中考数学复习专题几何总复习
中考数学复习-几何专题复习-教案
中考数学复习-几何专题复习-教案一、教学目标1. 知识与技能:巩固和掌握初中阶段几何的基本知识和技能,提高解题能力。
2. 过程与方法:通过复习,使学生能够灵活运用几何知识解决实际问题,培养学生的逻辑思维能力和空间想象能力。
3. 情感态度与价值观:激发学生学习几何的兴趣,提高学生对数学学科的认同感和自信心。
二、教学内容1. 第一课时:三角形的全等和相似教学重点:全等三角形的判定和性质,相似三角形的判定和性质。
教学难点:全等三角形和相似三角形的应用。
2. 第二课时:四边形的性质和判定教学重点:四边形的性质和判定方法。
教学难点:四边形性质和判定方法的综合运用。
3. 第三课时:圆的性质和判定教学重点:圆的性质和判定方法。
教学难点:圆的性质和判定方法在实际问题中的应用。
4. 第四课时:角的计算和证明教学重点:角的计算方法和证明方法。
教学难点:角的计算和证明在实际问题中的应用。
5. 第五课时:几何图形的面积和体积教学重点:几何图形的面积和体积计算方法。
教学难点:几何图形面积和体积计算在实际问题中的应用。
三、教学过程1. 复习导入:通过复习已学过的几何知识,引导学生回顾和巩固相关概念、定理和公式。
2. 讲解与示范:针对每个课时的教学内容,进行详细的讲解和示范,引导学生理解和掌握相关知识和技能。
3. 练习与讨论:布置适量的练习题,组织学生进行练习和讨论,巩固所学知识,提高解题能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果:评估学生在练习中的表现,检查学生对知识的掌握程度。
3. 期中期末考试:通过期中期末考试,全面评估学生的复习效果。
五、教学资源1. 教材:选用合适的中考数学复习教材,为学生提供系统的复习资料。
2. 习题集:挑选适合学生水平的习题集,提高学生的解题能力。
3. 教学课件:制作精美的教学课件,辅助讲解和展示教学内容。
4. 教学视频:收集相关的教学视频,为学生提供更多学习资源。
上海中考数学复习资料(几何篇)
第八章
考点三、相交线 (3分)
图形的初步认识Biblioteka 1、相交线中的角 两条直线相交,可以得到四个角,我们把两条直线相交所 构成的四个角中,有公共顶点但没有公共边的两个角叫做 对顶角。我们把两条直线相交所构成的四个角中,有公共 顶点且有一条公共边的两个角叫做临补角。 临补角互补,对顶角相等。 直线AB,CD与EF相交(或者说两条直线AB,CD被第三条 直线EF所截),构成八个角。其中∠1与∠5这两个角分别 在AB,CD的上方,并且在EF的同侧,像这样位置相同的一 对角叫做同位角;∠3与∠5这两个角都在AB,CD之间, 并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与 ∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的 两个角叫做同旁内角。
第八章
图形的初步认识
考点一、直线、射线和线段 (3分) 7、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点 有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 8、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。
9、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第八章
中考数学几何专题复习
专题 几何专题题型一考察概念基础知识点型例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 ; 例2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF=,菱形边长是______.图1 图2 图3 例3 已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm,PB =4cm,则BC = . 题型二折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解; 沿DE 折叠,若48CDE ∠=°,则APD ∠等例4 D E ,分别为AC ,BC 边的中点,于 ;例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色图,则着色部分的面积为A . 8B .112C . 4D .52EDBC A P图4图5 图6题型三涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等;例6如图3,P 为⊙O 外一点,PA 切⊙O 于A,AB 是⊙O 的直径,PB 交⊙O 于C,PA =2cm,PC =1cm,则图中阴影部分的面积S 是A.2235cm π- B 2435cm π- C 24235cm π- D 2232cm π- 图3 题型四证明题型: 第二轮复习之几何一——三角形全等判定方法1:SAS例1如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF; 求证:△ACE ≌△ACF例2 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . 1求证:△BEC ≌△DEC ;2延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.BD GFF ADFEBCDCBA EFG判定方法2:AASASA例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AFBF EF =+.例4如图,在□ABCD 中,分别延长BA,DC 到点E,使得AE=AB, CH=CD 连接EH,分别交AD,BC 于点F,G;求证:△AEF ≌△CHG.判定方法3:HL 专用于直角三角形例5在△ABC 中,AB=CB,∠ABC=90o,F 为AB 延长线上一点,点E在BC上, 且AE=CF. 1求证:Rt △AB E ≌Rt △CBF; 2若∠CAE=30o,求∠ACF 度数.对应练习1.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.1证明:∠DFA = ∠FAB; 2证明: △ABE≌△FCE.2.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 1求证:BCE ADE ∆≅∆;5分2求AFB ∠的度数.5分3.如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .1求证:△CEB ≌△ADC ;2若AD =9cm,DE =6cm,求BE 及EF 的长.第二轮复习之几何二——三角形相似Ⅰ.三角形相似的判定例1如图,在平行四边形ABCD 中,过点A 作AE ⊥BC,垂足为E,连接DE,F 为线段DE 上一点,且∠AFE =∠B. 1求证:△ADF ∽△DEC2若AB =4,AD =33,AE =3,求AF 的长. 例2如图9,点P 是正方形ABCD 边AB 上一点不与点A .B重合,连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE, PE 交边BC 于点F .连接BE 、DF;E B D A CF AF DEB CABCEFABCDF EF ED CBA 1求证:∠ADP=∠EPB ; 2求∠CBE 的度数; 3当APAB的值等于多少时.△PFD ∽△BFP 并说明理由.2.相似与圆结合,注意求证线段乘积,一般是转化证它所在的三角形相似;将乘积式转化为比例式→比例式边长定位到哪个三角形→找条件证明所在的三角形相似 例3 如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 与E,交BC 与D .求证:1D 是BC 的中点;2△BEC∽△ADC; 3BC 2=2AB CE .3.相似与三角函数结合,①若题目给出三角函数值一般会将给出的三角函数值用等角进行转化,然后求线段的长度②求某个角的三角函数值,一般会先将这个角用等角转化,间接求三角函数值例4如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.1求证:⊿ABE∽⊿DFE ;2若sin∠DFE=31,求tan∠EBC 的值. 练习一、选择题1、如图1,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有 A .①②B .①③C .②③D .①②③图1 图22.如图,等边△ABC 中,BD=CE,AD 与BE 相交于点P,则∠APE 的度数是A .45° B.55° C.60° D.75° 3.如图3,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE等于A .1013 B .1513 C .6013 D .7513MEDCBA图3 图4 图5GFE CBADAO BCXY4.如图4,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是 A1个 B2个 C3个 D4个5.如图5,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G,则FGAF= . 6.如图6,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC = 120°,四边形ABCD 的周长为10cm .图中阴影部分的面积为 A. 32B.3C. 23D. 43图6 图7对折,使点A 落在点1A 处;已知7.如图7,在直角坐标系中,将矩形OABC 沿OB3=OA ,1=AB ,则点1A 的坐标是 ; A 、23,23 B 、23,3 C 、23,23 D 、21,23 三、解答题1如图,矩形ABCD 中,点E 是BC 上一点,AE =AD,DF⊥AE 于F,连结DE.求证:DF =DC .2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:1∠PBA =∠PCQ =30°;2PA =PQ .3.如图9,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .1求证:DE 平分∠BDC ;2若点M 在DE 上,且DC=DM ,求证: ME=BD . 4.如图5AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:1∠AOC =2∠ACD ; 2AC 2=AB ·AD . 、5.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合E 、F 两点均在BD 上,折痕分别为BH 、DG;1求证:△BHE ≌△DGF ;2若AB =6cm,BC =8cm,求线段FG 的长;6.