﹣(1﹣b)=a﹣1﹣1+b=a+b﹣2.【点评】本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.22.已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)求A﹣2B的值;(2)若A﹣2B的值与x无关,则求y的值.【分析】(1)把A,B的式子代入进行计算,即可解答;(2)根据题意可得y﹣4=0,然后进行计算即可解答.【解答】解:(1)∵A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2,∴A﹣2B=2x2+3xy+2x﹣1﹣2(x2+xy+3x﹣2)=2x2+3xy+2x﹣1﹣2x2﹣2xy﹣6x+4=xy﹣4x+3,∴A﹣2B的值为xy﹣4x+3;(2)∵A﹣2B=xy﹣4x+3,∴A﹣2B=(y﹣4)x+3,由题意得:y﹣4=0,解得:y=4,∴y的值为4.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.23.国庆节放假七天,高速公路免费通行,各地风景区游人如织,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的六天中,每天的游客人数变化(单位:万人)如表:(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月2日10月3日10月4日10月5日10月6日10月7日人数变化+0.6﹣0.2+0.1+0.2﹣0.8﹣1.6(1)10月3日的人数为7.4万人;(2)这七天,游客人数最多的是10月5日,达到7.7万人,游客人数最少的是10月7日,为 5.3万人;(3)请计算这7天参观故宫的总人数.【分析】(1)根据每天人数的变化情况进行计算即可;(2)分别计算出每一天的游客人数,比较得出答案;(3)求出这7天游客人数的和即可.【解答】解:(1)10月3日的人数为:7+0.6﹣0.2=7.4(万人),故答案为:7.4;(2)10月2日的人数为:7+0.6=7.6(万人),10月3日的人数为:7.6﹣0.2=7.4(万人),10月4日的人数为:7.4+0.1=7.5(万人),10月5日的人数为:7.5+0.2=7.7(万人),10月6日的人数为:7.7﹣0.8=6.9(万人),10月7日的人数为:6.9﹣1.6=5.3(万人),所以10月5日,人数最多达到7.7万人;10月7日,人数最少,达到5.3万人,故答案为:5,7.7;7,5.3;(3)7×7+(0.6﹣0.2+0.1+0.2﹣0.8﹣1.6)=47.4(万人),答:这7天参观故宫的总人数为47.4万人.【点评】本题考查正数和负数,理解正数与负数所表示的意义是正确计算的前提.24.如图,一块正方形的铁皮,边长为x米(x>4),如果一边截去宽4米的一条,另一边截去宽3米的一条.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,阴影部分的面积.(3)用含x的代数式直接写出阴影部分的周长.【分析】(1)用正方形的面积减去矩形的面积即可;(2)把x的值代入进行计算即可得解;(3)用平移的方法可确定阴影部分的周长等于正方形的周长.【解答】解:(1)S阴影=S正方形﹣S矩形=x2﹣3×4=(x2﹣12)平方米;(2)当x=6时,x2﹣12=36﹣12=24(平方米);(3)阴影部分的周长=正方形的周长=4x(米).【点评】本题考查了列代数式,代数式求值,仔细观察图形表示出阴影部分的邻边的长是解题的关键.25.某公园的成人票每张20元,儿童票每张8元,甲旅行团有x名成人,y名儿童;乙旅行团的成人数是甲旅行团成人数的2倍,儿童数是甲旅行团儿童数的一半.(1)求甲旅行团的门票总费用;(2)求乙旅行团的门票总费用;(3)求两个旅行团的门票的总费用;(4)当x=10,y=4时,两个旅行团的总费用是多少?【分析】(1)计算甲旅行团成人票费与儿童票费的和即可;(2)计算乙旅行团成人票费与儿童票费的和即可;(3)计算两个旅行团门票费用之和即可;(4)将x=10,y=4代入(3)的代数式计算即可.【解答】解:(1)根据题意可得:甲旅行团的门票总费用为20x+8y;(2)根据题意可得乙旅行团的成人数是2x人,儿童人数是人∴旅行团的门票总费用为:20×2x+8×=40x+4y;(3)∵甲旅行团的门票总费用为20x+8y,乙旅行团的门票总费用为:40x+4y,∴20x+8y+40x+4y=60x+12y,∴两个旅行团的门票总费用为(60x+12y)元;(4)当x=10,y=4时,两个旅行团的门票总费用是:60x+12y=60×10+12×4=648(元).答:两个旅行团的门票总费用是648元.【点评】本题主要考查了列代数式,求代数式的值,准确利用题中的数量关系列出代数式是解题的关键.。