如图8,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合, 连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.ABCDEAC B DPQABCDEF 第二轮复习之几何三——四边形例1 如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD、等 边△ABE;已知∠BAC=30o,EF⊥AB,垂足为F,连结DF;1试说明AC=EF ;2求证:四边形ADFE 是平行四边形;例2如图,AD ∥FE,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD,求证:△ACF ≌△BDE例3如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一 点,连结AG,点E 、F 分别在AG 上,连接BE 、DF,∠1=∠2 ,∠3=∠4.1证明:△ABE≌△DAF; 2若∠AGB=30°,求EF 的长.例4如图,在等腰梯形ABCD 中,已知AD BC ∥,AB DC =,2AD =, 4BC =延长BC 到E ,使CE AD =.1证明:BAD DCE △≌△;2如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值.对应练习1.如图,在菱形ABCD 中,∠A=60°,点P 、Q 分别在边AB 、BC 上,且AP=BQ . 1求证:△BDQ ≌△ADP ;2已知AD=3,AP=2,求cos ∠BPQ 的值结果保留根号.2、如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DFBE ==,,∥. 求证:1AFD CEB △≌△.2四边形ABCD 是平行四边形.3. 如罔7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED,1求证:△BEC ≌△DEC :2延长BE 交AD 于点F,若∠DEB=140°.求∠AFE 的度数.4.如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M .1求证:△AMD ≌△BM E ;2若N 是CD 的中点,且M N=5,BE =2,求BC 的长.第二轮复习之几何四——圆Ⅰ、证线段相等例1:如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .1求证:CF=BF ;2若CD =6, AC =8,则⊙O 的半径为 ___ ,CE 的长是 ___ .ABDEFCDAB EC F ACBDEFO2、证角度相等例2如图,AB 是⊙O 的直径,C 为圆周上一点,30ABC ∠=︒,过点B 的切线与CO 的延长线交于点D .:求证:1CAB BOD ∠=∠;2ABC ∆≌ODB ∆. 3、证切线点拨:证明切线的方法——连半径,证垂直;根据:过半径的外端且垂直于半径的直线是圆的切线例3如图,四边形ABCD 内接于⊙O,BD 是⊙O 的直径, AE⊥CD 于点E,DA 平分∠BDE;1求证:AE 是⊙O 的切线;2若∠DBC=30°,DE=1cm,求BD 的长;例4如图,点A 、B 、C 、D 都在⊙O 上,OC⊥AB,∠ADC=30°. 1求∠BOC 的度数;2求证:四边形AOBC 是菱形. 对应练习1.如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E . ⊙O 的切线BF 与弦AD的延长线相交于点F ,且AD =3,cos ∠BCD= . 1求证:CD ∥BF ; 2求⊙O 的半径; 3求弦CD 的长.2.如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .1求证:BD 是⊙O 的切线.2若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.1.一副三角板,如图所示叠放在一起,则图中∠α的度数是A .75B .60C .65D .55图1 图22.如图2,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是A .43B .33C .23D .33.如图3,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是DCBOADOBCA E 例7图43DOEC O图 8OFE BCADCB A O P D图3 图4 A B C D74. 如图4,直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 A .247B .73C .724D .135.如图5,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于 A .32B .23C .42 D .336. 图6,已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F,G,若∠ADF=80o ,则∠EGC 的度数为 图5 图67.如图,已知:在平行四边形ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD•于点E,交CD 的延长线于点F,则DF=______cm .8.如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD,BC 于点E 、F,连接CE,则CE 的长________.9.如图,BD 是⊙O 的直径,OA ⊥OB,M 是劣弧错误!上一点,过点M 作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于点N; 1求证:PM=PN ; 2若BD=4,PA=32AO,过B 点作BC ∥MP 交⊙O 于C 点,求BC 的长. 10.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P,PD ⊥AC 于点D,且PD 与⊙O 相切.1求证:AB =AC ;2若BC =6,AB =4,求CD 的值.11.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=90°, ∠ E=45°,∠A=60°,AC=10,试求CD 的长.12.如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o,且EF 交正方形外角的平分线CF 于点F . 1证明:∠BAE =∠FEC ; 2证明:△AGE ≌△ECF ; 3求△AEF 的面积.13.如图,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .1当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的68CEABD切线;2试探究:BE 能否与O ⊙相切 若能,求出此时DE 的长;若不能,请说明理由.几何之——解直角三角形1在△ABC 中,∠C=90°,sinA=45,则tanB =A .43B .34C .35D .452、在 ABC 中,若|sinA-22 |+23-cosB 2=0, ∠A.∠B 都是锐角,则∠C 的度数是A. 750B. 9003、如下左图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是A 、513B 、1213 C 、512D 、1354如上右图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2, BC=5,CD=3,则tanC 等于A 、34B 、43C 、35D 、455、如,在矩形ABCD 中,DE⊥AC 于E,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为 . A3 B316 C 320 D 516 6在锐角△ABC 中,∠BAC=60°,BD、CE 为高,F 为BC 的中点,连接DE 、DF 、EF,则结论:①DF=EF;②AD:AB=AE :AC ;③△DEF 是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=√2DE 中,一定正确的有A 、2个B 、3个C 、4个D 、5个7.084sin 45(3)4-︒+-π+-=为528.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离米,则这 个破面的坡度为 . 9.如图,已知直线1l∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 直角三角形常见模型1 张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,试求旗杆AB 的高度;2.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东DE OCBG FAABC DαAABCDEADBE图6i =1:3C60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离; 3某年入夏以来,松花江哈尔滨段水位不断下降,一条船在松花江某段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上;前进100m 到达B 处,又测得航标C 在北偏东45°方向上如图,在以航标C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险4如图6,梯形ABCD 是拦水坝的横断面图,图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.结果保留三位有效数字.参考数据:3≈,2≈3 1.73≈。
中考总复习数学04- 第二部分 专题四 几何最值问题(精练册)
∵∠BCF=∠EDF=75°-30°=45°,BC=DE,
∴△BCF≌△EDF(SAS),∴BF=EF,
专题四 几何最值问题— 两点之间线段最短问题
∵AB=AE=6,AF=AF,∴△BAF≌△EAF(SSS),
∵∠BAE=120°-30°=90°,∴∠BAF=∠EAF=45°,
∵∠AKF=∠BKF=90°,∴∠KAF=∠KFA=45°,∴AK=FK,
三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最
小值和最大值之和是( B )
A.5
B.6
C.7
D.8
1
2
3
4
5
6
7
专题四 几何最值问题— 点圆求最值问题
返回类型清单
2.如图,半径为1的☉M经过平面直角坐标系的原点O,与x轴交于点A,点A
的坐标为( ,0),点B是直角坐标系平面内一动点,且∠ABO=30°,则BM
M,N分别是BD,BC上的动点,则CM+MN的最小值为( B )
A.4
B.5
C.4.5
D.6
专题四 几何最值问题— 垂线段最短问题
4.如图,正方形ABCD的边长为3,E是BC上一点且CE=1,F
是线段DE上的动点.连接CF,将线段CF绕点C逆时针旋
转90°得到CG,连接EG,则EG的最小值是
.
(1)连接PC,AC,求∠PCA的度数;
解:连接OP,如图1,
由题意得,∠AOP=120°.
∵∠PCA= ∠AOP,
∴∠PCA=60°;
返回类型清单
专题四 几何最值问题— 两点之间线段最短问题
(2)连接AP,PB,求证:△DAO≌△APB;
中考数学总复习《几何压轴题》专项提升练习题(附答案)
中考数学总复习《几何压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________专题02三角形之直角、等腰问题 题型训练训练题01【2023·内蒙古·中考真题】如图,在Rt ABC △中90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为 .训练题02【2023·山东菏泽·中考真题】无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)训练题03【2023·广东·中考真题】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈ cos500.643︒≈ tan50 1.192︒≈)训练题04【2023·湖北黄冈·中考真题】综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,已知博雅楼高度CE 为15米,则尚美楼高度DF 为 米.(结果保留根号)训练题05【2023·河北沧州·模拟预测】如图1,嘉淇在量角器的圆心O 处下挂一铅锤,制作了一个简易测角仪.将此测角仪拿到眼前,使视线沿着仪器的直径刚好到达树的最高点M .(1)在图1中,过点A 画出水平线,并标记观测M 的仰角α.若铅垂线在量角器上的读数为53︒,求α的值;(2)如图2,已知嘉淇眼睛离地1.5米,站在B 处观测M 的仰角为(1)中的α,向前走1.25米到达D 处,此时观测点M 的仰角为45︒,求树MN 的高度.(注:3tan 374︒≈ 3sin 375︒≈ 4cos375≈︒) 训练题06【2023·四川成都·八年级期末联考】如图 在等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥于点G 点M N 分别是DE DG 上的动点 且DN EM = 则FM FN +的最小值为 .训练题07【2022·陕西西安·滨河期末】如图 直线y =x ﹣3分别交x 轴 y 轴于B A 两点 点C (0 1)在y 轴上 点P 在x 轴上运动 则2PC +PB 的最小值为 .训练题08【2021·四川甘孜·中考真题】如图 腰长为22+2的等腰ABC 中 顶角∠A =45° D 为腰AB 上的一个动点将ACD 沿CD 折叠 点A 落在点E 处 当CE 与ABC 的某一条腰垂直时 BD 的长为 .训练题09【2022·福建泉州·九年级联考】如图 ABC 和AGF 是等腰直角三角形 90BAC G ∠=∠=︒ AGF 的边AF AG 交边BC 于点D E .若4=AD 3AE = 则BEDC 的值是 .训练题10【2021·宁夏固元·联考一模】如图在直角△BAD中延长斜边BD到点C 使得BD=2DC 连接AC 如果则的值是()A.B.C.D.答案&解析5 tanB3=tan CAD∠3 3351315训练题01【2023·内蒙古·中考真题】【答案】5【简证】因为tan 311tan 4522ABC CD ABD α∠=⎧⇒=⇒=⎨∠=︒⎩ 故5AD DC =【常规法】解:过点D 作DF AB ⊥于点F∵90ACB ∠=︒ 3AC = 1BC =∴223110AB =+=∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△∴==10AB AB ' 90BAB '∠=︒∴ABB '是等腰直角三角形∴45ABB '∠=︒又∵DF AB ⊥∴45FDB ∠=︒∴DFB △是等腰直角三角形∴DF BF =∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ∵ 90C AFD ∠=∠=︒ CAB FAD ∠=∠∴AFDACB ∴DF AF BC AC= 即3AF DF = 又∵=10AF DF -45°α∴10=4 DF∴105=10=42AD⨯51=3=22CD-∴52==512ADCD故答案为:5.训练题02【2023·山东菏泽·中考真题】【答案】大楼的高度BC 为303m .【分析】如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥ 则四边形CQHB 是矩形 可得QH BC = BH CQ = 求解3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= 可得704030CQ BH ==-= tan 30103PQ CQ =︒= 可得403103303BC QH ==-=.【详解】解:如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥则四边形CQHB 是矩形 ∴QH BC = BH CQ =由题意可得:80AP = 60PAH ∠=︒ 30PCQ ∠=︒ 70AB = ∴3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= ∴704030CQ BH ==-= ∴tan 30103PQ CQ =︒=∴403103303BC QH ==-= ∴大楼的高度BC 为303m .训练题03【2023·广东·中考真题】【答案】15.3m【分析】连接AB 作作CD AB ⊥于D 由等腰三角形“三线合一”性质可知2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中利用sin AD ACD AC∠=求出AD 继而求出AB 即可.【详解】解:连接AB 作CD AB ⊥于D∵AC BC = CD AB ⊥∴CD 是边AB 边上的中线 也是ACB ∠的角平分线∴2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中 10m AC = 50ACD ∠=︒ sin AD ACD AC ∠= ∴sin 5010AD ︒= ∴10sin50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A B 两点间的距离为15.3m .训练题04【2023·湖北黄冈·中考真题】【答案】3053-/5330-+【分析】过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N 首先证明出四边形ECAM 是矩形 得到15AM CE == 然后根据等腰直角三角形的性质得到15AC EM BM === 进而得到15==AD AC 然后利用30︒角直角三角形的性质和勾股定理求出53BN = 即可求解.【详解】如图所示 过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N由题意可得 四边形ECAM 是矩形 ∴15AM CE == ∵30AB = ∴15BM AB AM =-= ∵博雅楼顶部E 的俯角为45︒ ∴45EBM ∠=︒ ∴45BEM ∠=︒ ∴15AC EM BM ===∵点A 是CD 的中点 ∴15==AD AC 由题意可得四边形AMFN 是矩形 ∴15NF AD == ∵尚美楼顶部F 的俯角为30︒ ∴60NBF ∠=︒ ∴30BFN ∠=︒ ∴2BF BN =∴在Rt BNF △中 222BNNF BF += ∴()222152BN BN +=∴解得53BN =∴3053FD AN AB BN ==-=-.故答案为:3053-.训练题05【2023·河北沧州·模拟预测】【答案】(1)37︒(2)树MN 的高度为5.25米【分析】(1)根据互余的性质计算即可.(2) 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米.解直角三角形求解即可.【详解】(1)如图1;905337α=︒-︒=︒;(2)如图 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米. 在Rt APM △中 4( 1.5)tan 373MP AP x ==-︒(米) 在Rt MCP 中 1.5CP MP x ==-(米) 4( 1.5)( 1.5) 1.253AC AP CP x x ∴=-=---=(米) 解得 5.25x =. 答:树MN 的高度为5.25米.训练题06【2023·四川成都·八年级期末联考】【答案】23【分析】过点E 作AE EF ⊥ 使得2AE DF == 证得AEM FDN ≅ 利用全等三角形的性质证得FN AM = 求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长 在Rt AEF 中利用勾股定理即可求解.【详解】解:过点E 作AE EF ⊥ 使得2AE DF == 如图所示∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF ==∴45DEF ∠=︒ 222222EF =+=∴9045AEM DEF ∠=︒-∠=︒∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥∴45FDN ∠=︒∴FDN AEM ∠=∠在AEM △和FDN 中AE DF AEM FDN EM DN =⎧⎪∠=∠⎨⎪=⎩∴AEM FDN≅()SAS ∴FN AM =∴求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长∴在Rt AEF 中()222222223AF AE EF =+=+=的最小值为23即FM FN故答案为:23训练题07【2022·陕西西安·滨河期末】【答案】4【分析】过P作PD⊥AB于D依据△AOB是等腰直角三角形可得∠BAO=∠ABO=45°=∠BPD进而得到△BDP是等腰直角三角形故PD22=PB当C P D在同一直线上时CD⊥AB PC+PD的最小值等于垂线段CD的长求得CD的长即可得出结论.