2019-2020人教版七年级数学上册期中考试数学试卷含答案

2019-2020人教版七年级数学上册期中考试数学试卷含答案

人教版七年级数学上册期中考试数学试卷温馨提示:1.请在答题卡上作答,在本试卷上作答无效..........考试结束时,将答题卡交回. 2.答题前,请认真阅读答题卡上的注意事项. 3.不能使用计算器.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请用2B 铅笔把答题卡...上对应题目的答案标号涂黑.) 1. 如果向北走5米记作“5+米”,那么向南走8米记作 A . 8+米B .8-米C . 13+米D . 3-米2.数5800用科学记数法表示是A .25.810⨯B .35.810⨯C .45.810⨯D .25810⨯ 3.多项式233731x y x x +--的次数和常数项分别是 A .3,1 B .6,1- C . 5,1 D . 5,1- 4. 下列算式中,结果为正数的是A .2(1)-B .112-C .0(3)⨯-D .(2017)2018-⨯5. 化简:a a a a a ⨯⨯⨯⨯等于 A .5a B .5a + C .5a D .4a6.今年1月8日南宁市,桂林市,玉林市,柳州市的气温如下表所示,则这天温差最大的城市是A .南宁市B .桂林市C .柳州市D .玉林市7.已知250a b --=,则23a b --的值是A .2B .8C .8-D .2-8. 正确的关系式是 A .132<-B .1132-<-C .1132->-D .203< 9. 已知2x =时,多项式2x k +的值是5,则k 的值是A .1B .4C .9D .1-10.一个长方形的长是2a ,宽是1a +,则这个长方形的周长等于 A .61a +B .222a a + C .6aD .62a +11.已知一列数1,1,2-,2-,3,3,4-4-,5,5,6-,6-,……,则前20个数的和等于 A .20B .20-C .18-D .10-12.在数轴上表示有理数a ,b ,c ,d 如图所示,则正确的结论是 A . a b c d +>+B . ab cd <C . (3)(1)0a b ++>D . ()()0a d c b -->二、填空题(共6小题,每小题3分,共18分.请将答案直接填在答题卡...上.) 13.9-的相反数是 ▲ .14.式子:235x y ,421a +,16-,12v -中,单项式是 ▲ .15.计算:()()a b a b ++-= ▲ . 16.已知||2x =,则x = ▲ .17.数轴上介于32-与52之间的所有整数是 ▲ .18.运用公式“22()()a b a b a b -=+-”计算:29991-= ▲ ,29998= ▲ .三、解答题(本大题共8题,共66分.请将答案写在答题卡...上,解答应写出文字说明、证明 过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020学年度第一学期七年级期中教学质量检测
数 学 试 题 2020.10
一、选择题
1.2-等于 ( )
A .-2
B .12
- C .2 D .1
2
2.在墙壁上固定..一根横放的木条,则至少..
需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是 ( ) A .y +3= 0 B .x +2y =3 C .x 2
=2x D .
21
=+y y
4.下列各组数中,互为相反数的是 ( ) A .)1(--与1 B .(-1)2
与1 C .1-与1 D .-12
与1
5.下列各图中,可以是一个正方体的平面展开图的是 ( )
6.把两块三角板按如图所示那样拼在一起,则∠ABC 等于 ( ) A .70° B .90° C .105° D .120207、由四舍五入法得到的近似数3
10
8.8×,下列说法中正确的是 ( )
A .精确到十分位,有2个有效数字
B .精确到个位,有2个有效数字
C .精确到百位,有2个有效数字
D .精确到千位,有4个有效数字 8、一个正方体的每个面都写有一个汉字.其平面展开图如图
所示,那么在该正方体中,和“您”相对的字是( )
A .新
B .年
C .愉
D .快 9、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,
其中一台盈利2020另一台亏损2020则本次出售中商场 ( )
A .不赔不赚
B .赚160元
C .赚80元
D .赔80元
二、填空题(每题2分,共6分)
10.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米
11 若25y x n -与m y x 2312是同类项,则=m ,=n 12.计算:15°37′+42°51′=_________.
13、当1=x 时,代数式13
++bx ax 的值为2020.则当1-=x 时,代数式13
++bx ax 的值为 。

14.若25y x n -与m y x 2312是同类项,则m+=n
A B C D A
B
C
第6题图
快愉年新您祝
15.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是
cm . 三、解答题 16、计算:(-1)3
-14
×[2-(-3)2
] .(4分)
17、先化简,再求值:
41(-4x 2
+2x -8)-(21x -1),其中x =2
1.(5分)
18、已知:线段AB =6厘米,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长。

(6分)
19、如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .
求:∠COE 的度数.(7分)
C
B E D
A C
D
2020中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.求钢笔和毛笔的单价各为多少元?(8分)
21.如图所示,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB 的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.(8分)
答案
一、选择题:1、C 2、B 3、A 4、D 5、C6、D7、C 8.C 9.B
二、10、2.5×10 6
11、m=1 n=3 12、58°28′ 13、—2020. 14、3. 15、12或8. 三、16、解:原式=-1-
4
1
×(-2-9)=-1-41×(-7)=-1+47=43
17、解:原式=-x 2+21x-2+21x+1=-x 2
-1 当x=21时,原式=-4
1-1=-45
18、解:∵C 是AB 的中点,AB=6cm ∴AC=BC=2
1
AB=3cm ∵D 是AC 的中点
∴CD=2
1
AC=1.5cm ∴BD=3+1.5=4.5cm
19、解:∵OC 平分∠AOB ,∠AOB=90°∴∠COB=45°∵∠COD =90°∴∠BOD =45°∵∠BOD=3∠DOE ∴∠DOE=15°∴∠COE=75°
2020:设钢笔每只x 元,则毛笔每只(X+4)元,由题意得: 30x+45(X+4)=1755 解得:x=21 X+4=25
答:钢笔和毛笔的单价各为21元和25元 21、解:设∠AON 等于x 度 ∵ON 平分∠AOB
∴∠AOB=2x ∠AOM=40+x ∵OM 是∠AOC
∴∠AOC =2∠AOM=80+2x ∵∠AOC 与∠AOB 互补 ∴2x+80+2x=180 解得x=25
∴∠AOB=50 ∠AOC=130
答:∠AOC 与∠A OB 的度数分别是130度和50度。

相关文档
最新文档