【详解】如图所示过P作PD⊥AB于D∵直线y=x﹣3分别交x轴y轴于B A两点令x=0 则y=﹣3;令y=0 则x=3∴A(0 ﹣3)B(3 0)∴AO=BO=3又∵∠AOB=90°∴△AOB是等腰直角三角形∴∠BAO=∠ABO=45°=∠BPD∴△BDP是等腰直角三角形∴PD22=PB∴2PC+PB2=(PC22+PB)2=(PC+PD)当C P D在同一直线上即CD⊥AB时PC+PD的值最小最小值等于垂线段CD 的长此时△ACD是等腰直角三角形又∵点C(0 1)在y轴上∴AC=1+3=4∴CD22=AC=22即PC+PD的最小值为22∴2PC+PB的最小值为222⨯=4 故答案为:4.训练题08【2021·四川甘孜·中考真题】【答案】2或22【分析】分两种情况:当CE ⊥AB 时 设垂足为M 在Rt △AMC 中 ∠A =45° 由折叠得:∠ACD =∠DCE =22.5° 证明△BCM ≌△DCM 得到BM =DM 证明△MDE 是等腰直角三角形 即可得解;当CE ⊥AC 时 根据折叠的性质 等腰直角三角形的判定与性质计算即可;【详解】当CE ⊥AB 时 如图设垂足为M 在Rt △AMC 中 ∠A =45°由折叠得:∠ACD =∠DCE =22.5°∵等腰△ABC 中 顶角∠A =45°∴∠B =∠ACB =67.5°∴∠BCM =22.5°∴∠BCM =∠DCM在△BCM 和△DCM 中90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BCM ≌△DCM (ASA )∴BM =DM由折叠得:∠E =∠A =45° AD =DE∴△MDE 是等腰直角三角形∴DM =EM设DM =x 则BM =x DE 2=x∴AD 2=x .∵AB=22+2∴2x2x=22+2 解得:x2=∴BD=2x=22;当CE⊥AC时如图∴∠ACE=90°由折叠得:∠ACD=∠DCE=45°∵等腰△ABC中顶角∠A=45°∴∠E=∠A=45°AD=DE∴∠ADC=∠EDC=90°即点D E都在直线AB上且△ADC△DEC△ACE都是等腰直角三角形∵AB=AC==22+2∴AD22=AC=22BD=AB﹣AD=(22+2)﹣(22)2=综上BD的长为2或22.故答案为:2或22.训练题09【2022·福建泉州·九年级联考】【答案】916【分析】利用等腰直角三角形的性质先证明AED BEA ∽ 可得34BE AE AB AD ==,设3BE x = 则4AB x AC ==,再证明ADE CDA △∽△ 可得34AC AE CD AD == 可得163CD x = 从而可得结论. 【详解】解:∵ABC 和AGF 是等腰直角三角形 ∴45,B F FAG AB AC ∠=∠=∠=︒=∵AEB AED ∠=∠∴AED BEA ∽∴AD AE DE AB BE AE ==,而4=AD 3AE = ∴34BE AE AB AD == 设3BE x = 则4AB x AC ==同理可得:ADE CDA △∽△∴AD AE DE CD AC AD == ∴34AC AE CD AD == ∴BE AC AB CD = ∴344x x x CD =,即163CD x = ∴3916163BE x CD x ==.训练题10【2021·宁夏固元·联考一模】【答案】D【详解】解:如图 延长AD 过点C 作CE ⊥AD 垂足为E∵ 即∴设AD =5x 则AB =3x∵∠CDE =∠BDA ∠CED =∠BAD∴△CDE ∽△BDA∴∴CE = DE =∴AE = ∴tan ∠CAD =.5tanB 3=53AD AB =12CE DE CD AB AD BD ===32x 52x 152x 15CE AE =。
中考总复习之几何综合题
中考总复习---几何综合几何综合题常研究以下几个方面的问题:1.证明线段、角的数量关系(包括相等、和差、倍、分关系以及比例关系);2.证明图形的位置关系(如点与线、线与线、线与圆等);3.面积计算问题;4.动态几何问题在解几何综合问题时,常要分解基本图形,挖掘隐含的数量关系,另外,也需要注意使用数形结合、方程、分类讨论等数学思想方法来解决问题。
借助变换的观点也能帮助我们找到更有效的解决问题的思路。
解几何综合题,要充分利用综合与分析的思维方法。
当思维受阻时要及时改变方向;要熟悉常用的辅助线添法;强化变换的意识;从特殊或极端位置探究结论。
第一课时:基本证明与计算:例1.直线CF垂直且平分AD于点E,四边形ABCD是菱形,BA的延长线交CF于点F,连接AC。
(1)写出图中两对全等三角形。
(2)求证:ΔABC是正三角形。
例2、在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:ΔADE≌ΔCBF(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。
例3、如图1,在四边形ABCD 中,已知AB=BC =CD ,∠BAD 和∠CDA 均为锐角,点P 是对角线BD 上的一点,PQ ∥BA 交AD 于点Q ,PS ∥BC 交DC 于点S ,四边形PQRS 是平行四边形。
(1)当点P 与点B 重合时,图1变为图2,若∠ABD =90°,求证:△ABR ≌△CRD ;(2)对于图1,若四边形PRDS 也是平行四边形,此时,你能推出四边形ABCD 还应满足什么条件? 练习:1.在梯形ABCD 中,AB CD ∥,90ABC ∠=°,5AB =,10BC =,tan 2ADC ∠=. (1)求DC 的长;(2)E 为梯形内一点,F 为梯形外一点,若BF DE =,FBC CDE ∠=∠,试判断ECF △的形状,并说明理由.(3)在(2)的条件下,若BE EC ⊥,:4:3BE EC =,求DE 的长.图2图1R DCBASRPQDCBAE A D2.如图,四边形ABCD 为一梯形纸片,AB//CD ,AD=BC .翻折纸片ABCD , 使点A 与点C 重合,折痕为EF .已知CE ⊥AB . (1)求证:EF//BD ;(2)若AB=7,CD=3,求线段EF 的长.3.已知:在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,AD AB AC ⋅=2(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)4.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C 。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
九年级数学-中考复习-几何综合
九年级-中考复习-几何综合中线倍长旋转全等构造半角模型对补型1. 中线倍长婆罗摩笈多模型及变式难点:最后一步倒角2. 旋转3. “三垂直”模型4. 半角模型1.婆罗摩笈多模型的解决方法2.模型之变式,中线倍长方法的灵活应用变式1:(武汉19年元调)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=62,连接BE ,P 为BE 的中点,连接PD 、AD(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△PAD的面积。
变式2:(16年元调)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点(1) 如图1,若A、C、D三点共线,求∠PAC的度数。
核心考点回顾·提问中线倍长(2) 如图2,若A 、C 、D 三点不共线,求证:AP ⊥DP 。
(3) 如图3,若点C 线段BE 上,AB =1,CD =2,请直接写出PD 的长度。
常见有90°等腰含半角,120°等腰含半角,正方形中含半角例:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ',使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)如图2,当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,其它条件不变,则上述结论是否发生改变?说明你的猜想并给予证明.变式:(武汉18年元调)如图,点C 为线段AB 上一点,分别以AB 、AC 、CB 为底作顶角为120°的等腰三角形,顶角顶点分别为D 、E 、F (点E 、F 在AB 的同侧,点D 在另一侧) (1) 如图1,若点C 是AB 的中点,则∠AED = ___________。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
中考数学专题复习_几何探究题
专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。
'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。
,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。
2019-2020总复习之中考数学几何压轴专题,中考几何专题训练及参考答案
1.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.2.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.3.(10分)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM =MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.4.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.5.(10分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.6.(10分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q 以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=3cm,∠EAD=45°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.7.(14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH 的长.8.(10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD 的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.1.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.2.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.3.【分析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.【解答】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.【点评】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.4.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.5.【分析】(1)连接CF,由垂心的性质得出CF⊥AB,证出CF∥BH,由平行线的性质得出∠CBH=∠BCF,证明△BMH≌△CMF得出BH=CF,由线段垂直平分线的性质得出AF=CF,得出BH=AF,AD=DF+AF=DF+BH,由直角三角形的性质得出AD=BD,即可得出结论;(2)同(1)可证:AD=DF+AF=DF+BH,再由等腰直角三角形的性质和含30°角的直角三角形的性质即可得出结论.【解答】(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD=BD,∴DF+BH=BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD=BD,∴DF+BH=BD.【点评】本题考查了全等三角形的判定与性质、垂心的性质、平行线的性质、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;熟练掌握直角三角形的性质,证明三角形全等是解题的关键.6.【分析】(1)由勾股定理可求AE的长,由等腰三角形的性质可求∠EAD的度数;(2)分三种情况讨论,由面积和差关系可求解;(3)分三种情况讨论,由勾股定理可求解.【解答】解:(1)∵AB=3cm,BE=AB=3cm,∴AE==3cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:3,45(2)当0<x≤2时,如图,过点P作PF⊥AD,∵AP=x,∠DAE=45°,PF⊥AD∴PF=x=AF,∴y=S△PQA=×AQ×PF=x2,(2)当2<x≤3时,如图,过点P作PF⊥AD,∵PF=AF=x,QD=2x﹣4∴DF=4﹣x,∴y=x2+(2x﹣4+x)(4﹣x)=﹣x2+8x﹣8当3<x≤时,如图,点P与点E重合.∵CQ=(3+4)﹣2x=7﹣2x,CE=4﹣3=1cm ∴y=(1+4)×3﹣(7﹣2x)×1=x+4(3)当0<x≤2时∵QF=AF=x,PF⊥AD∴PQ=AP∵PQ=cm∴x=∴x=当2<x≤3时,过点P作PM⊥CD∴四边形MPFD是矩形∴PM=DF=4﹣2x,MD=PF=x,∴MQ=x﹣(2x﹣4)=4﹣x∵MP2+MQ2=PQ2,∴(4﹣2x)2+(4﹣x)2=∵△<0∴方程无解当3<x≤时,∵PQ2=CP2+CQ2,∴=1+(7﹣2x)2,∴x=综上所述:x=或【点评】本题是四边形综合题,考查了矩形的判定和性质,勾股定理,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.7.【解答】问题情境:解:线段DN、MB、EC之间的数量关系为:DN+MB=EC;理由如下:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC=CD,AB∥CD,过点B作BF∥MN分别交AE、CD于点G、F,如图1所示:∴四边形MBFN为平行四边形,∴NF=MB,∴BF⊥AE,∴∠BGE=90°,∴∠CBF+∠AEB=90°,∵∠BAE+∠AEB=90°,∴∠CBF=∠BAE,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵DN+NF+CF=BE+EC,∴DN+MB=EC;问题探究:解:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,如图2所示:∵四边形ABCD是正方形,∴四边形ABIH为矩形,∴HI⊥AD,HI⊥BC,HI=AB=AD,∵BD是正方形ABCD的对角线,∴△DHQ是等腰直角三角形,HD=HQ,AH=QI,∵MN是AE的垂直平分线,∴AQ=QE,在Rt△AHQ和Rt△QIE中,,∴Rt△AHQ≌Rt△QIE(HL),∴∠AQH=∠QEI,∴∠AQH+∠EQI=90°,∴∠AQE=90°,∴△AQE是等腰直角三角形,∴∠EAQ=∠AEQ=45°,即∠AEF=45°;(2)连接AC交BD于点O,如图3所示:则△APN的直角顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,∵AO=OD,∠AOD=90°,∴∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG⊥CD于点G,过点P′作P′H⊥CD交CD 延长线于点H,连接PC,∵点P在BD上,∴AP=PC,在△APB和△CPB中,,∴△APB≌△CPB(SSS),∴∠BAP=∠BCP,∵∠BCD=∠MP A=90°,∴∠PCN=∠AMP,∵AB∥CD,∴∠AMP=∠PNC,∴PC=PN,∴AP=PN,∴∠PNA=45°,∴∠PNP′=90°,∴∠P′NH+PNG=90°,∵∠P′NH+∠NP′H=90°,∠PNG+∠NPG=90°,∴∠NPG=∠P′NH,∠PNG=∠NP′H,由翻折性质得:PN=P′N,在△PGN和△NHP'中,,∴△PGN≌△NHP'(ASA),∴PG=NH,GN=P'H,∵BD是正方形ABCD的对角线,∴∠PDG=45°,易得PG=GD,∴GN=DH,∴DH=P'H,∴∠P'DH=45°,故∠P'DA=45°,∴点P'在线段DO'上运动;过点S作SK⊥DO',垂足为K,∵点S为AD的中点,∴DS=2,则P'S的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EG=AG=,PH=FH,∴AE=5,在Rt△ABE中,BE==3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴==3,∴QE=AE=,∴AQ=AE+QE=,∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴=,即=,解得:AM=,由折叠的性质得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M==,AC'=1,∵∠BAD=90°,∴∠B'AM=∠C'F A,∴△AFC'∽△MAB',∴==,解得:AF=,∴DF=4﹣=,∵AG⊥MN,FH⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴=,即=,解得:FP=,∴FH=FP=.【点评】本题是四边形综合题目,考查了正方形的性质、翻折变换的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.8.【分析】(1)根据等腰直角三角形的性质得到AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,求得∠BAE=∠DAC,根据全等三角形的性质得到∠ABE=∠ACD,根据余角的性质即可得到结论;(2)根据全等三角形的性质得到∠ABE=∠ACD,BE=CD,求得∠EPD=90°,得到DE=3,AB=6,求得BD=6﹣3=3,CD==3,根据相似三角形的性质得到PD=,PB=根据三角形的面积公式即可得到结论.【解答】解:(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE =90°.∴AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,即∠BAE=∠DAC,在△ABE与△ADC中,,∴△ABE≌△ADC(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=∠ABE+∠CFP=90°,∴∠CPF=90°,∴BP⊥CD;(2)在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,BE=CD,∵∠PDB=∠ADC,∴∠BPD=∠CAB=90°,∴∠EPD=90°,BC=6,AD=3,求△PDE的面积.∵BC=6,AD=3,∴DE=3,AB=6,∴BD=6﹣3=3,CD==3,∵△BDP∽△CDA,∴==,∴==,∴PD=,PB=∴PE=3﹣=,∴△PDE的面积=××=.【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的性质.熟练掌握旋转的性质是解题的关键.。
2025年中考数学总复习第二部分重难专题突破专题1几何最值问题——将军饮马
∠N'ON=2∠AON=60°.∴ △NON'是等边三角形.∵ M是ON的中点,
∴ N'M⊥ON.∵ N(3,0),∴ ON=3.∵ M是ON的中点,∴
在Rt△OPM中,∠POM=30°,∴ PM=OM·tan30°=
为
,
.
.∴
OM= .
点P的坐标
变式训练
1. 如图,正方形ABCD的边长为4,E是边AB的中点,P是对角线BD上的
动点,则AP+PE的最小值是( A )
A. 2 5
B. 2 3
C. 3 2
D. 3 5
解析:如图,连接CP,CE.∵ 四边形ABCD是正方形,∴ 易知点A,C
关于BD对称.∴ CP=AP.∴ AP+PE=CP+PE.∴ 当点C,P,E在同一
条直线上时,AP+PE取最小值,此时AP+PE=CE.在Rt△CEB中,
∠POA=∠P'OA,∠POB=∠P″OB.∵ ∠AOB=∠POA+∠POB=
60°,∴ ∠P'OP″=120°.过点O作OQ⊥P'P″于点Q,则P'Q=P″Q,
∠OP'Q=∠OP″Q=30°.∴
∴ቤተ መጻሕፍቲ ባይዱ
P'P″=2P'Q=2× =5
OQ= ,P'Q=P″Q= .
.
∴ △PMN的周长的最小值是5 .
这个问题的答案并不难,据说海伦略加思索就解决了它.从此以
后,这个被称为“将军饮马”的问题便流传至今.
[教材体现]北师大7下课本第126页
如图所示,要在街道旁修建一个奶站,向居民区A,B提供牛奶,奶
中考数学复习指导:几何五大模型归纳总结
几何五大模型归纳总结一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模等积变形: 等积变形是小学几何里面一个非常重要的思想,小学所以的几何题,或多或少的都会用到等积变形的思想,几何五大模型也都是依托等积变形思想变化而成的。
一半模型平行四边形、梯形、任意四边形中的一些一半模型。
一、 模型归纳总结1、等面积变换模型(1)直线AB 平行于CD ,可知BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD .如图A(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;::ABD ACD S S BD CD =△△如图BDC BADCB A图A 图B(3)一半面积关系S 4S 3S 2S 1ABCDDCA12S S =阴影长方形 1324S S S S +=+【例1】、如图,每一个正方形四边中点的连线构成另一内接小正方形,则阴影部分面积为原正方形面积的几分之几?第8题【例2】、如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?BCGH【例4】、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_____DCBF二、不规则图形求面积的常用方法【例5】、右图中两个半径为1的14圆扇形'A O B''与AOB叠放在一起,POQO'是正方形,则整个阴影图形的面积是。
中考数学复习-几何专题复习-教案
中考数学专题复习六几何(一)【教学笔记】题型一:图像的几何变换1、主视图、左视图、府视图2、图形旋转、折叠3、求最短路径问题题型二:平面几何基础1、平行线、相交线题型三:三角形(全等、相似、三角函数)1、勾股定理第1页共19页1、题型一:图像的几何变换【例1】(2016?资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.【例2】(2015?资阳)如图1是一个圆台,它的主视图是()A.B.C.D.解:B.【例3】(2015达州)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π【例4】(2014年XX资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°解答:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.第2页共19页【例5】(2015XX)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2102B.6C.2132D.4解析:【课后练习】1、(2014年XX资阳)下列立体图形中,俯视图是正方形的是()A.B.C.D.解答:解;A、的俯视图是正方形,故A正确;2、(2015内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为(B)A.3B.23C.26D.6解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23=BE3、(2015甘孜州)下列图形中,是中心对称图形的为()第3页共19页A.B.C.D.解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选B.4、(2015XX)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是(C)A.2B.3C.4D.5解:平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形,符合题意;而等腰梯形是轴对称图形,但不是中心对称图形,故中心对称图形的有4种.5、(2015XX)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为(A)A.13B.152C.272D.12解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=24,tanC=2,∴AQ/QC=2,QC=BQ=12,∴AQ=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,设BD=x,则DE=x,2=(18-x)2+122,∴DF=24-x-6=18-x,∴x得:x=13,则BD=13.故选A.6、(2015XX)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=(B)A.34B.45C.56D.67第4页共19页7、(2015XX)如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°,BC=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y2x6上时,线段BC扫过的面积为(C)A.4B.8C.16D.82解:∵∠CAB=90B°C,=5,点A、B的坐标分别为(1,0)、(4,0),∴AC=4,当点C落在直线y=2x﹣6上时,如图,∴四边形BB'C'C是平行四边形,∴A'C'=AC=4,把y=4代入直线y=2x﹣6,解得x=5,即OA'=5,∴AA'=BB'=4,∴平行四边形BB'C'C的面积=BB'×A'C'=44=16;故答案为:16.8、(2015XX)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_______.试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=,2在Rt△ABE中,由勾股定理得.故答案为:3.9、(2015达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.第5页共19页10、(2015内江)如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 上一点,分别以EA ,EB 为折 痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为.11、(2015XX )如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得 △ACB .若C (3 2, 3 2 ),则该一次函数的解析式为.第6页共19页12、(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.13、(2015XX)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为.14、(2015XX)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.15、(2015XX)如图,已知A(23,2)、B(23,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为.16、(2015XX)(10分)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,22,10,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.17、(2015XX)(14分)在△ABC中,AB=AC=5,cos∠ABC= 35,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.第7页共19页础题型二:平面几何基【例1】(2015资阳)如图,已知A B∥CD,∠C=70°,∠F=30°,则∠A的度数为(C)A.30°B.35°C.40°D.45°滚匀【例2】(2015XX)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度动一周,用时分别为t、t2、t3,则t1、t2、t3的大小关系为.1为a≈2,解:设面积相等的等边三角形、正方形和圆的面积为3.14,等边三角型的边长等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.【例3】(2016?资阳)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.【解答】解:正多边形内角和;∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【课后练习】第8页共19页1、(2015内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°2、(2015凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()m] A.52°B.38°C.42°D.60°3、(2015XX)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°4、(2015XX)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.5、(2015XX)下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线ykxb经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=22ab,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线2y2x4x3的顶点坐标是(1,1).其中是真命题的有(只填序号)6、(2015XX)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC=.[来第9页共19页7、(2015XX)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.题型三:三角形(全等、相似、三角函数)【例1(】2016?资阳)如图6,在△ABC中,∠ACB=90o,AC=BC=1,E、F为线段A B上两动点,且∠ECF=45°,过点E、F分别作B C、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=2;②当点E与点B重合时,MH= 12;③AF+BE=EF;④MG?MH=12,其中正确结论为(C)A.①②③B.①③④C.①②④D.①②③④解答:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=9°0,∵MG⊥AC,∴∠MGC=9°0=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.2∵∠5=45°,∴∠EBD=90°,∴DE=BD 2+BE2,即EF2=AF2+BE2,故③错误;19页第10页共④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴AE/BC=,∴AE?BF=AC?BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG?MH=AE×BF=AE?BF=AC?BC=,故④正确.故选:C.【例2】(2016?资阳)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cmB.261cmC.61cmD.234cm考点:平面展开-最短路径问题.图5 解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.【例3】(2016?资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边A C、BC上,且AD=CE,连结D E交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD 2+BE2﹣2OP2=2DP?PE,其中所有正确结论的序号是①②③④.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=4°5,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=9°0,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=18°0,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,第11页共19页S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP?PC=DP?PE,∴2OP 2+2DP?PE=2OP2+2OP?PC=2OP(OP+PC)=2OP?OC,∵∠OEP=∠DCO=∠OCE=4°5,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP?OC=OE 2,∴2OP2+2DP?PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD 222++BE=2OP 2DP?PE,∴AD2+BE2﹣2OP2=2DP?PE.故④正确.【例4】(2016?资阳)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边A B上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设B E=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=9°0,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,第12页共19页②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,得,AD=AB,∴∠ABD=∠ADB=2∠BAD,由旋转∵∠BAD+∠ABD+∠ADB=18°0,∴∠BAD+2∠BAD+2∠BAD=18°0,B D=x,作BG平分∠ABD,∴∠BAD=∠GBD=3°6∴∠BAD=36°,设B D,B G=AD﹣A G=AD﹣∴AG=BG=BC=x,∴DG=AD﹣∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.【课后练习】1、(2015XX)如图,在△ABC中,DE//BC,AD=6,BD=3,AE=4,则EC的长为()A.1B.2C.3D.4C F.若2、(2015达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°A B的垂直平分线交AC于点N,△BCN的周长是7cm,3、(2015XX)如图,在△ABC中,AC=4cm,线段则BC的长为()A.1cmB.2cmC.3cmD.4cm4、(2015XX)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()19页第13页共A.(1,2)B.(1,1)C.(2,2)D.(2,1)5、(2015XX)在平面直角坐标系中,点A(2,2),B(32,32),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2B.3C.4D.56、(2015眉山)如图,A.B是双曲线ky上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若x△ADO的面积为1,D为OB的中点,则k的值为()A.43 B.83C.3D.47、(2015眉山)如图,AD∥BE∥CF,直线l1、l2这与三条平行线分别交于点A、B、C和点D、E、F.已知AB=l,BC=3,DE=2,则EF'的长为()A.4B.5C.6D.88、(2015XX)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.34 B.45C.56D.679、(2015XX)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.2410、(2015XX)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()第14页共19页A.118°B.119°C.120°D.121°11、(2015XX)一个等腰三角形的两条边长分别是方程27100xx的两根,则该等腰三角形的周长A.12B.9C.13D.12或912、(2015甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为()A.110°B.80°C.70°D.60°13、(2015XX)如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知ABBC32,则D EDF的值为()A.32B.23C.25D.3514、(2015XX)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.15、(2015XX)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.16、(2015XX)将一副三角板按图叠放,则△AOB与△DOC的面积之比等于.第15页共19页17、(2015XX)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②P FPH 35;③2DPPHPB;④SΔBPDS正方形ABCD314.其中正确的是.(写出所有正确结论的序号)18、(2015XX)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为.19、(2015XX)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC=.20、(2015凉山州)在?ABCD中,M,N是AD边上的三等分点,连接B D,MC相交于O点,则S△MOD:S△COB=.21、(2015XX)如图,在矩形ABCD中,BC=2AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接C H并延长交边AB于点F,连接A E交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=22EH;③HO=12AE;④BC﹣B F=2EH.其中正确命题的序号是(填上所有正确命题的序号).22、(2015眉山)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的番号).23、(2015XX)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为.24、(2015XX)一个等腰三角形两边的长分别为2m、5cm.则它的周长为________cm.19页第16页共25、(2015XX)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C 作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段D H的长为.29(2)2026、a、b满足(2015XX)若a、b、c为三角形的三边,且ab,则第三边c的取值X围是.27、(2015XX)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为.28、(2015XX)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=°.A BCD沿对角线BD折叠,使点A落在平面上的F点处,29、(2015XX)(10分)如图,将矩形纸片DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.30、(2015XX)(8分)如图,矩形纸片A BCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),E Q上点F处.点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)3(2)如果AM=1,sin∠DMF=,求AB的长.519页第17页共31、(2015XX)(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.32、(2015内江)(本小题满分9分)如图,将?ABCD的边AB延长至点E,使AB=BE,连接D E,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接B D,若∠BOD=2∠A,求证:四边形BECD是矩形.33、(2015XX)(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD 相交于点O,求证:OA=OE.解析:∵AD∥BC∴∠CBD=∠ADB又∵∠EBD=∠CBD∴∠EBD=∠ADB∴OB=OD∵BC=BEAD=BC∴BE=AD∴AD-OD=BE-OB∴OA=OE34、(2015XX)(10分)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断O M和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.19页第18页共WORD格式。
2022年中考数学专题复习:反比例函数与几何综合
2022年中考数学专题复习:反比例函数与几何综合1.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.2.如图1,点A 、B 是双曲线y =kx (k >0)上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段AC 、AD 、BE 、BF ,AC 和BF 交于点G ,得到正方形OCGF (阴影部分),且S 阴影=1,△AGB 的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A 和点B ,上述作图不变,得到矩形OCGF (阴影部分),点A 、B在运动过程中始终保持S 阴影=1不变(如图2),则△AGB 的面积是否会改变?说明理由.3.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.4.如图,直线1:l y k x b =+与双曲线()20k y x x=>相交于A ,B 两点,与x 轴交于点C ,若点A ,B 的横坐标分别是1和2,(1)请直接写出21k k x b x+>的解集; (2)当AOB 的面积为3时,求2k 的值.5.如图,在平面直角坐标系中,A(8,0)、B(0,6)是矩形OACB的两个顶点,双曲线y=kx(k≠0,x>0)经过AC的中点D,点E是矩形OACB与双曲线y=kx的另一个交点.(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足S△PBO=56S△ODE.①若点P在这个反比例函数的图象上,求点P的坐标;①若点Q是平面内一点,使得以A、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数ykx=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.(1)若点D的坐标为(4,n).①求反比例函数ykx=的表达式;①求经过C,D两点的直线所对应的函数解析式;(2)在(1)的条件下,设点E是x轴上的点,使△CDE为以CD为直角边的直角三角形,求E点的坐标.7.如图1,点(08)(2)A B a ,、,在直线2y x b =-+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ①x 轴于点F ,交反比例函数图象于点E ,求E 点坐标;①在线段AB 运动过程中,连接BC ,若①BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.8.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(8,4),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将①OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到①ODE ,OD 与CB 相交于点F ,反比例函数()0ky x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,求四边形OAGF 的面积.(3)图中是否存在与①BFG相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由.9.如图,在平面直角坐标系中,四边形ABCD为矩形,若点AD①AB=3①4,A(-6,0)、D(-9,4),点B、C在第二象限内.(1)请直接写出:点B的坐标________;(2)将矩形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、C两点的对应点B′、C′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式:(3)在(2)的情况下,是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、C′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.10.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin①AOB=45,反比例函数y=kx(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.11.如图,在正方形OABC 中,点O 为坐标原点,点()3,0C -,点A 在y 轴正半轴上,点E ,F 分别在BC ,CO 上,2CE CF ==,一次函数()0y kx b k =+≠的图象过点E 和F ,交y 轴于点G ,过点E 的反比例函数()0my m x=≠的图象交AB 于点D .(1)求反比例函数和一次函数的解析式;(2)在线段EF 上是否存在点P ,使ADP APG S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.12.如图是反比例函数y 2x=与反比例函数y 4x =在第一象限中的图象,点P 是y 4x =图象上一动点,P A ①x 轴于点A ,交函数y 2x =图象于点C ,PB ①y 轴于点B ,交函数y 2x=图象于点D ,点D 的横坐标为a .(1)求四边形ODPC 的面积;(2)连接DC 并延长交x 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形.13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,OA=3,AB=4,反比例函数kyx(k>0)的图象与矩形两边AB,BC分别交于点D,点E,且BD=2AD.(1)求点D的坐标和k的值;(2)连接OD,OE,DE,求①DOE的面积;(3)若点P是线段OC上的一个动点,是否存在点P,使①APE=90°?若存在,求出此时点P的坐标;若不存在,请说明理由.14.如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A①y轴于点A,PB①x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P(6,3),求①PCD的面积;(2)在(1)的条件下,当PG平分①CPD时,求点G的坐标;(3)如图2,若点G是OP与CD的交点,点M是线段OP上的点,连接MC、MD.当①CMD=90°时,求证:MG=12CD.15.在矩形AOBC 中,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)ky x x=>的图象与AC 边交于点E ,连接,OE OF ,作直线EF .(1)若2CF =,求反比例函数解新式; (2)在(1)的条件下求出EOF △的面积; (3)在点F 的运动过程中,试说明ECFC是定值.16.如图1,一次函数y =kx ﹣3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x>0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.17.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()4,2,OA ,OC 分别落在x 轴和y 轴上,OB 是矩形的对角线,将OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求出k 的值.(2)在x 轴上是否存在一点M ,使MF MG -的值最大?若存在,求出点M ;若不存在,说明理由.(3)在线段OA 上存在这样的点P ,使得PFG △是等腰三角形,请直接写出OP 的长.18.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(4,3),双曲线ky x=的图象经过点A .(1)菱形OABC 的边长为 ; (2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于x 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标; ①将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.19.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.20.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)ky x x=>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3. (1)点D 的坐标是 ; (2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围; (4)连接DE ,在x 轴上取一点P ,使98DPES =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.。
中考数学动态几何专题复习
中考数学动态几何专题复习图形的运动变化问题。
【典型例题】例1. 已知;⊙O 的半径为2,∠AOB =60°,M 为AB ⋂的中点,MC ⊥AO 于C,MD ⊥OB 于D ,求CD 的长。
分析:连接OM 交CD 于E ,∵∠AOB =60°,且M 为AB ⋂中点∴∠AOM =30°,又∵OM =OA =2 ∴OC =3∴CE CD ==323,例2. 如图,AB 是 ⊙O 的直径,⊙O 过AE 的中点D ,DC ⊥BC ,垂足为C 。
(1)由这些条件,你能推出哪些正确结论?(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,写出4个结论即可) (2)若∠ABC 为直角,其它条件不变,除上述结论外,你还能推出哪些新的正确结论?并画出图形。
(要求:写出6个结论即可,其它要求同(1)) 分析:(1)AB =BE DC =CE ∠A =∠E DC 为⊙O 切线(2)若∠ABC 为直角则∠A =∠E =45°,DC =BCDC ∥AB ,DC =CE ,BE 为⊙O 的切线DC AB BE ==1212例3. 在直径为AB 的半圆内划出一块三角形区域,使三角形的一边为AB ,顶点C 在半圆上,现要建造一个内接于△ABC 的矩形水池DEFN ,其中DE 在AB 上,如图的设计方案是AC =8,BC =6。
(1)求△ABC 中AB 边上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?分析:(1)∵AB 为半圆直径∴∠ACB =90°∵AC =8,BC =6 ∴AB =10∴△ABC 中AB 边上高h =4.8m (2)设DN =x ,CM =h =4.8 则MP =xNF AB CPCM =NF x104848=-..NF x=-102512 S ND NF =·=-=-+=--x x x x x x ()()102512251210251224522当x =125时,水池面积最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三辅导班资料9 初中几何综合复习学校 姓名一、典型例题例1(2005重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.二、强化训练BC图3图4图1图2练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠AOC = ___ .3.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为4.等腰Rt△ABC, 斜边AB与斜边上的高的和是12厘米, 则斜边AB= 厘米.5.已知:如图△ABC中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF的度数为________.6.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面积为8cm,则△AOB的面积为 .7.如果圆的半径R增加10% , 则圆的面积增加_________ .8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. △ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 .10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°,那么AD等于 . 练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 [ ]A.30°B.45°C.60°D.75°2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]A.矩形 B.三角形C.梯形 D.菱形3.下列图形中,不是中心对称图形的是 [ ]A. B. C. D.4.既是轴对称,又是中心对称的图形是 [ ]A.等腰三角形B.等腰梯形C.平行四边形D.线段5.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是[ ]A.相交B.内切C.外切D.外离7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为 [ ]8.A.B.C三点在⊙O上的位置如图所示,若∠AOB=80°,则∠ACB等于 [ ]A.160° B.80°C.40° D.20°9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是[ ]A.160°B.150°C.70°D.50°(第9题图)(第10题图)10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有 [ ]A.2对B.3对C.4对D.5对练习三:几何作图1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。
2. 正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。
3.将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移2个单位;(2)关于y轴对称;4. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)练习四:计算题1.求值:cos45°+ tan30°sin60°.2.如图:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm ,AD=34cm.(1)判定△AOB的形状. (2)计算△BOC的面积.3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD和上弦AC 的长(答案可带根号)4.如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm, BC=10cm ,求AE的长.练习五:证明题1.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.D C证明:在△AEB 和△AEC 中,∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;2. 已知:点C.D 在线段AB 上,PC =PD 。
请你添加一个条件,使图中存在全等三角形并给予证明。
所加条件为_____,你得到的一对全等三角形是△___≌△___。
证明:3.已知:如图 , AB=AC , ∠B=∠C .BE 、DC 交于O 点.求证:BD=CE练习六:实践与探索1.用两个全等的等边△ABC 和△ACD 拼成如图的菱形ABCD 。
现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别与AB 、AC 重合。
将三角板绕点A 逆时针方向旋转。
(1)当三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(图a )①猜想BE 与CF 的数量关系是__________________;PA②证明你猜想的结论。
(2)当三角板的两边分别与菱形的两边b ),连结EF ,判断△AEF 2.如图,四边形ABCD 中,AC=6,BD=8到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去得到四边形A n B n C n D n 。
(1)证明:四边形A 1B 1C 1D 1是矩形;·仔细探索·解决以下问题:(填空)(2)四边形A 1B 1C 1D 1的面积为____________ A 2B 2C 2D 2的面积为___________;(3)四边形A n B n C n D n 的面积为____________(用含n 的代数式表示);(4)四边形A 5B 5C 5D 5的周长为____________。
3.如图,在平面直角坐标系中,四边形ABCO 是正方形,点C 的坐标是(4,0)。
(1)直接写出A 、B 两点的坐标。
A ______________ B____________(2)若E 是BC 上一点且∠AEB=60°,沿AE 折叠正方形ABCO ,折叠后点B 落在平面内点F 处,请画出点F 并求出它的坐标。
(3)若E 是直线..BC 沿AE 折叠后,点B 恰好落在x 轴上的某一点P A请说明理由。
参考答案例1证明:因为∠ABD =∠ACD ,∠BDE =∠CDE 。
而∠BDE =∠ABD +∠BAD ,∠CDE =∠ACD +∠CAD 。
所以 ∠BAD =∠CAD ,而∠ADB=180°-∠BDE ,∠ADC =180°-∠CDE ,所以∠ADB =∠ADC 。
在△ADB 和△ADC 中,∠BAD =∠CADAD =AD∠ADB =∠ADC所以 △ADB ≌△ADC 所以 BD =CD 。
例2(1)证明:连接OD ,AD . AC 是直径,∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC .又∠BED 是圆内接四边形ACDE 的外角,∴∠C =∠BED .故∠B =∠BED ,即DE =DB .∴ 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,即∠DAC =∠BAD =∠ODA .∴OD ⊥DF ,DF 是⊙O 的切线.(2)解:设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).则 BF 的长为2.例3答案:(1)如图(2)由题可知AB =CD =AE ,又BC =BE =AB +AE 。
∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 的两根∴⎩⎨⎧+=⋅-=+1212m a a m a a消去a ,得 071322=--m m 解得 7=m 或21-=m经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去.7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片的面积为8cm 2. ·············练习一. 填空1.92. 90°3. 6.54.85. 70°6.27.21%8.89.24 10.43练习二. 选择题1.B2.D3.B4.D5.C6.B7.A8.C9.D 10.C练习三:1.3略2. 下面给出三种参考画法:4.作法:(1)作点A关于直线a 的对称点A'.(2)连结A'B交a于点C.则点C就是所求的点.证明:在直线a上另取一点C', 连结AC,AC', A'C', C'B.∵直线a是点A, A'的对称轴, 点C, C'在对称轴上∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B∵在△A'C'B中,A'B<A'C'+C'B ∴AC+CB<AC'+C'B即AC+CB最小.练习四:计算1. 12.①等边三角形②433. 23、434. 55练习五:证明1.第一步、推理略2.略3. 证:∵∠A=∠A , AB=AC , ∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE∵AB=AC, ∴BD=CE.练习六;实践与探索1.(1)①相等②证明△AFD≌△AEC即可(2)△AEF为等边三角形,证明略2..(1)证明略(2)12, 6 (3)242n(4)723. (1)A(0,4)B(4,4)(2)图略,F(2,4 )(3)存在。